Using Photometric Data to Derive an HR Diagram for a Star Cluster

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Using Photometric Data to Derive an HR Diagram for a Star Cluster"

Transcription

1 Using Photometric Data to Derive an HR Diagram for a Star Cluster

2 In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and derive their colour and temperature 2. How to calculate the distance to a star cluster from the colour temperature information 3. How to estimate the age of a star cluster, relative to the Sun.

3 The Hertzsprung-Russell Diagram relates any star to every other star in the known universe according to its TEMPERATURE and LUMINOSITY. Where on this famous diagram a star plots gives us clues about the star s... size temperature and rate of fuel consumption stage of life and age, relative to the Sun

4 Stars on the Main Sequence are in their hydrogen-burning stage, while the Giants and Supergiants in the upper right of the chart are in their post-main sequence evolution, burning helium or possibly heavier elements in their cores. White Dwarfs below the main sequence are glowing balls of carbon, no longer producing energy by fusion. They are glowing stellar corpses, waiting to cool into black balls of interstellar charcoal.

5 The hotter stars put out more light in the UV Blue bands, the medium temperature stars put forth their greatest energy in the Visual band, while the coolest stars are brightest in the Red Infrared bands. The lower a star s magnitude, the BRIGHTER it is... so stars that put out most of their light in the UV - Blue bands will appear brighter through blue filters than they will through V- band filters. Therefore, if you observe a star with Blue and Visual filters, and subtract its m v from its m b a negative value will mean the star is brighter in B than V, hence hotter; a positive value will mean the star is brighter in V than B, hence cooler.

6 The same process can be done for other wavelengths, too: such as: UV Blue, Visual Red, or Red Infrared. The color index, as this is called, gives you an idea of its SPECTRAL CLASS, which in turn gives you an idea of its TEMPERATURE, and then you have a way to determine its horizontal position on an H-R diagram!

7 We use can use the principles of photometry to investigate a star s MAGNITUDE and COLOR. Magnitude gives us a relative idea of its luminosity, and if we can determine its absolute magnitude, we can estimate its distance from us. COLOR tells us something about surface temperature. After we apply some corrections for absorption of starlight by dust, and to account for all the energy a star puts out that we don t see, we can determine its actual luminosity. Once we have estimated a star s absolute magnitude and luminosity, we can tell where on the HR Diagram it plots, and hence just what type of star it is.

8 The difficult part is knowing a star s distance, without which you can t calculate its absolute magnitude. That s where STAR CLUSTERS come in! All the stars in a cluster are at the same distance from us (neglecting the depth of the cluster itself, which is tiny compared with its overall distance from us). All the stars in a cluster are the same absolute age, although at different stages of evolution, depending on their rate of fuel consumption. All the stars in a cluster have the same basic chemical composition. If you plot their VISUAL MAGNITUDES vs. their B-V indices, you will get a plot that resembles an HR diagram. By curve fitting you can tell just what part of the real HR diagram your cluster would lie on. Then you can see what the range of ABSOLUTE MAGNITUDES would be, and you can estimate the distance to the cluster!

9 Step 1: Taking digital images of your cluster in Blue and Visual bands First you have to take exposures with both B and V filters, and you must correct your raw images in the usual way: take a dark current exposure of the same duration as each raw image; take a flat field exposure with each filter, to the 75% saturation level of each raw image; take a dark of the flat that is, a dark exposure for each flat field, of the same duration as the flat field exposure; do your image subtraction and division: corrected image = raw dark of raw flat dark of flat Do this for both the B and V images of the cluster. You are now ready to use the PHOTOMETRY capability of your software to calculate visual magnitudes in B and V.

10 Step 2: Finding m V using your software s photometry function, and reference stars UCSB RAAP Telescope image of open cluster M 16 Replace with GTN image? Negative of finder chart of M16 from Burnham s Celestial Handbook, Vol.3

11 First you need to know which way is north in your scope, and then rotate and flip your image to match the finder chart! N 90 o clockwise rotation + vertical flip yields

12 You have to be careful of the order in which you perform these operations: FIRST you FLIP, THEN you ROTATE. (Why? Because rotations are NOT commutative!) + vertical flip = + 90 o rotation = + 90 o rotation = + vertical flip =

13 Now you can recognize which star is which between the image and the finder chart

14 Next, you select a nice round star in your image, from among the reference stars, and use its published magnitude to calibrate your software s photometry calculation Round stars have nice Gaussian profiles like this, and so they are more mathematically recognizable as stars to your software. That is why they give more accurate magnitude calculations. 11, 12, 13, and 15 look like good candidates because they are not only smoothly rounded stars, but 11, 13, and 15 are somewhat removed from the nebulosity, and hence they are surrounded by sky which is close to average background. Their published visual magnitudes are: 11 = = = = 10.36

15 Then use the photometry function of your software to get the visual magnitudes of as many stars in your image as you can, using your calibration star as a reference. When you have done this for the V-band image, repeat the process for the Blue-band image. To get the calibration magnitudes for the stars in Blue light, you can either use published B-magnitudes if you can find them, or you can use published B-V indices of representative stellar classes to find B-magnitudes of your reference stars. The published stellar classes for our reference stars in Burnham s are shown... According to Norton s Atlas, the B-V indices for B0 stars is typically 0.31, and for O5 stars is : B0 11: B1 15: O9 13: B1

