CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

Size: px
Start display at page:

Download "CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)"

Transcription

1 CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE 2.18 x 18 f Z 2 f J k n f 2 n i 2 1. Which of the following sets of quantum numbers is allowed? n l m l m s a ½ b ½ c ½ d ½ e ½ 2. Determine the set of quantum numbers that describe the last electron added to As (Z = 33). a. n = 3, l = 2, m l = 0, m s = + ½ b. n = 3, l = 2, m l = 1, m s = ½ c. n = 4, l = 1, m l = +1, m s = + ½ d. n = 3, l = 1, m l = +1, m s = ½ e. n = 4, l = 1, m l = 0, m s = ½ 3. Determine the set of four quantum numbers that describe the last electron added to Ne (the outermost electron). n l m l m s a ½ b ½ c ½ d ½ e ½ 4. Determine the four quantum numbers that describe the last electron added to the Se atom. a. n = 4, l = 0, m l = 0, m s = ½ b. n = 4, l = 2, m l = 1, m s = ½ c. n = 4, l = 1, m l = 1, m s = + ½ d. n = 4, l = 2, m l = 0, m s = + ½ e. n = 4, l = 1, m l = 1, m s = ½ 5. Determine the set of quantum numbers that describe the electron added to a Br atom as it forms an ion (last electron in the Br ion). a. n = 4, l = 1, m l = 0, m s = + ½ b. n = 5, l = 4, m l = 3, m s = + ½ c. n = 3, l = 0, m l = 0, m s = ½ d. n = 4, l = 1, m l = 1, m s = ½ e. n = 4, l = 2, m l = 2, m s = ½

2 6. Determine the set of 4 quantum numbers that describe the last electron added to an atom of B. a. n = 2, l = 0, m l = 0, m s = +½ b. n = 3, l = 2, m l = 3, m s = +½ c. n = 2, l = 1, m l = 2, m s = +3/2 d. n = 3, l = 1, m l = 0, m s = ½ e. n = 2, l = 1, m l = 1, m s = +½ 7. How many electrons in a given atom can have the following quantum numbers? n = 3 l = 2 a. 2 b. 8 c. 10 d. 18 e How many orbitals in a given atom can be described by the following quantum numbers? a. 3 b. 4 c. 5 d. 6 e. 10 n = 4, l = 2 9. Which of the following combinations of quantum numbers are NOT allowed? a. n = 4, l = 4, m l = 0 b. n = 3, l = 2, m l = 2 c. n = 8, l = 4, m l = 3 d. n = 1, l = 0, m l = 0 e. None of the above are allowed combinations of quantum numbers. 10. Determine the ground state electron configuration of Ba 2+. a. [Xe]6s 2 b. [Kr]5s 2 4d 10 5p 6 c. [Xe]6s 2 5d 2 d. [Kr] 5s 2 4d 10 5p 4 e. [Xe]6s 2 4f Determine the ground state electron configuration for Te 2. a. [Kr]5s 2 4d 10 5p 6 b. [Kr]5s 2 4d 10 5p 4 c. [Kr]5s 2 4d 10 5p 2 d. [Kr]5s 2 4d 10 5p 6 6s 2 e. [Kr]4d 10 5p 6

3 12. Determine the ground state electron configuration for I. a. [Kr]5s 2 4d 10 5p 5 b. [Kr]5s 2 4d 10 5p 4 c. [Xe]6s 1 d. [Kr]4d 10 5p 5 e. [Kr]5s 2 4d 10 5p What species is represented by the following ground state electron configuration if its nucleus contains 35 p + and 44 n? a. Kr b. Sr 2+ c. Ru 2+ d. Br e. Au + [Ar]4s 2 3d 10 4p Determine the ground state electron configuration for the Sr ion. a. [Kr]5s 2 b. [Kr]5s 2 4d 2 c. [Ar]4s 2 3d 10 4p 6 d. [Ca]3d 10 4p 6 5s 2 e. [Ar]4s 2 4p 6 4d According to the Bohr model, which of the following one electron species requires the most energy to ionize? a. N 6+ b. H c. O 7+ d. Li 2+ e. He Which of the following reactions represents ionization energy? a. Na(s) Na + (aq) + e b. Na(s) + e Na (aq) c. Cl(g) + e Cl (aq) d. Cl(g) Cl + (g) + e e. None of the above represent ionization energy. 17. Determine ΔE for the n = 1 to n = 5 transition in the O 7+ ion. a x J b x J c x 10 8 J d x J e x J

