Chapter 39 Quantum Mechanics of Atoms

Size: px
Start display at page:

Download "Chapter 39 Quantum Mechanics of Atoms"

Transcription

1 Chapter 39 Quantum Mechanics of Atoms

2 Units of Chapter 39 Quantum-Mechanical View of Atoms Hydrogen Atom: Schrödinger Equation and Quantum Numbers Hydrogen Atom Wave Functions Complex Atoms; the Exclusion Principle The Periodic Table of Elements X-Ray Spectra and Atomic Number Magnetic Dipole Moments; Total Angular Momentum

3 Units of Chapter 39 Fluorescence and Phosphorescence Lasers Holography

4 39.1 Quantum-Mechanical View of Since we cannot say exactly where an electron is, the Bohr picture of the atom, with electrons in neat orbits, cannot be correct. Quantum theory describes an electron probability distribution: Atoms

5 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers Potential energy for the hydrogen atom:

6 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers The time-independent Schrödinger equation in three dimensions is then: Equation 39-1 goes here. where Equation 39-2 goes here.

7 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers There are four different quantum numbers needed to specify the state of an electron in an atom. 1. The principal quantum number n gives the total energy. 2. The orbital quantum number gives the angular momentum; l can take on integer values from 0 to n -1. l Equation 39-3 goes here.

8 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers 3. The magnetic quantum number, m l, gives the direction of the electron s angular momentum, and can take on integer values from to +. l l

9 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers Figure 39-3 goes here. This plot indicates the quantization of angular momentum direction for l = 2. The other two components of the angular momentum are undefined.

10 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers In a magnetic field, the energy levels split depending on m. l

11 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers 4. The spin quantum number, m s, for an electron can take on the values +½ and -½. The need for this quantum number was found by experiment; spin is an intrinsically quantum mechanical quantity, although it mathematically behaves as a form of angular momentum.

12 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers This table summarizes the four quantum numbers.

13 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers Conceptual Example 39-1: Possible states for n = 3. How many different states are possible for an electron whose principal quantum number is n = 3?

14 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers Example 39-2: E and L for n = 3. Determine (a) the energy and (b) the orbital angular momentum for an electron in each of the hydrogen atom states of Example 39 1.

15 39.2 Hydrogen Atom: Schrödinger Equation and Quantum Numbers Allowed transitions between energy levels occur between states whose value of ldiffer by one: Other, forbidden, transitions also occur but with much lower probability.

16 39.3 Hydrogen Atom Wave Functions The wave function of the ground state of hydrogen has the form: The probability of finding the electron in a volume dv around a given point is then ψ 2 dv.

17 39.3 Hydrogen Atom Wave Functions The ground state is spherically symmetric; the probability of finding the electron at a distance between r and r + dr from the nucleus is:

18 39.3 Hydrogen Atom Wave Functions Example 39-3: Most probable electron radius in hydrogen. Determine the most probable distance r from the nucleus at which to find the electron in the ground state of hydrogen.

19 39.3 Hydrogen Atom Wave Functions Example 39-4: Calculating probability. Determine the probability of finding the electron in the ground state of hydrogen within two Bohr radii of the nucleus.

20 39.3 Hydrogen Atom Wave Functions This figure shows the three probability distributions for n = 2 and l= 1 (the distributions for m l = +1 and m l = -1 are the same), as well as the radial distribution for all n = 2 states.

21 39.4 Complex Atoms; the Exclusion Principle Complex atoms contain more than one electron, so the interaction between electrons must be accounted for in the energy levels. This means that the energy depends on both n and. A neutral atom has Z electrons, as well as Z protons in its nucleus. Z is called the atomic number. l

22 39.4 Complex Atoms; the Exclusion Principle In order to understand the electron distributions in atoms, another principle is needed. This is the Pauli exclusion principle: No two electrons in an atom can occupy the same quantum state. The quantum state is specified by the four quantum numbers; no two electrons can have the same set.

23 39.4 Complex Atoms; the Exclusion Principle This chart shows the occupied and some unoccupied states in He, Li, and Na.

24 39.5 The Periodic Table of the Elements We can now understand the organization of the periodic table. Electrons with the same n are in the same shell. Electrons with the same n and l are in the same subshell. The exclusion principle limits the maximum number of electrons in each subshell to 2(2 + 1). l

25 39.5 The Periodic Table of the Elements l Each value of is given its own letter symbol.