16 So, if you can get a good m V determination of a star with a reliable B-V index, you can use the B-V index to find that star s m B, and then use that value to calibrate the B- magnitudes for the same stars, in the same way you did for V! Here is M16, taken with a Blue filter, with the UCSB/RAAP telescope. 12 The image has been rotated and flipped, to match the stars in the finder chart

17 Now that you have m V and m B for as many stars in the cluster as you can determine with your software... Step 3 is to calculate the B V indices for all of them, and make a graph showing m V on the vertical axis and B V index on the horizontal axis. The reason for this is that B V correlates with TEMPERATURE, and m V correlates with LUMINOSITY, and thus we can get our H R Diagram for our star cluster!

18 b-v Here is the result for just the 15 or so central stars in M16. B-V indices have been plotted horizontally, and visual magnitudes are plotted vertically, using Microsoft Excel. The photometry was performed using the software Imagine-32 at UCSB mv

19 Applying the corrections for dust... M-16 is located in the next spiral arm of our Milky Way Galaxy, looking toward the galactic center. That means there is a lot of DUST in the way, and dust causes the visual magnitudes to be greater than they otherwise would be (i.e., dimmer). Dust also causes starlight to appear REDDER than it otherwise would be (i.e., cooler ). That affects the B V indices, hence our TEMPERATURE estimates, so that our stars are really HOTTER than we estimated. In this image of M51, which we think our galaxy looks like, you would be HERE

20 This means we have to apply an extinction correction in magnitudes for the interstellar dust. The correction for M16 due to interstellar absorption, is.782, according to the latest estimates, which gives M V, corrected = M V, observed B-V Index visual magnitude corrected mv m-v

21 Next, we have to consider the amount of atmosphere that the starlight passed through. Dust and air in the atmosphere also dims and reddens starlight... The longer the path length the starlight traverses through the atmosphere, the more it is dimmed. Thus, a star close to the horizon will be dimmed more than one close to the zenith. The path length through the atmosphere is known as the air mass. At any particular wavelength, the magnitude the object would have if observed outside the atmosphere can be compared to the magnitude of the observed object at the surface of the earth, by: m(λ) = m 0 (λ) + K (λ)x(z) m (λ) = magnitude for that wavelength on the ground m 0 (λ) = magnitude for that wavelength above the atmosphere K (λ) = extinction coefficient for that wavelength and X(z) = air mass at zenith distance z.

22 We find K empirically from the extinction curve for tfor λ = around 550 nm for V-band K is about.15, and for λ = around 450 nm for B-band K is about.3 atmospheric extinction as a function of wavelength at Kitt Peak extinction wavelength (nm)

23 We take X(z) = 1, for a target at or close to zenith and apply our correction for atmospheric extinction: for λ = 550 nm, m 0 (550) = m V (550) -.15(1) so all Visual magnitudes are about.15 less than measured for λ = 50 nm, m V (450) = m 0 (450) -.3(1) so all Blue magnitudes are about.3 less than measured Now we apply our atmospheric correction to the m V and B-V, in addition to the interstellar reddening correction we already applied, and re-plot our H-R diagram for M16...

24 FINALLY we have our H-R Diagram for M 16 corrected for atmosphere and interstellar dust B-V mv

25 Step 5: We now visually correlate the brightest stars in M16 with the HR Diagram... M16 corrected for atmosphere and interstellar dust ~ 40,000 K B-V ~ 7,000 K mv

26 ...and make a visual estimate of the Absolute Magnitude by squishing our plot into the same scale as the real HR Diagram, and seeing where our stars would fit, by the shape of the curve and the B-V / temperature index: Our data

27 We find the average difference between apparent magnitude, m V, and absolute magnitude, M V, to be about 12. This is our DISTANCE MODULUS, or m - M. We apply the distance formula to calculate the approximate distance to M16: d = 10 (m M + 5)/5 = 10 (12 + 5)/5 = which gives a distance of approximately 2500 parsecs for M16

28 Finally! Now we can now draw an H-R diagram for our cluster, with B-V index correlated to temperature, and absolute magnitude plotted on the vertical axis! This we can directly compare with the real H-R Diagram! M16 corrected HR diagram B-V Absolute Magnitude

29 Step 6: Finding the Age of the Cluster from its Turnoff Point on the H-R Diagram M16 corrected HR diagram B-V Absolute Magnitude

30 The Turnoff Point for on an H-R Diagram for a star cluster represents the stage when a star exhausts its hydrogen fuel and leaves the Main Sequence. The rate at which a star uses up its nuclear fuel is determined by its MASS: the greater the mass (i.e., fuel supply) the faster the star will exhaust its hydrogen fuel. Massive stars like the O and B blue giants of M16 that use up their fuel fast, also are the HOTTEST stars, and hence the most LUMINOUS. Luminosity, L, and Mass, M, are related by : L = M 3.5

31 Let T = the life expectancy of a star on the Main Sequence, relative to T 0, the life expectancy of the Sun on the Main Sequence... But life expectancy is just the amount of fuel / rate of fuel consumption which is just the Mass / Luminosity we already know that L = M 3.5 so M = L 1/ so... T = M / M 3.5 = 1 / M 2.5 = 1/ L (2.5/3.5) = 1 / L.7143 where T is the age of the cluster, relative to the life expectancy of the Sun.

