Stellar Evolution. The Basic Scheme

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Stellar Evolution. The Basic Scheme"

Transcription

1 Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow the same basic series of steps in their lives: Gas Cloud Proto star Main Sequence star Red Giant and/or Supergiant Horizontal Branch star (only if it has a low mass) Variable Star (RR Lyra, Cepheid or WVirgins) Red Giant and/or Supergiant Planetary Nebula (low mass) or Supernova (high mass star) Stellar Remnant (white Dwarf, Neutron Star, or Black Hole). Stars shine we know that. But they can only shine until all their energy is used up. Here we will consider what happens to stars as they burn their fuel, first hydrogen, then helium, etc. Stars go through different evolutionary stages as their energy source changes. This results in changes in the surface temperature (thus color), the luminosity (the energy output per second), and their sizes. In general stars produce metals (up to iron, but this depends on their initial mass), and during the final stages of their evolution they shed a large fraction of their material into space, thus recycling interstellar material leaving behind white dwarfs, neutron stars and black holes. How long a star lasts in each stage, whether it dies as planetary nebula or a spectacular supernova depends on the initial mass of the star. Massive stars evolve quicker than less massive stars. Solar-mass stars will end up as white dwarfs, and very massive ones as black holes.

2 Life on the Main Sequence The longest and most stable phase in the lifetime of a star is its main sequence lifetime. The star is in thermal and hydrostatic equilibrium. The star is converting hydrogen to helium in the core of the star (in the region where the temperature is above 15 million degrees Kelvin), and it will do so for roughly 100 thousand (massive stars) to 100 billion years (low mass stars). Changes do occur, but over long, long time scales, so that main sequence stars are indeed in thermal and hydrostatic equilibrium. The main sequence lifetime (and in fact, any other epoch in the life of a star) depends on its total mass. Why? a) Massive stars have more gravitational potential energy, so they can collapse faster b) Massive stars, even when they start nuclear fusion, have relatively higher pressures in their centers (because the larger mass is exerting a relatively higher pressure), thus higher central temperatures. This results in faster reaction rates (since the protons smash together with relatively higher velocities). In fact, hydrogen will get burned via the CNO cycle (more below) which produced energy at a higher rate. c) Thus the main sequence lifetime is shorter d) The same applies for any of the other stages, which will also be shorter. On the Way to a Red Giant All through the long main sequence stage, the relentless compression of gravity is balanced by the outward pressure from the nuclear fusion reactions in the core. Eventually the hydrogen in the core is all converted to helium and the nuclear reactions stop. Gravity takes over and the core shrinks. The layers outside the core collapse too, the ones closer to the center collapse quicker than the ones near the surface. As the layers collapses, the gas compresses and heats up. Eventually, the layer just outside the core called the shell layer gets hot and dense enough for fusion to start. The fusion in the layer just outside the core is called shell burning. This fusion is very rapid because the shell layer is still compressing and increasing in temperature. The luminosity of the star increases from its main sequence value. The gas envelope surrounding the core puffs outward under the action of the extra outward pressure. As the star begins to expand it becomes a subgiant and then a red giant. The Horizontal Branch Phase In low mass stars (like the Sun), the onset of helium fusion in the core can be very rapid, producing a burst of energy called a helium flash. The reason for this is that the He-core is degenerate (i.e., the core is packed as closely together as is possible). A degenerate gas does not obey the perfect gas law (PV=NkT) where a pressure increase results in a temperature increase. In degenerate gases the temperature can increase without the pressure adjusting along with it. So the core will get hotter and hotter very rapidly and very suddenly start helium fusion to carbon. This in turn produces more energy, which, in turn, increases the reaction rate. The overall effect is an explosive reaction. You can think of it as a core explosion, which however cannot be seen since the core is surrounded by a huge envelope which dams the explosion. Eventually the reaction rate settles down and the star has become a