4 18. Which of the following sets of quantum numbers appropriately describes ONE orbital in the 3d subshell? a. n = 3, l = 3, m l = 0 b. n = 4, l = 3, m l = 3 c. n = 2, l = 1, m l = 1 d. n = 5, l = 2, m l = 2 e. n = 3, l = 2, m l = How many electrons in a single atom can have the n = 3, l = 1 designation? a. 1 b. 2 c. 4 d. 6 e Using the Bohr equation, calculate the amount of energy needed to remove the electron from 1.8 moles of He + ions. a x J b x 10 7 J c x 10 6 J d x 10 6 J e x J

5 MORE CHAPTER 8 PRACTICE TEST QUESTIONS Information that most likely will be on the front cover of your exam: J = kgm 2 /s 2 c = 3.00 x 10 8 m/s E=hν E=hc/λ h = x J s c = λν λ = h/mu 2 1/λ = R(1/n 1 1/n 2 2 ) ΔE = 2.18 x J(z 2 2 /n f z 2 /n 2 i ) Rydberg constant = x 10 7 m 1 1. Which of the following transitions in a hydrogen atom will emit a photon with the longest wavelength of light? a. n = 3 to n = 4 b. n = 5 to n = 4 c. n = 2 to n = 1 d. n = 2 to n = 5 e. n = 3 to n = 2 2. Which of the following objects would you estimate to have the shortest debroglie wavelength if they are all traveling at the same speed? a. baseball b. marble c. bowling ball d. electron e. pebble 3. Which of the following statements is TRUE? a. If we determine the location of an electron, we can also determine it s path. b. Electrons can behave as waves or as particles, depending on the situation. c. Emission of light by an atom is an endothermic process. d. The Bohr model (or equation) works well to predict the atomic spectra of most atoms. e. None of the above are true. 4. How many orbitals in an atom can have the n = 4, l = 3 designation? a. 3 b. 5 c. 7 d. 10 e. 14

6 5. Determine the ground state electron configuration for Se + ion. a. [Ar]4s 2 3d 10 4p 5 b. [Ar]4s 2 3d 10 4p 4 c. [Ar]4s 2 3d 10 4p 6 d. [Ar]4s 2 3d 10 4p 3 e. [Ar]4s 1 3d 10 4p 4 6. Determine the set of quantum numbers that describe the last electron added to a Zn atom. (Zinc is element #30) n l m l m s a ½ b ½ c ½ d ½ e ½ 7. Use the Bohr equation to calculate the amount of energy required to remove the electrons from 0.33 moles of Li 2+ ions. a x 10 7 J b x J c x 10 7 J d x 10 6 J e x 10 6 J 8. Which of the following bonds has the least ionic character? a. Na Cl b. N O c. B F d. I F e. B N 9. Place the following in order of increasing atomic radius. a. Li < N < As < Cl b. N < Li < Cl < As c. As < Cl < N < Li d. Cl < As < Li < N e. Li < N < Cl < As Li N As Cl

7 10. Place the following bonds in order of increasing ionic character. a. N O < As O < As F b. As F < As O < N O c. As F < N O < As O d. N O < As F < As O e. As O < As F < N O As O As F N O 11. Which of the following is the longest bond? a. Si O b. Si S c. P I d. O Cl e. S Br 12. Place the following in order of decreasing lattice energy. a. KBr > RbI > MgS b. KBr > MgS > RbI c. RbI > KBr > MgS d. MgS > RbI > KBr e. MgS > KBr > RbI KBr RbI MgS 13. Which of the following reactions represents electron affinity? a. O (g) + e O (g) b. Mg (g) Mg + (g) + e c. O 2 (g) 2O (g) d. Ca + (g) Ca 2+ (g) + e e. None of the above represent electron affinity. 14. Which of the following is paramagnetic? a. Nb 3+ b. Ti 4+ c. Sr d. Zn e. None of the above.