32 M16 is actually a very young cluster. In fact, it is surrounded by an emission nebula (the Eagle Nebula ), a region of active star formation. But it also contains some ragingly hot stars, that are burning their fuel at a ragingly fast rate. The hottest stars in M16 may be evolving from blue giants to red giants along the horizontal branch of the H-R Diagram. M16 corrected HR diagram B-V Absolute Magnitude

33 Before we complete our calculation, we have to do just ONE MORE CORRECTION... the BOLOMETRIC CORRECTION. The luminosity of a star is really a measurement of the energy output per second per square meter of surface area, at ALL wavelengths. We derived an Absolute Magnitude for VISUAL (green- yellow) light only, so the LAST STEP before we can determine age from luminosity is to CORRECT our luminosity measurement to account for ALL THE WAVELENGTHS WE DID NOT SEE.

34 The BOLOMETRIC MAGNITUDE is a logarithmic measure of the total luminosity of astronomical object Here are the steps one needs to take to determine bolometric magnitude: First, find the distance and apparent magnitude in visible region, m v. Then determine absolute magnitude in visible region, M v (We did that!) Make the appropriate extinction corrections... (We did that, too!) Next, you LOOK UP the theoretically determined bolometric correction for stars of that spectral type Result: M bol =M v + BC where BC = Bolometric Correction.

35 The M V of the stars in M16 that could be transitioning from blue to red giants along the horizontal branch is around 3.5, putting them somewhere between a B0 and a B5. The Bolometric Correction would be somewhere between -1.5 and So M bol = (-2.5) = - 6. M16 corrected HR diagram B-V Absolute Magnitude

36 M V of 6 correlates with a Luminosity of about relative to the solar luminosity. T = 1 / L.7143 = 1 / ( ).7143 = 7.2 x 10-4 solar lifetimes, or a whopping 720,000 years old for the age of the star cluster. Evidence from the Hubble Space Telescope confirms that indeed new stars are still forming in M16 and it is a very young star cluster!

37 NASA / HST images of star formation in the Eagle Nebula

38 So,... Let s summarize: First you get corrected images in V and B; you find your B-V indices and get an idea of what kind of stars you are dealing with. Then you make all your corrections for interstellar reddening and extinction and atmospheric absorption. That buys you a real H-R Diagram with Absolute Visual Magnitudes. If you want to go further and estimate the age of the cluster, you have to make your Bolometric Correction, find the Luminosity at the Turnoff Point, and then you can calculate the age of the cluster in terms of Solar Life Expectancies. Now go try this with your favorite telescope and software!

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT THE HERTZSPRUNG RUSSELL DIAGRAM PROJECT 4 THE HERTZSPRUNG RUSSELL DIGRM Objective: The aim is to measure accurately the B and V magnitudes of several stars in the cluster, and plot them on a Colour Magnitude Diagram. The students will

More information

What Are Stars? continued. What Are Stars? How are stars formed? Stars are powered by nuclear fusion reactions.

What Are Stars? continued. What Are Stars? How are stars formed? Stars are powered by nuclear fusion reactions. What Are Stars? How are stars formed? Stars are formed from clouds of dust and gas, or nebulas, and go through different stages as they age. star: a large celestial body that is composed of gas and emits

More information

Determining the Sizes & Distances of Stars Using the H-R Diagram

Determining the Sizes & Distances of Stars Using the H-R Diagram Determining the Sizes & Distances of Stars Using the H-R Diagram Activity UCIObs 11 College Level Source: Copyright (2009) by Tammy Smecker-Hane & Michael Hood. Contact tsmecker@uci.edu with questions.

More information

12.4 Evolution of Stars More Massive than the Sun

12.4 Evolution of Stars More Massive than the Sun 12.4 Evolution of Stars More Massive than the Sun It can be seen from this H-R diagram that stars more massive than the Sun follow very different paths when leaving the Main Sequence: 12.4 Evolution of

More information

PART 3 Galaxies. Stars in the Milky Way

PART 3 Galaxies. Stars in the Milky Way PART 3 Galaxies Stars in the Milky Way A galaxy is a large collection of billions of stars The galaxy in which the Sun is located is called the Milky Way From our vantage point inside the galaxy, the Milky

More information

A blue flame is hotter than a yellow one.