3 Horizontal Branch star. Fusion in the core (He Carbon) releases more energy/second than the core fusion of the main sequence stage, so the star is bigger, but stable. Hydrostatic equilibrium is restored now. Becoming a Cepheid Variable Stars entering and leaving this stage can create conditions in their interiors that trap their radiated energy in their outer layers. The outward thermal pressure increases enough to expand the outer layers of the star. The trapped energy is able to escape when the outer layers are expanded and the thermal pressure drops. Gravity takes over and the star shrinks, but it shrinks beyond the equilibrium point. The energy becomes trapped again and the cycle continues. In ordinary stars hydrostatic equilibrium works to dampen (diminish) the pulsations. But stars entering and leaving this stage can briefly (in terms of star lifetimes!) create conditions where the pressure and gravity are out of sync and the pulsations continue for a time. The larger, more luminous stars will pulsate with longer periods than the smaller, fainter stars because gravity takes longer to pull the more extended outer layers of the larger stars back. Because of the period-luminosity relationship, cepheid variables can be used to determine distances (more later). Asymptotic Giant Branch If the star is not very massive, like for example the sun, its core temperature never gets hot enough for Carbon to burn. Nevertheless, the total energy output is increasing, which causes the star to puff up again, the surface temperature to decrease and to appear redder. The star is again a Red Giant on its way of turning into a Supergiant. Red giants and supergiants can have strong winds that dispel more mass than all of the stellar winds that occurred during the long main sequence stage. All through the star's life after it first started nuclear reactions, it has been losing mass as it converted some mass to energy and other mass was lost in the winds. This means that even though a red giant is large in terms of linear size, it is less massive than the main sequence star it came from. A red giant has the extremes in temperature and density: its surface is cold and very low density, while its core gets very hot and extremely dense. Most of the mass loss of stars will occur at this stage and in the next one. Planetary Nebulae In the next-to-last stage of a star's life, the outer layers are ejected as the core shrinks to its most compact state. A large amount of mass is lost at this stage as the outer layers are returned to the interstellar medium. For the common low mass stars (those with masses of times the mass of the Sun during their main sequence stage), the increased number of photons flowing outward from the star's hot, compressed core will push on the carbon and silicon grains that have formed in the star's cool outer layers to eject the outer layers and form a planetary nebula. The ultraviolet light from the hot exposed core, called a white dwarf, causes the gases to fluoresce. Most noticeable is the red emission

4 from the excited hydrogen and nitrogen, the green emission from doubly-ionized oxygen, and the blue emission from excited helium. Planetary nebula get their name because some looked like round, green planets in early telescopes. We now know that they are entirely different than the planets and are about one or more light years across (much larger than our solar system!). Many planetary nebulae will look like rings (for example, the Ring Nebula in Lyra or the Helix Nebula in Aquarius) because when we look along the edge of the expanding spherical shell, we look through more material than when we look toward the center of the shell. The round soap bubbles you made as a child (or still do!) look like rings for the same reason. High-resolution images of planetary nebulae show complex structures in the expanding nebula (check the Helix Nebula on the Web). The expanding gas from the planetary nebula ejection runs into gas and dust dispersed in the red giant winds. As it passes the slower moving red giant wind material, the gas shapes the denser blobs into comet-like shapes. Although they are called comet knots, they are not to be confused with real comets in our solar system. Each of these blobs is over twice the size of our entire solar system! Other planetary nebulae have a more asymmetrical appearance. The outflow is bipolar, resulting from a more complex interaction of the final outer layer ejection and the material from the stellar winds of the earlier stages. Examples of such nebulae are the Cat Eye Nebula and the Dumbbell Nebula. Selecting the image below will bring up an enlarged view of the Cat Eye (check the Web). Also, earlier jets of gas from the evolving star and companion stars may be needed to explain the complex structure of nebulae like the Hourglass Nebula (web) and why the white dwarf is not at the center of the green region in the middle. The two rings are centered along the star's poles that are oriented around 60 to our line of sight. The upper ring is around the pole that is coming towards us and the lower ring is around the pole that is oriented away from us. There is evidence that the Ring Nebula is similar to the Hourglass Nebula except that we are viewing it from right along the pole, so just one ring is seen. White Dwarfs Nuclear reactions have now stopped; the outer layers have been dispersed, and the only remaining part of the star is the small carbon core. This core is rather hot and thus blueish whitish, however since there is no more nuclear fuel left, its luminosity will decrease. Thus it will fade and get cooler, turning from a White Dwarf into a Red and finally a Black Dwarf. Its size will be roughly comparable to that of the Earth. White Dwarfs are degenerate stars, i.e. their material is packed as closely together as is possible. WD s still emit light, but their are slowly running out of energy and cooling (analogous to a heated iron rod that is left to cool). Their energy source is no longer nuclear fuel, not gravity, but just their own thermal energy. And if we had not been fried and destroyed during the Giant phase, we would freeze the death now

