L3: The formation of the Solar System

Size: px
Start display at page:

Download "L3: The formation of the Solar System"

Transcription

1 credit: NASA L3: The formation of the Solar System UCL Certificate of astronomy Dr. Ingo Waldmann

2 A stable home The presence of life forms elsewhere in the Universe requires a stable environment where appropriate temperature and pressure conditions allow for the development and/or sustaining of biochemical reactions. Stars or the interstellar medium are not suitable for this. Planet/satellites/comets/asteroids around a star are the best choice to look for life Let us consider our own solar system as a start

3 Key attributes of the Solar System Key attributes of the Solar System Five most important attributes: 1. Terrestrial planets: Made of rocky substances, relativelly small. 2. Gas giants (Jupiter,Saturn): Made of H and He, large. 3. Ice giants (Uranus,Neptune): Similar composition as the gas giants but higher metallicity (300 times solar). 4. All planets orbit in the same direction and roughly on the same plane. 5. Terrestrial planets orbit close to the Sun, gas.ice giants orbit further away. The Solar System 3

4 Characteristics of Solar system: terrestrial planets Small ( km diameter) High density ( kg/m 3 ) Mainly composed of heavy elements (Silicate mantles and Iron cores) Shallow or non-existent atmospheres Close to the Sun (< 2au) Density = Mass Volume = M 4 3 R3

5 Characteristics of Solar system: jovian planets Large (50, ,000 km kg/m diameter 3 Low density (700-1,700 ) Mainly composed of light elements (H and He) Deep atmospheres (dominant feature of gas giants) Further away from to the Sun (> 5au)

6 Planetary abundances

7 General orbital characteristics In the solar system, all planets have close to circular orbits The orbits of the planets are all coplanar, i.e. lying on the same orbital plane All planets orbit in the same direction which is also the orientation of the solar spin.

8 Formation history: Protostellar nebular collapse The protosolar nebula is estimated to have 300,000 times the mass of the sun and a diameter of ~4 million au. Composition: ~99% H and He, ~1% metals and dust. A dense filament of an estimated diameter of 2,000-20,000 au is thought to have become gravitationally unstable and collapsed into itself. This is the onset of the solar system. This instability can be cause by shockwaves of nearby supernovae or tidal interactions between galaxies, nearby stars or other large gas clouds. We observe similar scenarios in the Orion Nebula, the Horse Head Nebula and others.

9 Protoplanetary disk in the Orion nebula Protostellar fillaments in the Horsehead Nebula Protostellar nebula

10 Formation history: Protostellar nebular collapse Contraction of the Solar Nebula Under its own gravitational pull, the Solar Nebula contracted Greatest concentration of matter occurred at the center protosun as the name suggests, the protosun was the progenitor to the Sun Falling material gained speed and the kinetic energy was converted into thermal energy nebula heated up (Kelvin-Helmholtz contraction) If the collapsing Solar Nebula did not have any rotation, then all the material would fall directly towards the proto-sun. However the Solar Nebula started out with a small degree of rotation The rotation velocity of the nebula increases as it reduces in size Conservation of angular momentum The Solar System 12

11 Conservation of angular momentum Conservation of angular momentum The principle of conservation of angular momentum valid at all scales (atomic... galactic) When the net external torque acting on a system is zero, the total angular momentum (L) of the system is constant (i.e. conserved) If a packet of gas orbits a central proto-star it has angular momentum L = mvr L = constant mass = constant hence can rearrange equation to give so velocity, v, is inversely proportional to the radial distance from the protosun, r. As r decreases, v increases Ice-skating analogy ᅠ v = L mr The Solar System 13

12 Formation history: Protoplanetary disk Due to the conservation of angular momentum, the rotating disk is stretched out into a thin disk This highly heated, fast spinning disk is called the Protoplanetary disk. It is usually only several 10s-100s of au thick and the gas inside is highly turbulent. It is initially only composed of gas and dust. Freedman & Kauffmann The Solar Syste

13 Formation history: Formation of planetesimals, planetesimals, planets asteroids and comets planets, asteroids and comets So we ve seen evidence of stars forming from the collapsing, rotating gas and dust clouds But how are planetesimals, planets, asteroids and comets formed within this spinning cloud? Definition of planetesimal: large solid bodies (larger than dust, smaller than planets) for the purpose of this course it refers to objects with diameters of ~1 km. An important concept to understand when considering planet formation is that of the Condensation temperature The Solar System 16

14 Formation history: Two planet formation mechanisms There are currently two theories of how planets form out of the protoplanetary disk Gravitational instability theory: Similar to the collapse of the protostellar nebula, we can imagine that small filaments in the protoplanetary disk form and collapse under their own gravity This is an instant formation model Core accretion theory: Small particles accrete onto each other and form small lumps that gravitationally attract more lumps until this conglomerate reaches the size of planetesimals and beyond. This is a slow and gradual formation process