A blue flame is hotter than a yellow one. CHAPTER 19 1 Stars SECTION Stars, Galaxies, and the Universe BEFORE YOU READ After you read this section, you should be able to answer these questions: Why are stars different colors? How can scientists

More information

Lesson Plan G2 The Stars

Lesson Plan G2 The Stars Lesson Plan G2 The Stars Introduction We see the stars as tiny points of light in the sky. They may all look the same but they are not. They range in size, color, temperature, power, and life spans. In

More information

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE

TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE TO GO TO ANY OF THE PAGES LISTED BELOW, CLICK ON ITS TITLE CHAPTER 18 The Sun and Other Stars 1 18-1 How are stars formed? 2 18-2 How is spectroscopy used to study stars? 3 18-3 What is magnitude? 4 18-4

More information

Be Stars. By Carla Morton

Be Stars. By Carla Morton Be Stars By Carla Morton Index 1. Stars 2. Spectral types 3. B Stars 4. Be stars 5. Bibliography How stars are formed Stars are composed of gas Hydrogen is the main component of stars. Stars are formed

More information

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013

1 Introduction. Name: 1.1 Spectral Classification of Stars. PHYS-1050 Hertzsprung-Russell Diagram Solutions Spring 2013 Name: 1 Introduction Read through this information before proceeding on with the lab. 1.1 Spectral Classification of Stars 1.1.1 Types of Spectra Astronomers are very interested in spectra graphs of intensity

More information

UNIT V. Earth and Space. Earth and the Solar System

UNIT V. Earth and Space. Earth and the Solar System UNIT V Earth and Space Chapter 9 Earth and the Solar System EARTH AND OTHER PLANETS A solar system contains planets, moons, and other objects that orbit around a star or the star system. The solar system

More information

Milky Way Galaxy. A. Star counts. B. Core and Arms. C. Galaxy Rotation. Milky Way. A1a. Milky Way 4 A1b. Milky Way: Galactic Equator 5

Milky Way Galaxy. A. Star counts. B. Core and Arms. C. Galaxy Rotation. Milky Way. A1a. Milky Way 4 A1b. Milky Way: Galactic Equator 5 Milky Way Galaxy Milky Way A. Star counts B. Core and Arms C. Galaxy Rotation Dr. Bill Pezzaglia Updated: Nov, Aa. Milky Way 4 Ab. Milky Way: Galactic Equator a. Galileo Galilei (64-64) 6 Ac. 7 Thomas

More information

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars

165 points. Name Date Period. Column B a. Cepheid variables b. luminosity c. RR Lyrae variables d. Sagittarius e. variable stars Name Date Period 30 GALAXIES AND THE UNIVERSE SECTION 30.1 The Milky Way Galaxy In your textbook, read about discovering the Milky Way. (20 points) For each item in Column A, write the letter of the matching

More information

11.4 Formation of Stars Like the Sun

11.4 Formation of Stars Like the Sun Star formation happens when part of a dust cloud begins to contract under its own gravitational force; as it collapses, the center becomes hotter and hotter until nuclear fusion begins in the core. When

More information

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date:

Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: Astro 130, Fall 2011, Homework, Chapter 17, Due Sep 29, 2011 Name: Date: 1. If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on Earth to observe stars, to what distance

More information

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio

Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Arrange the following forms of radiation from shortest wavelength to longest. optical gamma ray infrared x-ray ultraviolet radio Which of the wavelength regions can completely penetrate the Earth s atmosphere?

More information

i>clicker Questions A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences.

i>clicker Questions A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences. A scientific law is something that has been proven to be true. A. True B. False C. Only in experimental sciences. i>clicker Questions The fifth planet from the sun, the sixth planet and the seventh planet

More information

Learning Objectives. at the center of our Galaxy...why were they wrong? are globular clusters? Cepheid Variable stars?

Learning Objectives. at the center of our Galaxy...why were they wrong? are globular clusters? Cepheid Variable stars? Our Milky Way Learning Objectives! What is the Milky Way? The Herschels thought we were at the center of our Galaxy...why were they wrong?! How did Shapley prove we aren t at the center? What are globular

More information

The formation of the galaxy is believed to be similar to the formation of the solar system.

The formation of the galaxy is believed to be similar to the formation of the solar system. The formation of the galaxy is believed to be similar to the formation of the solar system. All the gas & dust collapsed into a disk. During the time that stars were being formed, our galaxy didn t have

More information

Grade 9 Academic Science (SNC 1D1) Unit # 15: ASTRONOMY The Sun, the Stars, & Planets

Grade 9 Academic Science (SNC 1D1) Unit # 15: ASTRONOMY The Sun, the Stars, & Planets MARY WARD CATHOLIC SECONDARY SCHOOL Centre for Self-Directed Learning Grade 9 Academic Science (SNC 1D1) Unit # 15: ASTRONOMY The Sun, the Stars, & Planets Unit Last Revised: March 2013 ACTIVITY DESCRIPTION

More information

Astronomy 100 Exam 2

Astronomy 100 Exam 2 1 Prof. Mo Exam Version A Astronomy 100 Exam 2 INSTRUCTIONS: Write your name and ID number on BOTH this sheet and the computer grading form. Use a #2 Pencil on the computer grading form. Be careful to

More information

HR Diagram Student Guide

HR Diagram Student Guide Name: HR Diagram Student Guide Background Information Work through the background sections on Spectral Classification, Luminosity, and the Hertzsprung-Russell Diagram. Then complete the following questions

More information

Lecture Outlines. Chapter 23. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 23. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 23 Astronomy Today 7th Edition Chaisson/McMillan Chapter 23 The Milky Way Galaxy Units of Chapter 23 23.1 Our Parent Galaxy 23.2 Measuring the Milky Way Early Computers 23.3 Galactic