5 The Evolution in the Herzsprung Russel Diagram As the sun evolves its luminosity increases, its surface temperature drops, and its radius increases. These are all observable quantities, which can be (conveniently) plotted into the Herzsprung Russel diagram (HRD). We refer to this evolution as the evolutionary tracks in the HRD. To understand this evolution is more detail, I have marked several stages in the HRD. Stage 1: The sun just started nuclear fusion of H He and arrived on the main sequence (generally this is referred to as the Zero-Age-Main-Sequence, or just ZAMS) Stage 1 2: As a main sequence star it will continue to burn H He in a region where the temperature is hot enough (T>15x10 6 K). This region is called the core. Energy source: pp-process (H He; 4 protons turning into one He-ion) in the core the fraction of helium increases gradually (no mixing as is the case for massive stars see below) the core becomes degenerate (explained below) Energy transport in core: radiative diffusion Energy transport in envelope: radiative diffusion Stage 2 3: now have a core of helium hydrogen burning to helium continues in a shell surrounding this core Stage 3 4: more energy gets produced in the center of the star (see below) this energy has to be carried from the center to the surface of the star energy transport via radiation is no longer efficient enough the envelope turns convective energy can then be transported more efficiently to the surface luminosity increases Overall: Stages : as more H He He mass of core increases (to roughly 0.5 the total mass) core contracts slowly (central temperature increases, reaction rates increase) envelope expands (radius increases) surface temperature decreases (color gets redder) luminosity increases (when envelope turns convective) star moves to the top right hand side of the HRD (The Sun has now become a red giant and Mercury and Venus will be part of the sun, and maybe the Earth too. In any case we will be fried, if we have not yet died )

6 At Stage 4: Sudden onset of Helium to Carbon fusion (Tripple Alpha process, 3α ) He-flash = Core explosion (invisible) Followed by: Re-adjustment rather rapid Helium core burning and Hydrogen shell burning How did a HE-flash happen? Core is degenerate electrons as close as possible Central temperature keeps on rising Perfect gas law does not apply to degenerate gases As temperature increases, the pressure does no longer balance it out Temp can increase further reaction rates speed up until He fusion starts this reaction is even more energetic (energy generation rate is proportional to T 40 ) faster reaction more energy output higher temp run-away process core explosion - Helium Flash Stage 5: Horizontal branch phase Comparable to main sequence phase with one main difference: Energy Source: He C (3α) and H He Helium core burning Hydrogen shell burning Energy generation is a lot higher Stage 6: A brief Variable star phase (only in certain place of HRD) RR Lyrae star Instability over-expansion of envelope collapse of envelope too much collapse rebounce expansion too much expansion etc radius increases and decreases surface temperature increases and decreases luminosity increases and decrease Period-Luminosity Relationship

7 Stage 6 7: On the way to a Giant/Supergiant Energy Source: some C O; He C (3α) and H He Carbon/Oxygen core Helium shell burning Hydrogen shell burning Stages 1 4 repeat themselves (only faster) Carbon mass of core increases core contracts slowly (central temperature increases, reaction rates increase) envelope expands (radius increases) surface temperature decreases (color gets redder) luminosity increases star moves to the top right hand side of the HRD Red Super Giant (The Sun has now become a red giant and Mercury and Venus will be part of the sun, and maybe the Earth too. In any case we will be fried, if we have not yet died ) Stage 7 8 as the stat grows, mass loss happens outer shells get dispersed He burning shell gets exposed to the surface get tripple alpha reactions on the surface since these are uneven, have several short flashes these are rather explosive material is expelled in shells see a planetary nebula but the central star appears to be hotter hotter means a bluer color star moves towards blue in HRD Stage 9 and beyond planetary nebula disappears star does no longer undergo any nuclear fusion star contracts star cools (the light emitted is thermal radiation) smaller, dimmer, redder means that the star moves towards the bottom right in the HRD star now is a white dwarf eventually it will become an even dimmer red dwarf

8 Evolution of Low Mass Star Evolution of High Mass Star

Stellar Evolution: a Journey through the H-R Diagram

Stellar Evolution: a Journey through the H-R Diagram Stellar Evolution: a Journey through the H-R Diagram Mike Montgomery 21 Apr, 2001 0-0 The Herztsprung-Russell Diagram (HRD) was independently invented by Herztsprung (1911) and Russell (1913) They plotted

More information

WHERE DID ALL THE ELEMENTS COME FROM??