8 15. Place the following in order of decreasing atomic size. a. O > Se > Ca > Rb b. Rb > Se > Ca > O c. Rb > Ca > Se > O d. O > Ca > Se > Rb e. Ca > Rb > O > Se Se O Ca Rb 16. Place the following in order of decreasing ionic size. a. Sr 2+ > Rb + > Se 2 > Br b. Sr 2+ > Rb + > Br > Se 2 c. Br > Se 2 > Sr 2+ > Rb + d. Rb + > Br > Se 2 > Sr2 + e. Se 2 > Br > Rb + > Sr 2+ Sr 2+ Se 2 Br Rb Determine the identity of the Period 2 element that possesses the following ionization energies (in MJ/mol). IE 1 = 1.09 IE 2 = 2.35 IE 3 =4.62 IE 4 =6.22 IE 5 = IE 6 = a. O b. N c. C d. B e. Be 18. Which of the following species are paramagnetic? a. Ca b. S 2 c. Zn 2+ d. Sr 2+ e. None of the above are paramagnetic. 19. Which of the following has the highest IE 3? a. P b. Mg c. Al d. O e. N

9 20. Consider the ionization energies (IE 1 ) for the following elements. Choose the statement below that best explains these observed values. P = 1012 kj/mol S = 999 kj/mol Cl = 1256 kj/mol a. Ionization energy always increases as atomic size decreases. b. Chlorine has an unusually high IE 1 because it has a very high electron affinity. c. Phosphorus has an unusually high IE 1 because it doesn t typically form ionic compounds. d. Sulfur has a lower IE 1 than would be predicted because the loss of one electron leaves sulfur with a stable, half filled p subshell. e. None of these statements explains the observed IE 1 values for these elements. 21. Which of the following statements is TRUE concerning the following table of ionization energies? kj/mol IE 1 IE 2 IE 3 IE 4 IE 5 IE 6 IE 7 IE 8 X ,600 14,821 18,354 23,294 27,428 Y ,068 19,797 23,751 29,247 Z ,238 25,390 29,831 A ,070 31,676 D ,000 33,557 a. Element X contains 4 valence electrons. b. Element D could be Cl. c. Element Z may be Si. d. Element Y is most likely P. e. None of the above statements are true. 22. Which of the following will be MOST attracted to a magnetic field (most paramagnetic)? a. Mn b. Co c. Zn 2+ d. Sc e. Ar 23. How many of the following species are paramagnetic? a. 0 b. 1 c. 2 d. 3 e. 4 Cd 2+ Se Ti 2+ Br

1. Which of the following atoms has the highest first ionization energy? 2. Which of the following atoms has the highest third ionization energy?

1. Which of the following atoms has the highest first ionization energy? 2. Which of the following atoms has the highest third ionization energy? 1. Which of the following atoms has the highest first ionization energy? (a) Cs (b) Cl (c) I (d) Ar (e) Na 2. Which of the following atoms has the highest third ionization energy? (a) Si (b) Al (c) S (d)

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Worksheet 11 - Periodic Trends

Worksheet 11 - Periodic Trends Worksheet 11 - Periodic Trends A number of physical and chemical properties of elements can be predicted from their position in the Periodic Table. Among these properties are Ionization Energy, Electron

More information

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

PSI AP Chemistry Unit 1 MC Homework. Laws of Multiple and Definite Proportions and Conservation of Mass