More information

Astro 102 Practice Test 3

Astro 102 Practice Test 3 Class: Date: Astro 102 Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Interstellar gas clouds may collapse to form stars if they a. have

More information

Grades 3-6 Education Guide

Grades 3-6 Education Guide Grades 3-6 Education Guide Written by Kim Small Illustrated by Audio Visual Imagineering Table of Contents Standards Checklist*...3 Lessons Checklist....5 Program Pre- and Post- Survey Questions 6 Lesson

More information

The Milky Way Galaxy. Our Home Away From Home

The Milky Way Galaxy. Our Home Away From Home The Milky Way Galaxy Our Home Away From Home Lecture 23-1 Galaxies Group of stars are called galaxies Our star, the Sun, belongs to a system called The Milky Way Galaxy The Milky Way can be seen as a band

More information

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk

THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk THE HR DIAGRAM THE MOST FAMOUS DIAGRAM in ASTRONOMY Mike Luciuk 1.INTRODUCTION Late in the nineteenth century, astronomers had tools that revealed a great deal about stars. By that time, advances in telescope

More information

Stellar Evolution: a Journey through the H-R Diagram

Stellar Evolution: a Journey through the H-R Diagram Stellar Evolution: a Journey through the H-R Diagram Mike Montgomery 21 Apr, 2001 0-0 The Herztsprung-Russell Diagram (HRD) was independently invented by Herztsprung (1911) and Russell (1913) They plotted

More information

Stars. Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram

Stars. Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram Stars Classifying stars: HR diagram Luminosity, radius, and temperature Vogt-Russell theorem Main sequence Evolution on the HR diagram Classifying stars We now have two properties of stars that we can

More information

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri

Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Classroom Exercise ASTR 390 Selected Topics in Astronomy: Astrobiology A Hertzsprung-Russell Potpourri Purpose: 1) To understand the H-R Diagram; 2) To understand how the H-R Diagram can be used to follow

More information

L=4 R 2 SBT 4. Galaxies (AS 7007) The physics of stars. A closer look at the physics of stars

L=4 R 2 SBT 4. Galaxies (AS 7007) The physics of stars. A closer look at the physics of stars Galaxies (AS 7007) Autumn 2007 Teacher: Göran Östlin Assistant: Jens Melinder Lecture 3, contents: - Stellar physics basics - Impact of stellar evolution on galaxies - Properties of local galaxies A closer

More information

The Milky Way Galaxy. Studying Its Structure Mass and Motion of the Galaxy Metal Abundance and Stellar Populations Spiral Structure and Star Formation

The Milky Way Galaxy. Studying Its Structure Mass and Motion of the Galaxy Metal Abundance and Stellar Populations Spiral Structure and Star Formation The Milky Way Galaxy Studying Its Structure Mass and Motion of the Galaxy Metal Abundance and Stellar Populations Spiral Structure and Star Formation The Milky Way Almost everything we see in the night

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

Light. What is light?

Light. What is light? Light What is light? 1. How does light behave? 2. What produces light? 3. What type of light is emitted? 4. What information do you get from that light? Methods in Astronomy Photometry Measure total amount

More information

Cluster Colour-Magnitude Diagrams

Cluster Colour-Magnitude Diagrams Cluster Colour-Magnitude Diagrams Abstract The aim of this project was to construct a colour-magnitude diagram of one selected open cluster, M67, from just supplied CCD images taken through different filters.

More information

Chapter 19 Star Formation

Chapter 19 Star Formation Chapter 19 Star Formation 19.1 Star-Forming Regions Units of Chapter 19 Competition in Star Formation 19.2 The Formation of Stars Like the Sun 19.3 Stars of Other Masses 19.4 Observations of Cloud Fragments

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Spectral Classification of Stars

Spectral Classification of Stars Department of Physics and Geology Astronomy 1402 Spectral Classification of Stars The purpose of this laboratory activity is to introduce you to stellar spectral classification. You will have an opportunity

More information

A. Answer all of the following multiple choice questions (50%):

A. Answer all of the following multiple choice questions (50%): Core 30.01 - Cosmology Fall 2006 Prof. Micha Tomkiewicz Final Exam: My Name A. Answer all of the following multiple choice questions (50%): 1. The universe became matter dominated approximately after the

More information

Origins of the Cosmos Summer 2016. Pre-course assessment

Origins of the Cosmos Summer 2016. Pre-course assessment Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of

More information

Unit 1: Astronomy, Part 1: The Big Bang

Unit 1: Astronomy, Part 1: The Big Bang Earth Science Notes Packet #1 Unit 1: Astronomy, Part 1: The Big Bang 1.1: Big Bang The universe is How do we know this? All matter and energy in the universe was once condensed into a single point bya

More information

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color

Stars. Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Stars Flux and luminosity Brightness of stars Spectrum of light Temperature and color/spectrum How the eye sees color Which is of these part of the Sun is the coolest? A) Core B) Radiative zone C) Convective