WHERE DID ALL THE ELEMENTS COME FROM?? WHERE DID ALL THE ELEMENTS COME FROM?? In the very beginning, both space and time were created in the Big Bang. It happened 13.7 billion years ago. Afterwards, the universe was a very hot, expanding soup

More information

Chapter 19 Star Formation

Chapter 19 Star Formation Chapter 19 Star Formation 19.1 Star-Forming Regions Units of Chapter 19 Competition in Star Formation 19.2 The Formation of Stars Like the Sun 19.3 Stars of Other Masses 19.4 Observations of Cloud Fragments

More information

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size.

Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution. This file has many figures missing, in order to keep it a reasonable size. Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses MS is defined as the locus

More information

CHAPTER 9: STARS AND GALAXIES

CHAPTER 9: STARS AND GALAXIES CHAPTER 9: STARS AND GALAXIES Characteristics of the Sun 1. The Sun is located about 150 million kilometres from the Earth. 2. The Sun is made up of hot gases, mostly hydrogen and helium. 3. The size of

More information

Determining the Sizes & Distances of Stars Using the H-R Diagram

Determining the Sizes & Distances of Stars Using the H-R Diagram Determining the Sizes & Distances of Stars Using the H-R Diagram Activity UCIObs 11 College Level Source: Copyright (2009) by Tammy Smecker-Hane & Michael Hood. Contact tsmecker@uci.edu with questions.

More information

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars

Nuclear fusion in stars. Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars Nuclear fusion in stars Collapse of primordial density fluctuations into galaxies and stars, nucleosynthesis in stars The origin of structure in the Universe Until the time of formation of protogalaxies,

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Space Interactive Internet Scavenger Hunt

Space Interactive Internet Scavenger Hunt Space Interactive Internet Scavenger Hunt This interactive internet scavenger hunt is aligned to various space standards. It provides students with an engaging way to learn about planets, the moon, stars,

More information

Astronomy 100 Exam 2

Astronomy 100 Exam 2 1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

Our Galaxy, the Milky Way

Our Galaxy, the Milky Way Our Galaxy, the Milky Way In the night sky, the Milky Way appears as a faint band of light. Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes

More information

Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae

Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae Chapter 15. The Chandrasekhar Limit, Iron-56 and Core Collapse Supernovae 1. The Equation of State: Pressure of an Ideal Gas Before discussing results of stellar structure and stellar evolution models

More information

The parts of a nuclear fission reactor

The parts of a nuclear fission reactor P2 6.1a Student practical sheet The parts of a nuclear fission reactor Making uranium-235 split and produce energy is actually remarkably easy. The trick is to make it do so in a controllable way. Aim

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010

Test 2 --- Natural Sciences 102, Professors Rieke --- VERSION B March 3, 2010 Enter your answers on the form provided. Be sure to write your name and student ID number on the first blank at the bottom of the form. Please mark the version (B) in the Key ID space at the top of the

More information

8. The evolution of stars a more detailed picture

8. The evolution of stars a more detailed picture 8. The evolution of stars a more detailed picture 8.1Pre Main-Sequence Evolution Evolution onto the main sequence begins with a cloud of cold gas which contracts under self-gravity. Potential Energy is

More information

Grade 9 Academic Science (SNC 1D1) Unit # 15: ASTRONOMY The Sun, the Stars, & Planets

Grade 9 Academic Science (SNC 1D1) Unit # 15: ASTRONOMY The Sun, the Stars, & Planets MARY WARD CATHOLIC SECONDARY SCHOOL Centre for Self-Directed Learning Grade 9 Academic Science (SNC 1D1) Unit # 15: ASTRONOMY The Sun, the Stars, & Planets Unit Last Revised: March 2013 ACTIVITY DESCRIPTION

More information

Lesson Plan G2 The Stars

Lesson Plan G2 The Stars Lesson Plan G2 The Stars Introduction We see the stars as tiny points of light in the sky. They may all look the same but they are not. They range in size, color, temperature, power, and life spans. In

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

More information

The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

More information

The Birth of the Universe Newcomer Academy High School Visualization One

The Birth of the Universe Newcomer Academy High School Visualization One The Birth of the Universe Newcomer Academy High School Visualization One Chapter Topic Key Points of Discussion Notes & Vocabulary 1 Birth of The Big Bang Theory Activity 4A the How and when did the universe

More information

Be Stars. By Carla Morton

Be Stars. By Carla Morton Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

If we look into space and see stars that show a blue shift, what does this tell us about the stars motion?