PSI AP Chemistry Unit 1 MC Homework. Laws of Multiple and Definite Proportions and Conservation of Mass PSI AP Chemistry Unit 1 MC Homework Name Laws of Multiple and Definite Proportions and Conservation of Mass 1. Dalton's atomic theory explained the observation that the percentage by mass of the elements

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

4. Electrons in the subshell of tin experience the lowest effective nuclear charge. a. 1s

4. Electrons in the subshell of tin experience the lowest effective nuclear charge. a. 1s Exam 2 CEM 151 October, 18, 2006 Name Section PID Multiple choice (3 points each). 1. The quantum number is most responsible for defining the shape of an orbital. a. spin b. azimuthal c. Ψ d. magnetic

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 1 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS HEINS10-118-128v4.qxd 12/30/06 2:05 PM Page 118 CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. An electron orbital is a region in space around the nucleus of an

More information

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

More information

M. Prakash Academy Weekly workout 6

M. Prakash Academy Weekly workout 6 M. Prakash Academy Weekly workout 6 Periodic properties Q1. According to modern periodic law the properties of elements repeat at regular intervals when the elements are arranged in order of: (a) decreasing

More information

CHM1 Review for Exam Which of the following elements has the highest electronegativity

CHM1 Review for Exam Which of the following elements has the highest electronegativity The following are topics and sample questions for the first exam. Topics 1. Mendeleev and the first periodic Table 2. Information in the Periodic Table a. Groups (families) i. Alkali (group 1) ii. Alkaline

More information

Unit 7 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 7 Review. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: ID: A Unit 7 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1) In which set of elements would all members be expected to have very

More information

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE Electron configurations determine organization of the periodic table Next properties of elements and their periodic behavior Elemental properties determined

More information

Shielding effect. Coulomb s Law:

Shielding effect. Coulomb s Law: Shielding effect Effective nuclear charge, Z eff, experienced by an electron is less than the actual nuclear charge, Z Electrons in the outermost shell are repelled (shielded) by electrons in the inner

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3;30 pm Theory Exam III John III. Gelder November 13, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last page include a periodic

More information

Practice questions for Ch. 7

Practice questions for Ch. 7 Name: Class: Date: ID: A Practice questions for Ch. 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When ignited, a uranium compound burns with a green

More information

Use the PES spectrum of Phosphorus below to answer questions 1-3.

Use the PES spectrum of Phosphorus below to answer questions 1-3. Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06 (B) 1.95 (C) 13.5 (D) 18.7 (E) 208 2. Which peak corresponds to the valence 3p orbital?

More information

Chapter 3 Applying Your Knowledge- Even Numbered

Chapter 3 Applying Your Knowledge- Even Numbered Chapter 3 Applying Your Knowledge- Even Numbered 2. Elements in a specific compound are always present in a definite proportion by mass; for example, in methane, CH 4, 12 g of carbon are combined with

More information

Chapter 3 Atomic Structure and Properties

Chapter 3 Atomic Structure and Properties Chapter 3 Atomic Structure and Properties Introduction The nuclear atom and quantum theory are the accepted theories for the atom. In this chapter, we demonstrate their utility by using them to explain

More information

Chapter 6. Periodic Relationships Among the Elements

Chapter 6. Periodic Relationships Among the Elements Chapter 6. Periodic Relationships Among the Elements Student: 1. The nineteenth century chemists arranged elements in the periodic table according to increasing A. atomic number. B. number of electrons.