More information

Smiley Radio Telescope Lab 4 Radio Waves from the Galaxy

Smiley Radio Telescope Lab 4 Radio Waves from the Galaxy Smiley Radio Telescope Lab 4 Radio Waves from the Galaxy Competency Goals This activity addresses the following competency goals Middle Grades 6 8: Grade 6 1.01 Identify and create questions and hypotheses

More information

Study Guide. Beginning Astronomy

Study Guide. Beginning Astronomy Study Guide Beginning Astronomy You must know these things: Earth's diameter is about 8000 miles Moon's distance is about 60 Earth radii (240,000 miles) Average distance of Earth to Sun is about 93 million

More information

Astrophysics Syllabus

Astrophysics Syllabus Astrophysics Syllabus Center for Talented Youth Johns Hopkins University Text: Astronomy Today: Stars and Galaxies, Volume II Author: Chaisson and McMillan Course Objective: The purpose of this course

More information

Chapter Pearson Education, Inc. Chapter Pearson Education, Inc. Chapter 19-22

Chapter Pearson Education, Inc. Chapter Pearson Education, Inc. Chapter 19-22 Suppose you tried to determine where we are in the galaxy by looking in different directions to see how many stars you could see. If you did this, you would pinpoint our location Suppose you tried to determine

More information

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D.

7. In which part of the electromagnetic spectrum are molecules most easily detected? A. visible light B. radio waves C. X rays D. 1. Most interstellar matter is too cold to be observed optically. Its radiation can be detected in which part of the electromagnetic spectrum? A. gamma ray B. ultraviolet C. infrared D. X ray 2. The space

More information

Our Galaxy, the Milky Way

Our Galaxy, the Milky Way Our Galaxy, the Milky Way In the night sky, the Milky Way appears as a faint band of light. Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2016-03-22 Senior Astrophysics () Lecture 8: Stellar evolution II: Massive stars 2016-03-22 1 / 28 Outline 1 Stellar models 2 Convection

More information

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES SCIENCE 0 DISTANCES IN ASTRONOMY LECTURE NOTES Distances in the Solar System Distance to Venus can be obtained using radar ranging Send signal, determine how long it takes to return Radio waves move at

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

Spectral Classification of Stars

Spectral Classification of Stars Introduction Spectral Classification of Stars Classification lies at the foundation of nearly every science. Scientists develop classification systems based on patterns and relationships. Biologists classify

More information

Application Exercise: Spectral Classification of Stars

Application Exercise: Spectral Classification of Stars Name Section Application Exercise: Spectral Classification of Stars Objectives To learn the basic techniques and criteria of the spectral classification sequence by: examining and classifying spectra according

More information

Table of Contents. Table of Contents. Toolkits. Astronomical Toolkit. Mathematical Toolkit. Teacher s Guide

Table of Contents. Table of Contents. Toolkits. Astronomical Toolkit. Mathematical Toolkit. Teacher s Guide Table of Contents Toolkits Magnitudes... page 2 Apparent Magnitude... page 2 Absolute Magnitude... page 3 Different colours, different magnitudes... page 3 From B-V colour index to temperature... page

More information

OBSERVING THE UNIVERSE

OBSERVING THE UNIVERSE OBSERVING THE UNIVERSE Overview: Galaxies are classified by their morphology. Objectives: The student will: classify 15 images of distant galaxies using a galaxy classification table; sketch, classify

More information

Breakthrough!Listen!Stellar!Targets:!All!Sky!

Breakthrough!Listen!Stellar!Targets:!All!Sky! BreakthroughListenStellarTargets:AllSky Jan 3, 2016 This is a description of the selection process of target stars for the Breakthrough LISTEN (BL) program for the entire sky ( All Sky ) useful for GBT,

More information

Earth Systems Quarter 1 Credit Recovery Overview

Earth Systems Quarter 1 Credit Recovery Overview Earth Systems Quarter 1 Credit Recovery Overview Reference textbooks: Glencoe Earth Science (2008) ISBN: 9780078778025 AND Glencoe Ecology Module (2008) ISBN: 9780078778209 Pre-Assessment 3 English versions

More information

The Milky Way Galaxy Chapter 15

The Milky Way Galaxy Chapter 15 The Milky Way Galaxy Chapter 15 Topics to be covered: 1. Contents of our Galaxy: Interstellar Medium(ISM) and Stars. Nebulae 2. Distribution of galactic clusters and center of our Galaxy. 3. Structure

More information

Purpose To study real stellar spectra and understand how astronomers defined spectral classes of stars

Purpose To study real stellar spectra and understand how astronomers defined spectral classes of stars Name: Partner(s): 1102 or 3311: Desk # Date: Spectroscopy Part II Purpose To study real stellar spectra and understand how astronomers defined spectral classes of stars Preliminary questions: Use the following

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

19. Our Galaxy The Milky Way Revealed. Our goals for learning: Regions of the Milky Way Galaxy. Regions of the Milky Way Galaxy

19. Our Galaxy The Milky Way Revealed. Our goals for learning: Regions of the Milky Way Galaxy. Regions of the Milky Way Galaxy 19. Our Galaxy The infinitude of creation is great enough to make a world, or a Milky Way of worlds, look in comparison with it what a flower or an insect does in comparison with the Earth. 19.1 The Milky