If we look into space and see stars that show a blue shift, what does this tell us about the stars motion? Name: Quiz name: Review f or Test ate: 1. If we look into space and see stars that show a blue shift, what does this tell us about the stars motion? T hey are moving away from the Earth T hey are moving

More information

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013 Name: 1 Introduction Read through this information before proceeding on with the lab. 1.1 Spectral Classification of Stars 1.1.1 Types of Spectra Astronomers are very interested in spectra graphs of intensity

More information

Nuclear fission and fusion

Nuclear fission and fusion Nuclear fission and fusion P2 62 minutes 62 marks Page of 23 Q. Nuclear power stations use the energy released from nuclear fuels to generate electricity. (a) Which substance do the majority of nuclear

More information

Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond. What does the solar system look like? What does the solar system look like?

Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond. What does the solar system look like? What does the solar system look like? Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Federation of Galaxy Explorers Space Science

Federation of Galaxy Explorers Space Science Federation of Galaxy Explorers Space Science Once Upon A Big Bang Learning Objectives: 1. Explain how the universe was created using the Big Bang theory. 2. Understand how the existence of Cosmic Background

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

Name Class Date. true

Name Class Date. true Exercises 131 The Falling Apple (page 233) 1 Describe the legend of Newton s discovery that gravity extends throughout the universe According to legend, Newton saw an apple fall from a tree and realized

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

In Pictures: Journey to the Stars

In Pictures: Journey to the Stars In Pictures: Journey to the Stars This text is provided courtesy of OLogy, the American Museum of Natural History s website for kids. Hi, we're Mordecai-Mark Mac Low and Rebecca Oppenheimer. We are astrophysicists

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

The Sun and Solar Energy

The Sun and Solar Energy I The Sun and Solar Energy One of the most important forces behind global change on Earth is over 90 million miles distant from the planet. The Sun is the ultimate, original source of the energy that drives

More information

Chapter 6: Our Solar System and Its Origin

Chapter 6: Our Solar System and Its Origin Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit

More information

Which of these atoms are isotopes of the same element? (2) The process by which nuclei join to form a larger nucleus is called

Which of these atoms are isotopes of the same element? (2) The process by which nuclei join to form a larger nucleus is called Q. (a) The diagrams represent three atoms, X, Y and Z. Which of these atoms are isotopes of the same element? Give a reason for your answer. In a star, nuclei of atom X join to form nuclei of atom Y. Complete

More information

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14

Astro 102 Test 5 Review Spring 2016. See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Astro 102 Test 5 Review Spring 2016 See Old Test 4 #16-23, Test 5 #1-3, Old Final #1-14 Sec 14.5 Expanding Universe Know: Doppler shift, redshift, Hubble s Law, cosmic distance ladder, standard candles,

More information

Lesson 6: Earth and the Moon

Lesson 6: Earth and the Moon Lesson 6: Earth and the Moon Reading Assignment Chapter 7.1: Overall Structure of Planet Earth Chapter 7.3: Earth s Interior More Precisely 7-2: Radioactive Dating Chapter 7.5: Earth s Magnetosphere Chapter

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

Big bang, red shift and doppler effect

Big bang, red shift and doppler effect Big bang, red shift and doppler effect 73 minutes 73 marks Page of 26 Q. (a) Scientists have observed that the wavelengths of the light from galaxies moving away from the Earth are longer than expected.

More information

The Universe Inside of You: Where do the atoms in your body come from?