26 39.5 The Periodic Table of the Elements Electron configurations are written by giving the value for n, the letter code for l, and the number of electrons in the subshell as a superscript. For example, here is the groundstate configuration of sodium: 1s 2 2s 2 2p 6 3s 1

27 39.5 The Periodic Table of the Elements This table shows the configuration of the outer electrons only.

28 39.5 The Periodic Table of the Elements Conceptual Example 39-5: Electron configurations. Which of the following electron configurations are possible, and which are not: (a) 1s 2 2s 2 2p 6 3s 3 ; (b) 1s 2 2s 2 2p 6 3s 2 3p 5 4s 2 ; (c) 1s 2 2s 2 2p 6 2d 1?

29 39.5 The Periodic Table of the Elements Atoms with the same number of electrons in their outer shells have similar chemical behaviors. They appear in the same column of the periodic table. The outer columns those with full, almost full, or almost empty outer shells are the most distinctive. The inner columns, with partly filled shells, have more similar chemical properties.

30 39.6 X-Ray Spectra and Atomic Number The effective charge that an electron sees is the charge on the nucleus shielded by inner electrons. Only the electrons in the first level see the entire nuclear charge. The energy of a level is proportional to Z 2, so the wavelengths corresponding to transitions to the n = 1 state in high-z atoms are in the X-ray range.

31 39.6 X-Ray Spectra and Atomic Number Inner electrons can be ejected by high-energy electrons. The resulting X-ray spectrum is characteristic of the element. This example is for molybdenum.

32 39.6 X-Ray Spectra and Atomic Number Measurement of these spectra allows determination of inner energy levels, as well as Z, as the wavelength of the shortest X-rays is inversely proportional to Z 2.

33 39.6 X-Ray Spectra and Atomic Number Example 39-6: X-ray wavelength. Estimate the wavelength for an n = 2 to n = 1 transition in molybdenum (Z = 42). What is the energy of such a photon?

34 39.6 X-Ray Spectra and Atomic Number Example 39-7: Determining atomic number. High-energy photons are used to bombard an unknown material. The strongest peak is found for X-rays emitted with an energy of 66 kev. Guess what the material is.

35 39.6 X-Ray Spectra and Atomic Number The continuous part of the X-ray spectrum comes from electrons that are decelerated by interactions within the material, and therefore emit photons. This radiation is called bremsstrahlung ( braking radiation ).

36 39.6 X-Ray Spectra and Atomic Number Example 39-8: Cutoff wavelength. What is the shortest-wavelength X-ray photon emitted in an X-ray tube subjected to 50 kv?

37 39.7 Magnetic Dipole Moments; Total Angular Momentum If we consider the electron to be moving in a circle of radius r at speed v around the nucleus, the magnetic dipole moment is given by: where the angular momentum L = mvr. This semiclassical calculation is also valid quantum mechanically as long as the angular momentum is quantized.

38 39.7 Magnetic Dipole Moments; Total Angular Momentum The z component of the dipole moment, where z is defined to be the direction of an external magnetic field, is given by:. The Bohr magneton is defined as:

39 39.7 Magnetic Dipole Moments; Total Angular Momentum Now we can write the z component of the magnetic dipole moment as: An atom placed in a magnetic field will have its energy levels shifted depending on the value of m l; this is the Zeeman effect.

40 39.7 Magnetic Dipole Moments; Total Angular Momentum In the Stern-Gerlach experiment, atoms were sent through a nonuniform magnetic field. This field deflects atoms differently depending on their magnetic dipole moments. Classically, one would expect a continuum of deflection angles.

41 39.7 Magnetic Dipole Moments; Total Angular Momentum Instead, the angles were quantized, corresponding to the quantized values of the magnetic moment. Figure goes here.

42 39.7 Magnetic Dipole Moments; Total Angular Momentum The total angular momentum (the vector sum of the orbital and spin angular momenta) is also quantized: The state of an electron can then be written in the form nl j, such as 2P 3/2 (n = 2, l= 1, j = 3/2) and 1S 1/2 (ground state of hydrogen).

43 39.8 Fluorescence and Phosphorescence If an electron is excited to a higher energy state, it may emit two or more photons of longer wavelength as it returns to the lower level. Figure goes here.