More information

Unit 8 Lesson 3 The Sun. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 8 Lesson 3 The Sun. Copyright Houghton Mifflin Harcourt Publishing Company The Sun: The Center of Attention Where is the sun located? The sun rises every day in the east and appears to travel across the sky before it sets in the west. This led astronomers to believe the sun moved

More information

Astrophysics for Icarus

Astrophysics for Icarus Astrophysics for Icarus Kelly Lepo 1. Black Body Radiation Like lots of things in astronomy, black body radiation is a terrible name. When you see the phrase, think hot, glowing thing. For example, an

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

The Size & Shape of the Galaxy

The Size & Shape of the Galaxy name The Size & Shape of the Galaxy The whole lab consists of plotting two graphs. What s the catch? Aha visualizing and understanding what you have plotted of course! Form the Earth Science Picture of

More information

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 23 The Milky Way MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In structure, our Milky Way is most similar to

More information

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch 23 The Milky Way. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch 23 The Milky Way MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In structure, our Milky Way is most similar to

More information

Measuring the mass of galaxies Luminous matter in a galaxy: stars (of different masses) gas (mostly hydrogen) Can detect these directly using optical

Measuring the mass of galaxies Luminous matter in a galaxy: stars (of different masses) gas (mostly hydrogen) Can detect these directly using optical Measuring the mass of galaxies Luminous matter in a galaxy: stars (of different masses) gas (mostly hydrogen) Can detect these directly using optical and radio telescopes - get an estimate of how much

More information

TELESCOPE AS TIME MACHINE

TELESCOPE AS TIME MACHINE TELESCOPE AS TIME MACHINE Read this article about NASA s latest high-tech space telescope. Then, have fun doing one or both of the word puzzles that use the important words in the article. A TELESCOPE

More information

PS 224, Fall 2014 HW 4

PS 224, Fall 2014 HW 4 1. True or False? Explain in one or two short sentences. (2x10 points) a. The fact that we have not yet discovered an Earth-size extrasolar planet in an Earth-like orbit tells us that such planets must

More information

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters

12-3. Spherical groups of millions of stars found in the Milky Way are called: a) novas b) globular clusters X c) open clusters d) galactic clusters Chapter 12 Quiz, Nov. 28, 2012, Astro 162, Section 4 12-1. Where in our Galaxy has a supermassive (or galactic) black hole been observed? a) at the outer edge of the nuclear bulge b) in the nucleus X c)

More information

The Milky Way. The Milky Way. First Studies of the Galaxy. Determining the Structure of the Milky Way. Galactic Plane.

The Milky Way. The Milky Way. First Studies of the Galaxy. Determining the Structure of the Milky Way. Galactic Plane. The Milky Way The Milky Way Almost everything we see in the night sky belongs to the Milky Way. 1 We see most of the Milky Way as a faint band of light across the sky. From outside, our Milky Way might

More information

Some Basic Principles from Astronomy

Some Basic Principles from Astronomy Some Basic Principles from Astronomy The Big Question One of the most difficult things in every physics class you will ever take is putting what you are learning in context what is this good for? how do

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Period 14 Activity Solutions: Energy in Nature

Period 14 Activity Solutions: Energy in Nature Period 14 Activity Solutions: Energy in Nature 14.1 The Earth-Sun System 1) Energy from the sun Observe the models of the Earth, Moon, and Sun in the room. a) Imagine that the distance between the Earth

More information

The Milky Way Galaxy (ch. 23)

The Milky Way Galaxy (ch. 23) Notes on Ch. 23 and 24. The Milky Way Galaxy (ch. 23) [Exceptions: We won t discuss sec. 23.7 (Galactic Center) in class, but look it over in order to just get the most basic point I might put a question

More information

CHAPTER 9: STARS AND GALAXIES

CHAPTER 9: STARS AND GALAXIES CHAPTER 9: STARS AND GALAXIES Characteristics of the Sun 1. The Sun is located about 150 million kilometres from the Earth. 2. The Sun is made up of hot gases, mostly hydrogen and helium. 3. The size of

More information

X-ray Astronomy Field Guide

X-ray Astronomy Field Guide X-ray Astronomy Field Guide The Milky Way The word galaxy comes from a Greek word meaning "milky circle" or, more familiarly, "milky way." The white band of light across the night sky that we call the

More information

Continuous, Emission, and Absorption Line Spectra

Continuous, Emission, and Absorption Line Spectra name Continuous, Emission, and Absorption Line Spectra In this lab we will be looking at emission and absorption lines and understand what type of information we can gain from them. There are four parts

More information

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees.

In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. In studying the Milky Way, we have a classic problem of not being able to see the forest for the trees. A panoramic painting of the Milky Way as seen from Earth, done by Knut Lundmark in the 1940 s. The

More information

The correct answers are written in bold, italic and underlined. The most important questions to study for the exam are highlighted.