15 Formation history: Two planet formation mechanisms There are currently two theories of how planets form out of the protoplanetary disk Gravitational instability theory: Similar to the collapse of the protostellar nebula, we can imagine that small filaments in the protoplanetary disk form and collapse under their own gravity This is an instant formation model Core accretion theory: Small particles accrete onto each other and form small lumps that gravitationally attract more lumps until this conglomerate reaches the size of planetesimals and beyond. This is a slow and gradual formation process

16 Gravitational instability model This formation process happens very quickly, within ~3 million years of the formation of the protoplanetary disk When the gaseous filament collapses, it forms a core of dense gas but no solids. This is called a top-down formation approach where the atmosphere forms first before the solid core. The gravitational potential of the gaseous core is now high enough to attract small dust grains which fall into the centre of the gaseous core to form a solid core. Jeans instability: - Gravity pulls gas cloud together (inwards force) - Pressure makes it expand (outwards force) - Above the Jeans mass, gravity wins and the cloud collapses into itself

17 Gravitational instability model Disadvantages of theory: Does not explain the formation of terrestrial planets The mechanism can only act in early formation stages. Once the proto-sun is fully formed, the solar wind will dissipate much of the gaseous content of the inner protostellar disk regions -> protoplanetary disk differentiation. Does not explain the existence of ice-giants such as Neptune and Uranus

18 Protoplanetary disk differentiation The condensation temperature The protoplanety disk was not uniform. This is easy to understand if one considers the increasing distance from the hot protosun Near the protosun, protoplanetary disk was hot Hydrostatic equilibrium only refractory elements with high melting points could remain solid such as iron, nickel, silicon water, methane, ammonia, etc remain in gaseous form Further away disk was cooler lighter compounds were also able to remain solid such as water, methane, ammonia Solid or gaseous governed by the condensation temperature if the temperature of the element > condensation temperature, the element will be in gaseous form if the temperature of the element < condensation temperature, the element will be in solid form (dust/ice particles) K for water, methane, ice, etc >1300K for rock-forming elements such as silicates, iron, etc The Solar System 17

19 Freedman & Kauffmann SNOW LINE T=170K is the waterice sublimation point in a vacuum (Snow line) Result: out to ~ 4AU from Sun, disk devoid of solid icy compounds The Solar System 18

20 Formation history: Two planet formation mechanisms There are currently two theories of how planets form out of the protoplanetary disk Gravitational instability theory: Similar to the collapse of the protostellar nebula, we can imagine that small filaments in the protoplanetary disk form and collapse under their own gravity This is an instant formation model Core accretion theory: Small particles accrete onto each other and form small lumps that gravitationally attract more lumps until this conglomerate reaches the size of planetesimals and beyond. This is a slow and gradual formation process

21 Core accretion theory The formation of planetesimals It is a bottom-up formation approach Dust grains collide and stick together by electrostatic forces planetesimals up to 1km form Due to condensation temperatures In inner regions mainly refractory materials In outer regions combination of refractory and lighter compounds After a few million years, around 10 9 planetesimals of size ~1km within the Solar System an enormous amount of material, but necessary to eventually form planets The Solar System 19

22 Core accretion theory: formation of terrestrial planets Formation of the terrestrial planets As planetesimals grew larger, their gravitational pull increased km-sized planetesimals collide to produce lunar-sized objects collisional process is termed accretion Final episode of terrestrial planet formation unimaginably large collisions taking place ultimately resulted in the terrestrial planets we see today To test whether this model is feasible, computer simulations are used to see what happens when you take a large number of planetesimals in orbit around a star, moving under gravity alone. the result The Solar System 20

23 Core accretion theory: formation of terrestrial planets Computer simulation of the Solar System terrestrial planet formation Large numbers of simulations show that accretion typically continues for ~100 million years, and that, typically, 4-5 terrestrial planets are formed within 1.5 AU from the Sun. Can consistently account for terrestrial planets within ~100 million years The Solar System 21

24 Core accretion theory: formation of giant planets Formation of the giant planets: Core-accretion model More solid material available outside of snow line ices, dust Massive objects able to form quite quickly 5-15M Earth Massive gravity able to capture gas from local disc forming gaps in the disc (core-accretion model) End result: massive planet, consisting mostly of H and He e.g. Jupiter and Saturn Critical timing needed massive objects need to form within the timescale of the gas disc, otherwise there would be no gas for the objects to capture and gas giants wouldn t exist. The Solar System 22

25 Core accretion theory: Terrestrial vs Jovian planet formation Terrestrial Terrestrial vs Jovian vs planet Jovian formation planet formation Freedman & Kauffmann Freedman & Kauffmann The Solar System The Solar System 24