The Universe Inside of You: Where do the atoms in your body come from? The Universe Inside of You: Where do the atoms in your body come from? Matthew Mumpower University of Notre Dame Thursday June 27th 2013 Nucleosynthesis nu cle o syn the sis The formation of new atomic

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk 1.INTRODUCTION Late in the nineteenth century, astronomers had tools that revealed a great deal about stars. By that time, advances in telescope

More information

Answers. Sun, Earth, Moon. Year 7 Science Chapter 10

Answers. Sun, Earth, Moon. Year 7 Science Chapter 10 Answers Sun, Earth, Moon Year 7 Science Chapter 10 p216 1 Geocentric indicates a model in which Earth is the centre of the universe. 2 Pythagoras reasoning was that the sphere is the perfect shape and

More information

Activity: Multiwavelength Bingo

Activity: Multiwavelength Bingo ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies

More information

Article 1 Big Bang - the birth of our universe.

Article 1 Big Bang - the birth of our universe. Article 1 Big Bang - the birth of our universe. The universe we can observe is finite. It has a beginning in space and time, before which the concept of space and time has no meaning, because spacetime

More information

1) The final phase of a star s evolution is determined by the star s a. Age b. Gravitational pull c. Density d. Mass

1) The final phase of a star s evolution is determined by the star s a. Age b. Gravitational pull c. Density d. Mass Science Olympiad Astronomy Multiple Choice: Choose the best answer for each question. Each question is worth one point. In the event of a tie, there will be a tie-breaking word problem. 1) The final phase

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key)

Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007. Name: (Answer Key) Astronomy 110 Homework #05 Assigned: 02/13/2007 Due: 02/20/2007 Name: (Answer Key) Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures thus

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How

More information

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition 1 Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum Absorption Line Spectrum Wavelength Spectra

More information

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes.

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes. Production of Light Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright

More information

Grades 3-6 Education Guide

Grades 3-6 Education Guide Grades 3-6 Education Guide Written by Kim Small Illustrated by Audio Visual Imagineering Table of Contents Standards Checklist*...3 Lessons Checklist....5 Program Pre- and Post- Survey Questions 6 Lesson

More information

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters Chapter 12 Quiz, Nov. 28, 2012, Astro 162, Section 4 12-1. Where in our Galaxy has a supermassive (or galactic) black hole been observed? a) at the outer edge of the nuclear bulge b) in the nucleus X c)

More information

Lecture 14. Introduction to the Sun

Lecture 14. Introduction to the Sun Lecture 14 Introduction to the Sun ALMA discovers planets forming in a protoplanetary disc. Open Q: what physics do we learn about the Sun? 1. Energy - nuclear energy - magnetic energy 2. Radiation - continuum

More information

L2: The building-up of the chemical elements

L2: The building-up of the chemical elements credit: NASA L2: The building-up of the chemical elements UCL Certificate of astronomy Dr. Ingo Waldmann What ordinary stuff is made of What ordinary stuff is made of Build up of metallicity 2 What are

More information

How Matter Emits Light: 1. the Blackbody Radiation

How Matter Emits Light: 1. the Blackbody Radiation How Matter Emits Light: 1. the Blackbody Radiation Announcements n Quiz # 3 will take place on Thursday, October 20 th ; more infos in the link `quizzes of the website: Please, remember to bring a pencil.

More information

Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University. Fire and Ice:

Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University. Fire and Ice: Miras, Mass-Loss, and the Ultimate Fate of the Earth L. A. Willson & G. H. Bowen, Iowa State University Fire and Ice: Some say the world will end in fire, Some say in ice. From what I've tasted of desire

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Homework #3 Solutions

Homework #3 Solutions Chap. 7, #40 Homework #3 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Which of the following is a strong greenhouse gas? A) Nitrogen. B) Water Vapor. C) Oxygen) The correct

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

The Messier Objects As A Tool in Teaching Astronomy

The Messier Objects As A Tool in Teaching Astronomy The Messier Objects As A Tool in Teaching Astronomy Dr. Jesus Rodrigo F. Torres President, Rizal Technological University Individual Member, International Astronomical Union Chairman, Department of Astronomy,

More information

A i A i. µ(ion) = Z i X i

A i A i. µ(ion) = Z i X i Lecture 2 Review: calculation of mean atomic weight of an ionized gas (µ) Given a mass fraction X i (or abundance) for an ionic (or atomic) species with atomic weight A i, we can can calculate µ by: For

More information

Related Standards and Background Information

Related Standards and Background Information Related Standards and Background Information Earth Patterns, Cycles and Changes This strand focuses on student understanding of patterns in nature, natural cycles, and changes that occur both quickly and