44 39.8 Fluorescence and Phosphorescence Fluorescence occurs when the absorbed photon is ultraviolet and the emitted photons are in the visible range. Phosphorescence occurs when the electron is excited to a metastable state; it can take seconds or longer to return to the lower state. Meanwhile, the material glows.

45 39.9 Lasers A laser produces a narrow, intense beam of coherent light. This coherence means that, at a given cross section, all parts of the beam have the same phase. (a) shows absorption of a photon. (b) shows stimulated emission if the atom is already in the excited state, the presence of another photon of the same frequency can stimulate the atom to make the transition to the lower state sooner. These photons are in phase.

46 39.9 Lasers To obtain coherent light from stimulated emission, two conditions must be met: 1. Most of the atoms must be in the excited state; this is called an inverted population. Figure goes here.

47 39.9 Lasers 2. The higher state must be a metastable state, so that once the population is inverted, it stays that way. This means that transitions occur through stimulated emission rather than spontaneously. Figure goes here.

48 39.9 Lasers The laser beam is narrow, only spreading due to diffraction, which is determined by the size of the end mirror. An inverted population can be created by exciting electrons to a state from which they decay to a metastable state. This is called optical pumping.

49 39.9 Lasers A metastable state can also be created through interactions between two sets of atoms, such as in a helium neon laser.

50 39.9 Lasers Lasers are used for a wide variety of applications: surgery; machining; surveying; reading bar codes, CDs, and DVDs; and so on. This diagram shows how a CD is read.

51 39.10 Holography Holograms are created using the coherent light of a laser. The beam is split, allowing the film to record both the intensity and the relative phase of the light. The resulting image, when illuminated by a laser, is threedimensional. White-light holograms are made with a laser but can be viewed in ordinary light. The emulsion is thick, and contains interference patterns that make the image somewhat three-dimensional.

52 Summary of Chapter 39 The electron state in an atom is specified by four numbers; n, l, m l, and m s. n, the principal quantum number, can have any integer value, and gives the energy of the level. l, the orbital quantum number, can have values from 0 to n 1. m l, the magnetic quantum number, can have values from to +. l l m s, the spin quantum number, can be +½ or -½.

53 Summary of Chapter 39 Energy levels depend on n and, except in hydrogen. The other quantum numbers also result in small energy differences. Pauli exclusion principle: no two electrons in the same atom can be in the same quantum state. Electrons are grouped into shells and subshells. The periodic table reflects shell structure. The X-ray spectrum can give information about inner levels and Z of high-z atoms. l

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Multi-electron atoms

Multi-electron atoms Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.

More information

Question: Do all electrons in the same level have the same energy?

Question: Do all electrons in the same level have the same energy? Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit: Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of

More information

2, 8, 20, 28, 50, 82, 126.

2, 8, 20, 28, 50, 82, 126. Chapter 5 Nuclear Shell Model 5.1 Magic Numbers The binding energies predicted by the Liquid Drop Model underestimate the actual binding energies of magic nuclei for which either the number of neutrons

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Chapter 28 Atomic Physics

Chapter 28 Atomic Physics 614 Chapter 28 Atomic Physics GOALS After you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13. Electrons in Atoms CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

Bohr's Theory of the Hydrogen Atom

Bohr's Theory of the Hydrogen Atom OpenStax-CNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

Basics of Nuclear Physics and Fission

Basics of Nuclear Physics and Fission Basics of Nuclear Physics and Fission A basic background in nuclear physics for those who want to start at the beginning. Some of the terms used in this factsheet can be found in IEER s on-line glossary.

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Electron Arrangements

Electron Arrangements Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

NMR - Basic principles

NMR - Basic principles NMR - Basic principles Subatomic particles like electrons, protons and neutrons are associated with spin - a fundamental property like charge or mass. In the case of nuclei with even number of protons

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE

Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE Prof.M.Perucca CORSO DI APPROFONDIMENTO DI FISICA ATOMICA: (III-INCONTRO) RISONANZA MAGNETICA NUCLEARE SUMMARY (I/II) Angular momentum and the spinning gyroscope stationary state equation Magnetic dipole

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

The Atom and the Periodic Table. Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams

The Atom and the Periodic Table. Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams The Atom and the Periodic Table Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams Review The vertical columns in the periodic table are called groups.