26 The curious case of: Neptune and Uranus Neptune and Uranus The jury is still out as to how Uranus and Neptune were formed Unlikely to have formed in their current locations: 19AU and 30AU from the Sun Solar nebula too sparse at these distances Believed to have formed between 4AU and 10AU and then gravitationally flung outwards to their current orbits The Solar System 25

27 The curious case of: Pluto Pluto is a special case Smaller than any of the terrestrial planets Intermediate average density of about 1,900 kg/m 3 Density suggests it is composed of a mixture of ice and rock Orbital eccentricity higher than for the rest of the planets (e=0.25), and tilted with respect to the plane of the other orbits (10 o ). Not the same origin as the other planets: Dwarf planet (along with Eris or Ceres) Pluto The Solar System 28

28 Other solar system bodies Other solar system bodies Some planetesimals never grew large enough to form planets Naturally split into two families based on distance from the Sun asteroids and comets Asteroids: probably prevented from forming planets by the gravitational influence of Jupiter continual heating by Sun s radiation causes evaporation of volatile ices only rocky substances remain Comets: formed at large distances from the Sun; spread too thinly to contribute to planet building Kuiper Belt (30AU+) and Oort cloud comets (~50,000AU) The Solar System 29

29 Kuiper belt Pluto s orbit Typical Kuiper belt object (KBO) orbit Oort cloud credit: NASA

30 Which one is right then? Core accretion or gravitational collapse? Most likely the process of planetary formation is a combination of both: core accretion and instant gaseous collapse. Until recently we only had one case study (our own solar system) to study. This is clearly not enough. What we observe in the solar and exoplanetary systems today is the product of planetary formation and a later stage of planetary migration which we will discuss in the next lecture.

31 Aims and objectives 1. Know what a protostellar nebula and the protoplanetary disk are. 2. Understand the formation of protoplanetary disks and the role of gravity and heat in transforming the protostellar nebular into a planetary system. 3. Understand the principle of conservation of angular momentum. 4. Be able to explain both planetary formation theories: 1) Gravitational collapse and 2) Core accretion. 5. Appreciate the different formation histories of terrestrial and jovian planets.

Lecture 10 Formation of the Solar System January 6c, 2014

Lecture 10 Formation of the Solar System January 6c, 2014 1 Lecture 10 Formation of the Solar System January 6c, 2014 2 Orbits of the Planets 3 Clues for the Formation of the SS All planets orbit in roughly the same plane about the Sun. All planets orbit in the

More information

The Layout of the Solar System

The Layout of the Solar System The Layout of the Solar System Planets fall into two main categories Terrestrial (i.e. Earth-like) Jovian (i.e. Jupiter-like or gaseous) [~5000 kg/m 3 ] [~1300 kg/m 3 ] What is density? Average density

More information

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula

Lecture 7 Formation of the Solar System. Nebular Theory. Origin of the Solar System. Origin of the Solar System. The Solar Nebula Origin of the Solar System Lecture 7 Formation of the Solar System Reading: Chapter 9 Quiz#2 Today: Lecture 60 minutes, then quiz 20 minutes. Homework#1 will be returned on Thursday. Our theory must explain

More information

The Origin of the Solar System and Other Planetary Systems

The Origin of the Solar System and Other Planetary Systems The Origin of the Solar System and Other Planetary Systems Modeling Planet Formation Boundary Conditions Nebular Hypothesis Fixing Problems Role of Catastrophes Planets of Other Stars Modeling Planet Formation

More information

Summary: Four Major Features of our Solar System

Summary: Four Major Features of our Solar System Summary: Four Major Features of our Solar System How did the solar system form? According to the nebular theory, our solar system formed from the gravitational collapse of a giant cloud of interstellar

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Formation and content of the solar system.

Formation and content of the solar system. Formation and content of the solar system. The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

More information

Solar System Formation

Solar System Formation Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

More information

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis

Chapter 8 Formation of the Solar System. What theory best explains the features of our solar system? Close Encounter Hypothesis Chapter 8 Formation of the Solar System What properties of our solar system must a formation theory explain? 1. Patterns of motion of the large bodies Orbit in same direction and plane 2. Existence of

More information

Chapter 8 Welcome to the Solar System

Chapter 8 Welcome to the Solar System Chapter 8 Welcome to the Solar System 8.1 The Search for Origins What properties of our solar system must a formation theory explain? What theory best explains the features of our solar system? What properties

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 9. The nebular theory + Movie (Page 74-80)

More information

The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1

The Formation of Planetary Systems. Astronomy 1-1 Lecture 20-1 The Formation of Planetary Systems Astronomy 1-1 Lecture 20-1 Modeling Planet Formation Any model for solar system and planet formation must explain 1. Planets are relatively isolated in space 2. Planetary

More information

4. Formation of Solar Systems

4. Formation of Solar Systems Astronomy 110: SURVEY OF ASTRONOMY 4. Formation of Solar Systems 1. A Survey of the Solar System 2. The Solar System s Early History 3. Other Planetary Systems The solar system s rich and varied structure

More information

Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond. What does the solar system look like? What does the solar system look like?

Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond. What does the solar system look like? What does the solar system look like? Chapter 6 Formation of Planetary Systems: Our Solar System and Beyond What does the solar system look like? The solar system exhibits clear patterns of composition and motion. These patterns are far more

More information

Chapter 8 Formation of the Solar System Agenda

Chapter 8 Formation of the Solar System Agenda Chapter 8 Formation of the Solar System Agenda Announce: Mercury Transit Part 2 of Projects due next Thursday Ch. 8 Formation of the Solar System Philip on The Physics of Star Trek Radiometric Dating Lab

More information

PART 1 OBJECTS IN THE SOLAR SYSTEM 4.1 INTRODUCTION 4.2 PLANET TYPES

PART 1 OBJECTS IN THE SOLAR SYSTEM 4.1 INTRODUCTION 4.2 PLANET TYPES PART 1 OBJECTS IN THE SOLAR SYSTEM 4.1 INTRODUCTION Besides the Sun, the central object of our solar system, which is a star and will be discussed in more detail in Chapter 11, there are basically three

More information

Patterns in the Solar System. Patterns in the Solar System. ASTR 105 The Solar System

Patterns in the Solar System. Patterns in the Solar System. ASTR 105 The Solar System ASTR 105 The Solar System 1. Orderly motions 2.Two kinds of planets 3.Two kinds of small bodies 4.Exceptions to the rules Today: Group Lab at the end of class Next THURSDAY 03/10: First Group Project Orderly

More information

Chapter 6: Our Solar System and Its Origin

Chapter 6: Our Solar System and Its Origin Chapter 6: Our Solar System and Its Origin What does our solar system look like? The planets are tiny compared to the distances between them (a million times smaller than shown here), but they exhibit

More information

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan. 2011 Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

More information

Mid-term Exam #2, this Wed, Oct 15th.

Mid-term Exam #2, this Wed, Oct 15th. Announcements Mid-term Exam #2, this Wed, Oct 15th. Extra-credit write-ups (Monsters, Dempsey) due today. Updated Grades online now (including HW#2). Last Time Jovian planets: Giant, massive, gas-rich,

More information

Unit 8 Lesson 2 Gravity and the Solar System

Unit 8 Lesson 2 Gravity and the Solar System Unit 8 Lesson 2 Gravity and the Solar System Gravity What is gravity? Gravity is a force of attraction between objects that is due to their masses and the distances between them. Every object in the universe

More information

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,

More information

ASTR 380 Possibilities for Life on the Moons of Giant Planets

ASTR 380 Possibilities for Life on the Moons of Giant Planets Let s first consider the large gas planets: Jupiter, Saturn, Uranus and Neptune Planets to scale with Sun in background 67 62 14 The many moons of the outer planets.. Most of the moons are very small 1

More information

Formation of the Solar System

Formation of the Solar System Formation of the Solar System Any theory of formation of the Solar System must explain all of the basic facts that we have learned so far. 1 The Solar System The Sun contains 99.9% of the mass. The Solar

More information

The Origin of the Solar System

The Origin of the Solar System The Origin of the Solar System Questions: How did the various constituents of Solar System form? What were the physical processes involved? When did they form? Did they all form more-or less simultaneously?

More information

Formation of the Solar System (Chapter 8)

Formation of the Solar System (Chapter 8) Formation of the Solar System (Chapter 8) Based on Chapter 8 This material will be useful for understanding Chapters 9, 10, 11, 12, 13, and 14 on Formation of the solar system, Planetary geology, Planetary

More information

How did the Solar System form?

How did the Solar System form? How did the Solar System form? Is our solar system unique? Are there other Earth-like planets, or are we a fluke? Under what conditions can Earth-like planets form? Is life common or rare? Ways to Find

More information

Chapter 6 The Solar System Pearson Education, Inc.

Chapter 6 The Solar System Pearson Education, Inc. Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout of the Solar System 6.4 Terrestrial and Jovian Planets 6.5 Interplanetary

More information

Solar Nebula Theory. Basic properties of the Solar System that need to be explained:

Solar Nebula Theory. Basic properties of the Solar System that need to be explained: Solar Nebula Theory Basic properties of the Solar System that need to be explained: 1. All planets orbit the Sun in the same direction as the Sun s rotation 2. All planetary orbits are confined to the

More information

The Origin of the Solar System. Formation and basic characteristics of the Solar System

The Origin of the Solar System. Formation and basic characteristics of the Solar System The Origin of the Solar System Formation and basic characteristics of the Solar System The origin of matter All the building material necessary to make our Solar System was assembled in the process of

More information

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture

DE2410: Learning Objectives. SOLAR SYSTEM Formation, Evolution and Death. Solar System: To Size Scale. Learning Objectives : This Lecture DE2410: Learning Objectives SOLAR SYSTEM Formation, Evolution and Death To become aware of our planet, solar system, and the Universe To know about how these objects and structures were formed, are evolving

More information

4. In the stages of star formation, what is formed when a prestellar core collapses? a. Protostar c. Planet b. Star-forming core d.