The correct answers are written in bold, italic and underlined. The most important questions to study for the exam are highlighted. Comins DEU 3e Ch 10 Quiz 1 The correct answers are written in bold, italic and underlined. The most important questions to study for the exam are highlighted. 1. A low-mass star expands and cools, becoming

More information

11-2. What is the most dense element formed in the cores of any stars? a) helium b) lead c) iron X d) carbon

11-2. What is the most dense element formed in the cores of any stars? a) helium b) lead c) iron X d) carbon Quiz Oct 31 2012 Chapter 11 11-1. A nova is believed to occur when which of the following pairs of stars are in a binary system? a) white dwarf, main sequence star X b) white dwarf, neutron star c) neutron

More information

Beginning of the Universe Classwork 6 th Grade PSI Science

Beginning of the Universe Classwork 6 th Grade PSI Science Beginning of the Universe Classwork Name: 6 th Grade PSI Science 1 4 2 5 6 3 7 Down: 1. Edwin discovered that galaxies are spreading apart. 2. This theory explains how the Universe was flattened. 3. All

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars.

Spectroscopy, the Doppler Shift and Masses of Binary Stars. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its

More information

Stellar Evolution. The Basic Scheme

Stellar Evolution. The Basic Scheme Stellar Evolution The Basic Scheme Stars live for a very long time compared to human lifetimes. Even though stellar life-spans are enormous, we know how stars are born, live, and die. All stars follow

More information

Spectra Student Guide

Spectra Student Guide Spectra Student Guide Introduction: In this lab you ll use a high quality spectrometer, made by Project STAR, to examine the spectra of a variety of light sources. The main goals are to practice accurately

More information

Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions

Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions Eksamination in FY2450 Astrophysics Wednesday June 8, 2016 Solutions 1a) Table 1 gives the spectral class and luminosity class of each of the 20 stars. The luminosity class of a star can (at least in principle)

More information

FIRST GRADE UNIVERSE

FIRST GRADE UNIVERSE FIRST GRADE UNIVERSE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST:

More information

Modern Ways of Dating the Universe. Martha P. Haynes Goldwin Smith Professor of Astronomy Cornell University. CAU Study Tour June 2014

Modern Ways of Dating the Universe. Martha P. Haynes Goldwin Smith Professor of Astronomy Cornell University. CAU Study Tour June 2014 Modern Ways of Dating the Universe Martha P. Haynes Goldwin Smith Professor of Astronomy Cornell University CAU Study Tour June 2014 What does the night sky look like? The disk of the Milky Way, our galaxy

More information

Modeling Galaxy Formation

Modeling Galaxy Formation Galaxy Evolution is the study of how galaxies form and how they change over time. As was the case with we can not observe an individual galaxy evolve but we can observe different galaxies at various stages

More information

Shenandoah Community School District Astronomy Grade - 11

Shenandoah Community School District Astronomy Grade - 11 Shenandoah Community School District Astronomy Grade - 11 11.1 (SCSD) Earth and Space Astronomy 11.1.1 (SCSD) Understand and explain the tools used by astronomers to study electromagnetic radiation to

More information

Space Interactive Internet Scavenger Hunt

Space Interactive Internet Scavenger Hunt Space Interactive Internet Scavenger Hunt This interactive internet scavenger hunt is aligned to various space standards. It provides students with an engaging way to learn about planets, the moon, stars,

More information

PLAGIARISM. Types of Plagiarism considered here: Type I: Copy & Paste Type II: Word Switch Type III: Style Type IV: Metaphor Type V Idea

PLAGIARISM. Types of Plagiarism considered here: Type I: Copy & Paste Type II: Word Switch Type III: Style Type IV: Metaphor Type V Idea SPECIAL THANKS TO DR. CECILIA BAMBAUM, WHO HAS GRACIOUSLY AGREED TO ALLOW US TO POST THIS DOCUMENT IT WILL BE USED BY SEVERAL TEACHERS DURING THE YEAR TO HELP EXPLAIN PLAGIARISM IN ALL ITS FORMS TO FIRESIDE

More information

radio telescopes satellites visible light space probes rockets reflecting telescopes space shuttles refracting telescopes

radio telescopes satellites visible light space probes rockets reflecting telescopes space shuttles refracting telescopes Name Date Class BOOK Review Packet Astronomy Overview Exploring Space Directions:Complete the concept map the terms in the list below. radio telescopes satellites visible light space probes rockets reflecting

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source

LIGHT CONCEPTS. Most light is invisible to our eyes. Light is a streaming code that tells about the chemical composition of its source ITS SECRETS REVEALED LIGHT CONCEPTS Most light is invisible to our eyes Light is a streaming code that tells about the chemical composition of its source Light from a glowing object can reveal its temperature

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 25, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

Big telescopes for small waves

Big telescopes for small waves Big telescopes for small waves English summary of the inaugural lecture of dr. Floris van der Tak, on the occasion of his appointment as professor of submillimeter astronomy at the University of Groningen,

More information

Full window version (looks a little nicer). Click button to get back to small framed version with content indexes.

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes. Production of Light Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright

More information

4 Formation of the Universe

4 Formation of the Universe CHAPTER 2 4 Formation of the Universe SECTION Stars, Galaxies, and the Universe BEFORE YOU READ After you read this section, you should be able to answer these questions: What is the big bang theory? How

More information