More information

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission Principles of Imaging Science I (RAD119) X-ray Production & Emission X-ray Production X-rays are produced inside the x-ray tube when high energy projectile electrons from the filament interact with the

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model. John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information

Group Theory and Chemistry

Group Theory and Chemistry Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

More information

Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Department of Physics and Geology The Elements and the Periodic Table

Department of Physics and Geology The Elements and the Periodic Table Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev

More information

Unit 2: Chemical Bonding and Organic Chemistry

Unit 2: Chemical Bonding and Organic Chemistry Chemistry AP Unit : Chemical Bonding and Organic Chemistry Unit : Chemical Bonding and Organic Chemistry Chapter 7: Atomic Structure and Periodicity 7.1: Electromagnetic Radiation Electromagnetic (EM)

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table

SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and

More information

Nuclear Physics. Nuclear Physics comprises the study of:

Nuclear Physics. Nuclear Physics comprises the study of: Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

Syllabus for Chem 359: Atomic and Molecular Spectroscopy

Syllabus for Chem 359: Atomic and Molecular Spectroscopy Syllabus for Chem 359: Atomic and Molecular Spectroscopy Instructors: Dr. Reinhard Schweitzer- Stenner and Ms. Siobhan E. Toal Of#ice: Disque 605/Disque 306 Tel: (215) 895-2268 Email: rschweitzer- stenner@drexel.edu

More information

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a

4. It is possible to excite, or flip the nuclear magnetic vector from the α-state to the β-state by bridging the energy gap between the two. This is a BASIC PRINCIPLES INTRODUCTION TO NUCLEAR MAGNETIC RESONANCE (NMR) 1. The nuclei of certain atoms with odd atomic number, and/or odd mass behave as spinning charges. The nucleus is the center of positive

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

Understanding astigmatism Spring 2003

Understanding astigmatism Spring 2003 MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest

More information

Models of the Atom and periodic Trends Exam Study Guide

Models of the Atom and periodic Trends Exam Study Guide Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

More information

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation

More information

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

Chapter 2. Quantum Theory

Chapter 2. Quantum Theory Chapter 2 Quantum Theory 2.0 Introduction 2.6 Orbital Shapes, Signs, and Sizes 2.1 The Nature of Light 2.7 Electron Configurations 2.2 Quantization 2.8 Quantum Theory and the Periodic Table 2.3 Bohr Model

More information

Introduction to Geiger Counters

Introduction to Geiger Counters Introduction to Geiger Counters A Geiger counter (Geiger-Muller tube) is a device used for the detection and measurement of all types of radiation: alpha, beta and gamma radiation. Basically it consists

More information

Homework #10 (749508)

Homework #10 (749508) Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance NMR is probably the most useful and powerful technique for identifying and characterizing organic compounds. Felix Bloch and Edward Mills Purcell were awarded the 1952 Nobel

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

More information

Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½

Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½ Unit, Lesson : Answers to Homework Summary: The allowed values for quantum numbers for each principal quantum level n : n l m l m s corresponding sub-level number of orbitals in this sub-level n = s n

More information

Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

More information

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM

5.61 Physical Chemistry 25 Helium Atom page 1 HELIUM ATOM 5.6 Physical Chemistry 5 Helium Atom page HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next simplest system: the Helium atom. In this situation,

More information

The Models of the Atom

The Models of the Atom The Models of the Atom All life, whether in the form of trees, whales, mushrooms, bacteria or amoebas, consists of cells. Similarly, all matter, whether in the form of aspirin, gold, vitamins, air or minerals,

More information

Objectives 404 CHAPTER 9 RADIATION

Objectives 404 CHAPTER 9 RADIATION Objectives Explain the difference between isotopes of the same element. Describe the force that holds nucleons together. Explain the relationship between mass and energy according to Einstein s theory

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

Structure and Properties of Atoms

Structure and Properties of Atoms PS-2.1 Compare the subatomic particles (protons, neutrons, electrons) of an atom with regard to mass, location, and charge, and explain how these particles affect the properties of an atom (including identity,

More information

Electromagnetic Radiation

Electromagnetic Radiation Chapter 7 A Quantum Model of Atoms Chapter Objectives: Understand the relationships between wavelength, frequency, and energy of light. Understand the origin of atomic line spectra. Learn how the quantum

More information