4. In the stages of star formation, what is formed when a prestellar core collapses? a. Protostar c. Planet b. Star-forming core d. Name: Astro 101 Test 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which statement best describes a molecular cloud? a. large, thin, and wispy regions

More information

Lecture 7: Formation of the Solar System

Lecture 7: Formation of the Solar System Lecture 7: Formation of the Solar System Dust and debris disk around Fomalhaut, with embedded young planet! Claire Max April 24 th, 2014 Astro 18: Planets and Planetary Systems UC Santa Cruz Solar System

More information

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM 1.What is a Solar system? A solar system consists of: * one central star, the Sun and * nine planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,

More information

Introduction to the Solar System

Introduction to the Solar System Introduction to the Solar System Lesson Objectives Describe some early ideas about our solar system. Name the planets, and describe their motion around the Sun. Explain how the solar system formed. Introduction

More information

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond

Chapter 6 Formation of Planetary Systems Our Solar System and Beyond Chapter 6 Formation of Planetary Systems Our Solar System and Beyond The solar system exhibits clear patterns of composition and motion. Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma)

More information

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Solar System Fundamentals What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System Properties of Planets What is a planet? Defined finally in August 2006!

More information

Astronomy 103: First Exam

Astronomy 103: First Exam Name: Astronomy 103: First Exam Stephen Lepp October 25, 2010 Each question is worth 2 points. Write your name on this exam and on the scantron. 1 Short Answer A. What is the largest of the terrestrial

More information

Lecture 19: Planet Formation I. Clues from the Solar System

Lecture 19: Planet Formation I. Clues from the Solar System Lecture 19: Planet Formation I. Clues from the Solar System 1 Outline The Solar System:! Terrestrial planets! Jovian planets! Asteroid belt, Kuiper belt, Oort cloud Condensation and growth of solid bodies

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Lecture 12: The Solar System Briefly

Lecture 12: The Solar System Briefly Lecture 12: The Solar System Briefly Formation of the Moonhttp://www.youtube.com/watch?v=WpOKztEiMqo&feature =related Formation of our Solar System Conservation of Angular Momentum Why are the larger,

More information

Survey of the Solar System

Survey of the Solar System Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems EAS 4803/8803 - CP 3:1 Mars update Endeavour crater, 6 Aug 2011 EAS 4803/8803 - CP 3:2 Mars update

More information

8.3: The Solar System: The Sun and the Planets pg. 313

8.3: The Solar System: The Sun and the Planets pg. 313 8.3: The Solar System: The Sun and the Planets pg. 313 Key Concepts: 1. Careful observation of the night sky can offer clues about the motion of celestial objects. 2. Celestial objects in the Solar System

More information

Patterns in the Solar System (Chapter 18)

Patterns in the Solar System (Chapter 18) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Patterns in the Solar System (Chapter 18) For this assignment you will require: a calculator, colored pencils, a metric ruler, and meter stick.

More information

Universe Tenth Edition

Universe Tenth Edition Roger Freedman Robert Geller William Kaufmann III Universe Tenth Edition Chapter 14 Uranus, Neptune, Pluto and the Kuiper Belt: Remote Worlds 14-1: Uranus was discovered by chance but Neptune s existence

More information

Exploring Our Solar System and Its Origin

Exploring Our Solar System and Its Origin Exploring Our Solar System and Its Origin Sun Over 99.9% of solar system s mass Made mostly of H/He gas (plasma) Converts 4 million tons of mass into energy each second Earth and Moon to scale Mercury

More information

4 HOW OUR SOLAR SYSTEM FORMED 1020L

4 HOW OUR SOLAR SYSTEM FORMED 1020L 4 HOW OUR SOLAR SYSTEM FORMED 1020L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

Lecture 8. Our Solar System. Jiong Qiu, MSU Physics Department The Cassini

Lecture 8. Our Solar System. Jiong Qiu, MSU Physics Department The Cassini Lecture 8 Our Solar System Jiong Qiu, MSU Physics Department The Cassini Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like

More information

4 HOW OUR SOLAR SYSTEM FORMED 890L

4 HOW OUR SOLAR SYSTEM FORMED 890L 4 HOW OUR SOLAR SYSTEM FORMED 890L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets are born from the clouds of gas and dust

More information

ASTR 100. Lecture 14: Formation of the Solar System and A Brief History of Space Exploration

ASTR 100. Lecture 14: Formation of the Solar System and A Brief History of Space Exploration ASTR 100 Lecture 14: Formation of the Solar System and A Brief History of Space Exploration Reading: Formation of SS (Ch. 6), The Sun (Ch. 10) Friday: Quiz and Ex. 4 due Tuesday: Feb 18 th : Midterm Done

More information

Exam #1. Exam #1. Exam #1. Nighttime observing has 4 more nights. Check the webpage.