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

More information

PLAGIARISM. Types of Plagiarism considered here: Type I: Copy & Paste Type II: Word Switch Type III: Style Type IV: Metaphor Type V Idea

PLAGIARISM. Types of Plagiarism considered here: Type I: Copy & Paste Type II: Word Switch Type III: Style Type IV: Metaphor Type V Idea SPECIAL THANKS TO DR. CECILIA BAMBAUM, WHO HAS GRACIOUSLY AGREED TO ALLOW US TO POST THIS DOCUMENT IT WILL BE USED BY SEVERAL TEACHERS DURING THE YEAR TO HELP EXPLAIN PLAGIARISM IN ALL ITS FORMS TO FIRESIDE

More information

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture DE2410: Learning Objectives SOLAR SYSTEM Formation, Evolution and Death To become aware of our planet, solar system, and the Universe To know about how these objects and structures were formed, are evolving

More information

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Stars Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Our Sun: the view from outside

Our Sun: the view from outside Our Sun: the view from outside 1. The Sun is hot. Really hot. The visible "surface" of the Sun, called the photosphere, has a temperature of about 5800 Kelvin. That's equivalent to roughly 10,000 Fahrenheit.

More information

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

Why Does the Sun Shine?

Why Does the Sun Shine? Why Does the Sun Shine? Is the Sun on Fire? Fire (oxidation) produces light and heat, just like the Sun. Source: chemical potential energy Suppose the Sun were made of carbon and oxygen. The Sun could

More information

Lecture 15 Fundamentals of Physics Phys 120, Fall 2015 Cosmology

Lecture 15 Fundamentals of Physics Phys 120, Fall 2015 Cosmology Lecture 15 Fundamentals of Physics Phys 120, Fall 2015 Cosmology A. J. Wagner North Dakota State University, Fargo, ND 58108 Fargo, October 20, 2015 Overview A history of our view of the universe The Big

More information

Binary Stars. Binary Stars. Methods of Observation. Need to look for binary signatures. Only direct method of measuring star masses!!!

Binary Stars. Binary Stars. Methods of Observation. Need to look for binary signatures. Only direct method of measuring star masses!!! Binary Stars Two stars gravitationally bound after formation (~ 55% stars in MW) Each star orbits the center of mass (COM) ( balance point ) Stars of equal mass: COM equidistant from each star Binary Stars

More information

Pre-lab The Origin of the Elements

Pre-lab The Origin of the Elements name Pre-lab The Origin of the Elements Introduction Have you ever wondered where all the matter around us comes from? It must have been created somewhere in this universe. In this exercise you will learn

More information

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies.

Lecture 23: Terrestrial Worlds in Comparison. This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. Lecture 23: Terrestrial Worlds in Comparison Astronomy 141 Winter 2012 This lecture compares and contrasts the properties and evolution of the 5 main terrestrial bodies. The small terrestrial planets have

More information

DISTRIBUTION OF ELEMENTS IN EARTH S CRUST

DISTRIBUTION OF ELEMENTS IN EARTH S CRUST OVERVIEW DISTRIBUTION OF ELEMENTS IN EARTH S CRUST This lesson serves as an extension to the Howard Hughes Medical Institute short film The Day the Mesozoic Died. It provides an opportunity for students

More information

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES SCIENCE 0 DISTANCES IN ASTRONOMY LECTURE NOTES Distances in the Solar System Distance to Venus can be obtained using radar ranging Send signal, determine how long it takes to return Radio waves move at

More information

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya

Main sequence stars. Haris Ðapo. Antalya Lecture 3. 1 Akdeniz University, Antalya Main sequence stars Haris Ðapo 1 Akdeniz University, Antalya Antalya Lecture 3. Haris Ðapo (Akdeniz University) Main sequence stars Main sequence stars 1 / 22 Outline 1 Introduction 2 Hydrogen burning

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC The Hidden Lives of Galaxies Jim Lochner, USRA & NASA/GSFC What is a Galaxy? Solar System Distance from Earth to Sun = 93,000,000 miles = 8 light-minutes Size of Solar System = 5.5 light-hours What is

More information

The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1

The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1 The Formation of Planetary Systems Astronomy 1-1 Lecture 20-1 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary

More information