Exam #1. Exam #1. Exam #1. Nighttime observing has 4 more nights. Check the webpage. Nighttime observing has 4 more nights. Check the webpage. 1 st exam is October 10 th Friday! Justin will have an extra office hour Thursday (10/9) before exam 4:00 to 5:00pm. I will have an extra office

More information

ASTR 115: Introduction to Astronomy. Stephen Kane

ASTR 115: Introduction to Astronomy. Stephen Kane ASTR 115: Introduction to Astronomy Stephen Kane ASTR 115: The Second Mid-Term Exam What will be covered? - Everything from chapters 6-10 of the textbook. What will be the format of the exam? - It will

More information

The Solar System. Dr. Ken Rice. Discovering Astronomy S

The Solar System. Dr. Ken Rice. Discovering Astronomy S The Solar System Dr. Ken Rice The Solar System Is the region around the Sun comprising 8 planets Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune. 3 Dwarf planets Ceres, Pluto, Eris Asteroids

More information

15.6 Planets Beyond the Solar System

15.6 Planets Beyond the Solar System 15.6 Planets Beyond the Solar System Planets orbiting other stars are called extrasolar planets. Until 1995, whether or not extrasolar planets existed was unknown. Since then more than 300 have been discovered.

More information

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc.

Our Planetary System. Earth, as viewed by the Voyager spacecraft. 2014 Pearson Education, Inc. Our Planetary System Earth, as viewed by the Voyager spacecraft 7.1 Studying the Solar System Our goals for learning: What does the solar system look like? What can we learn by comparing the planets to

More information

Class 14 Patterns & diversity in our Solar System. I : The kinematics of the Solar System

Class 14 Patterns & diversity in our Solar System. I : The kinematics of the Solar System Class 14 Patterns & diversity in our Solar System Kinematics of the solar system Comparative planetology I : The kinematics of the Solar System We have learned about the laws of physics (motion and gravity)

More information

Lecture 4. Our Solar System. The Cassini

Lecture 4. Our Solar System. The Cassini Lecture 4 Our Solar System The Cassini Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts

Chapter 9 Asteroids, Comets, and Dwarf Planets. Their Nature, Orbits, and Impacts Chapter 9 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts Asteroid Facts Asteroids are rocky leftovers of planet formation. The largest is Ceres, diameter ~1,000 km. There are 150,000

More information

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html

The Solar System. Source http://starchild.gsfc.nasa.gov/docs/starchild/solar_system_level1/solar_system.html The Solar System What is the solar system? It is our Sun and everything that travels around it. Our solar system is elliptical in shape. That means it is shaped like an egg. Earth s orbit is nearly circular.

More information

Lecture 19. 1) The geologic timescale: the age of the Earth/ Solar System the history of the Earth

Lecture 19. 1) The geologic timescale: the age of the Earth/ Solar System the history of the Earth Lecture 19 Part 2: Climates of the Past 1) The geologic timescale: the age of the Earth/ Solar System the history of the Earth 2) The evolution of Earth s atmosphere - from its origin to present-day 3)

More information

Formation of the Solar System

Formation of the Solar System CHAPTER 19 13 SECTION The Solar System Formation of the Solar System KEY IDEAS As you read this section, keep these questions in mind: How did early astronomers understand and describe the solar system?

More information

Homework #3 Solutions

Homework #3 Solutions Chap. 7, #40 Homework #3 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Which of the following is a strong greenhouse gas? A) Nitrogen. B) Water Vapor. C) Oxygen) The correct

More information

Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt. Asteroid Facts. What are asteroids like? Asteroids with Moons

Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt. Asteroid Facts. What are asteroids like? Asteroids with Moons Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt 12.1 Asteroids and Meteorites Our goals for learning What are asteroids like? Why is there an asteroid belt? Where do meteorites

More information

Name: João Fernando Alves da Silva Class: 7-4 Number: 10

Name: João Fernando Alves da Silva Class: 7-4 Number: 10 Name: João Fernando Alves da Silva Class: 7-4 Number: 10 What is the constitution of the Solar System? The Solar System is constituted not only by planets, which have satellites, but also by thousands

More information

The dynamical structure of the Solar System

The dynamical structure of the Solar System The dynamical structure of the Solar System Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 8. Solar System: Organisation Lecture overview:

More information

4 HOW OUR SOLAR SYSTEM FORMED 750L

4 HOW OUR SOLAR SYSTEM FORMED 750L 4 HOW OUR SOLAR SYSTEM FORMED 750L HOW OUR SOLAR SYSTEM FORMED A CLOSE LOOK AT THE PLANETS ORBITING OUR SUN By Cynthia Stokes Brown, adapted by Newsela Planets come from the clouds of gas and dust that

More information

Chapter 15.3 Galaxy Evolution

Chapter 15.3 Galaxy Evolution Chapter 15.3 Galaxy Evolution Elliptical Galaxies Spiral Galaxies Irregular Galaxies Are there any connections between the three types of galaxies? How do galaxies form? How do galaxies evolve? P.S. You

More information

Study Guide: Solar System

Study Guide: Solar System Study Guide: Solar System 1. How many planets are there in the solar system? 2. What is the correct order of all the planets in the solar system? 3. Where can a comet be located in the solar system? 4.

More information

AST-2003 Review for Final Exam

AST-2003 Review for Final Exam AST-2003 Review for Final Exam Please do not forget to do the evaluations. Last day is Friday April 26th Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device

More information

Small Bodies in the Solar System. Bigger is not better

Small Bodies in the Solar System. Bigger is not better Small Bodies in the Solar System Bigger is not better The Sun, planets, and moons are not the only objects in the solar system. Scientists estimate there are up to a trillion smaller bodies in our solar

More information

Earth Science Lesson Plan Quarter 4, Week 6, Day 1

Earth Science Lesson Plan Quarter 4, Week 6, Day 1 Earth Science Lesson Plan Quarter 4, Week 6, Day 1 Outcomes for Today Standard Focus: PREPARE 1. Background knowledge necessary for today s reading. The outer part of the solar system is comprised of the

More information

Earth. Terrestrial Planet 1 AU from the Sun. Equilibrium temperature: 247 K (-26C) Actual mean temperature: 287 K

Earth. Terrestrial Planet 1 AU from the Sun. Equilibrium temperature: 247 K (-26C) Actual mean temperature: 287 K Life on Earth. I. Earth Terrestrial Planet 1 AU from the Sun Equilibrium temperature: 247 K (-26C) Actual mean temperature: 287 K Differentiated into Inner core Outer core Mantle Crust Composition Crust:

More information

LESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy

LESSON 3 THE SOLAR SYSTEM. Chapter 8, Astronomy LESSON 3 THE SOLAR SYSTEM Chapter 8, Astronomy OBJECTIVES Identify planets by observing their movement against background stars. Explain that the solar system consists of many bodies held together by gravity.

More information

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites

Chapter 12 Asteroids, Comets, and Dwarf Planets. Asteroid Facts. What are asteroids like? Asteroids with Moons. 12.1 Asteroids and Meteorites Chapter 12 Asteroids, Comets, and Dwarf Planets Their Nature, Orbits, and Impacts What are asteroids like? 12.1 Asteroids and Meteorites Our goals for learning:! What are asteroids like?! Why is there

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

A Pretty Nice Model. Grace Telford Brett Morris

A Pretty Nice Model. Grace Telford Brett Morris A Pretty Nice Model Grace Telford Brett Morris Nice Model v1.0 Outline Levison et al. 2005, Morbidelli et al. 2005, Gomes et al. 2005 Issues with v1.0 and their solutions Morbidelli et al. 2007 Nice Model

More information

Origin of Our Universe

Origin of Our Universe Origin of Our Universe Before the Big Bang? As cosmologists begin to understand what happened just after the Big Bang, many are questioning what led up to the Big Bang (4 possibilities) 1. No previous

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Ch. 27 The Planets in our Solar System

Ch. 27 The Planets in our Solar System Ch. 27 The Planets in our Solar System Our Solar System Our solar system is located in the Galaxy (about 2/3 the way out on one of the arms.) There is ONE star in our solar system and it is the Our solar

More information

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius

Chapter 7 Our Planetary System. What does the solar system look like? Thought Question How does the Earth-Sun distance compare with the Sun s radius Chapter 7 Our Planetary System 7.1 Studying the Solar System Our goals for learning:! What does the solar system look like?! What can we learn by comparing the planets to one another?! What are the major

More information

THE SOLAR SYSTEM - EXERCISES 1

THE SOLAR SYSTEM - EXERCISES 1 THE SOLAR SYSTEM - EXERCISES 1 THE SUN AND THE SOLAR SYSTEM Name the planets in their order from the sun. 1 2 3 4 5 6 7 8 The asteroid belt is between and Which planet has the most moons? About how many?

More information

Cosmic Journey: A Solar System Adventure General Information

Cosmic Journey: A Solar System Adventure General Information Cosmic Journey: A Solar System Adventure General Information Imagine it a huge spiral galaxy containing hundreds of billions of stars, spiraling out from a galactic center. Nestled deep within one of the

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets

2007 Pearson Education Inc., publishing as Pearson Addison-Wesley. The Jovian Planets The Jovian Planets The Jovian planets are gas giants - much larger than Earth Sizes of Jovian Planets Planets get larger as they get more massive up to a point... Planets more massive than Jupiter are

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 12

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 12 ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets

More information

Chapter 12 Asteroids, Comets, and Dwarf Planets. Announcement. Comet-Asteroid Similarities. Two Types of Solar System Debris.

Chapter 12 Asteroids, Comets, and Dwarf Planets. Announcement. Comet-Asteroid Similarities. Two Types of Solar System Debris. Announcement Chapter 12 Asteroids, Comets, and Dwarf Planets Mastering astronomy assignment 11 Due May 11, 8 am Read Chapters 12 and 13 Two Types of Solar System Debris Comet-Asteroid Similarities Size

More information

11.4 Formation of Stars Like the Sun

11.4 Formation of Stars Like the Sun Star formation happens when part of a dust cloud begins to contract under its own gravitational force; as it collapses, the center becomes hotter and hotter until nuclear fusion begins in the core. When

More information

Chapter 12 Remnants of Rock and Ice. Asteroids, Comets, and the Kuiper Belt

Chapter 12 Remnants of Rock and Ice. Asteroids, Comets, and the Kuiper Belt Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt What are asteroids like? Asteroid Facts Asteroids are rocky leftovers of planet formation. Largest is Ceres, diameter ~1,000 km

More information

Ch01-intro-nat-dis GLY3034: WEEK 1 1

Ch01-intro-nat-dis GLY3034: WEEK 1 1 How to study for this course Before coming to class: Read the corresponding chapter, or at least scan through the chapter and read the main headings. You must read the summary at the end of each chapter.

More information

Forward: Final Version 2007 January 31. Forward to the University of Arizona Kuiper Belt Book

Forward: Final Version 2007 January 31. Forward to the University of Arizona Kuiper Belt Book Forward: Final Version 2007 January 31 Forward to the University of Arizona Kuiper Belt Book Only rarely are we, as scientists and as people, able to witness a whole new research tree grow and blossom

More information

Notes Our Planetary System

Notes Our Planetary System Notes Our Planetary System 7.1 Studying the Solar System - Galileo s telescopic observations sparked a new era in which the Sun, Moon and planets could be studied as worlds rather than just mere lights

More information

Our Galaxy, the Milky Way

Our Galaxy, the Milky Way Our Galaxy, the Milky Way In the night sky, the Milky Way appears as a faint band of light. Dusty gas clouds obscure our view because they absorb visible light. This is the interstellar medium that makes

More information

A SOLAR SYSTEM COLORING BOOK

A SOLAR SYSTEM COLORING BOOK A SOLAR SYSTEM COLORING BOOK Brought to you by: THE SUN Size: The Sun is wider than 100 Earths. 1 Temperature: 27,000,000 F in the center, 10,000 F at the surface. So that s REALLY hot anywhere on the

More information

DIRECTIONS: Complete the notes below as you watch the Powerpoint slideshow. What is the difference between a Dwarf Planet and a plutoid?

DIRECTIONS: Complete the notes below as you watch the Powerpoint slideshow. What is the difference between a Dwarf Planet and a plutoid? UNIT 7: Kilo Hoku - Astronomy & Navigation The Ordered Solar System Powerpoint Questions & Key Words DIRECTIONS: Complete the notes below as you watch the Powerpoint slideshow Slide 3: Three types of objects

More information

SECRETS OF THE SOLAR SYSTEM

SECRETS OF THE SOLAR SYSTEM SECRETS OF THE SOLAR SYSTEM 3 S -05 Wladimir (Wlad) Lyra Brian Levine AMNH After-School Program From last class The Sun The Sun is by far the dominant object of the Solar System Jupiter has more than twice

More information

EVOLUTION OF PLANETARY SYSTEMS

EVOLUTION OF PLANETARY SYSTEMS EVOLUTION OF PLANETARY SYSTEMS Alessandro Morbidelli CNRS/Obs. De la Cote d Azur, Nice, France With inputs from: B. Bitsch, C. Cossou, A. Izidoro, A. Johansen, M. Lambrechts, S. Raymond The Big Questions

More information

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science

DESCRIPTION ACADEMIC STANDARDS INSTRUCTIONAL GOALS VOCABULARY BEFORE SHOWING. Subject Area: Science DESCRIPTION Host Tom Selleck conducts a stellar tour of Jupiter, Saturn, Uranus, Neptune, and Pluto--the outer planets of Earth's solar system. Information from the Voyager space probes plus computer models

More information