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

Topic 3 Periodic Trends

Topic 3 Periodic Trends Topic 3 Periodic Trends Chapter 06 Trends on the Periodic Table Chapter 07 Relationships between the elements CHEM 10 T03D01 How are elements arranged Prior to 1735, only 12 elements were known to man

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES PRACTICE EXAMPLES 1A 1B A B A Atomic size decreases from left to right across a period, and from bottom to top in a family. We expect the smallest

More information

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers. So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability

More information

Exam 2 Solutions Chem 6, 9 Section, Spring 2002

Exam 2 Solutions Chem 6, 9 Section, Spring 2002 1. Dartmouth s FM radio station, WDCR, broadcasts by emitting from its antenna photons of frequency 99.3 MHz (99.3 10 6 Hz). (a) What is the energy of a single WDCR photon? The photon energy is simply

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

3.06 Periodic Table and Periodic Trends

3.06 Periodic Table and Periodic Trends 3.06 Periodic Table and Periodic Trends Dr. Fred Omega Garces Chemistry 100, Miramar College 1 3.06 Periodic Table and Periodic Trend The Periodic Table and the Elements What is the periodic table? What

More information

Reporting Category 1: Matter and Energy

Reporting Category 1: Matter and Energy Name: Science Teacher: Reporting Category 1: Matter and Energy Atoms Fill in the missing information to summarize what you know about atomic structure. Name of Subatomic Particle Location within the Atom

More information

Lewis dot structures for molecules

Lewis dot structures for molecules 1 Lewis dot structures for molecules In the dot structure of a molecule, - SHARED valence electrons are shown with dashes - one per pair. - UNSHARED valence electrons ("lone pairs") are represented by

More information

Chemistry. Unit II - Lecture 9. The Molecular Nature of Matter and Change. Electron Configuration and Chemical Periodicity

Chemistry. Unit II - Lecture 9. The Molecular Nature of Matter and Change. Electron Configuration and Chemical Periodicity Unit II - Lecture 9 Electron Configuration and Chemical Periodicity 8.4 Trends in Three Key Atomic Properties Chemistry The Molecular Nature of Matter and Change Fifth Edition 8.5 Atomic Structure and

More information

Chapter One (continued)

Chapter One (continued) Slide 1 of 39 Chapter One (continued) Many Electron Atoms and The Periodic Table Slide 2 of 39 Multielectron Atoms In the hydrogen atom, all subshells of a principal shell are at the same energy level.

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Chapter 2 Atoms and the Periodic Table

Chapter 2 Atoms and the Periodic Table Chapter 2 1 Chapter 2 Atoms and the Periodic Table Solutions to In-Chapter Problems 2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.

More information

Ch 8 Atomic Electron Configuration and Chemical Periodicity

Ch 8 Atomic Electron Configuration and Chemical Periodicity Ch 8 Atomic Electron Configuration and Chemical Periodicity Pauli Exclusion principle No two electrons in an atom have the same set of quantum numbers. If two electrons occupy the same orbital, they must

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

Chapter 1 1.9 I (Ca) vs. I (Zn)? (Sr) vs. I (Ba) vs. I (Ra)? 1.11 I2 of some period 4 elements?

Chapter 1 1.9 I (Ca) vs. I (Zn)? (Sr) vs. I (Ba) vs. I (Ra)? 1.11 I2 of some period 4 elements? Chapter 1 1.9 I(Ca) vs. I(Zn)? The first ionization energies of calcium and zinc are 6.11 and 9.39 ev, respectively (see Appendix 1). Both of these atoms have an electron configuration that ends with 4s

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

Scientists create models to understand how things work, including atoms.

Scientists create models to understand how things work, including atoms. CHEM100 Week 4 Notes Page 1 of 6 Scientists create models to understand how things work, including atoms. Dalton created a theory for the atom with these 5 postulates 1. Elements consist of one or more

More information

2) Remember the Pauli exclusion principle. 3) Hund s rule of maximum multiplicity Energy

2) Remember the Pauli exclusion principle. 3) Hund s rule of maximum multiplicity Energy Building up the atoms in the periodic table 1) The Aufbau ( building up ) principle: lowest energy orbitals are filled first 1s, then 2s, then 2p, then 3s, then 3p, etc. 2) Remember the Pauli exclusion

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chem2A_Ch3_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The smallest amount of an element that retains that elementʹs characteristics is

More information

The Periodic Table, Electron Configuration & Chemical Bonding. Lecture 7

The Periodic Table, Electron Configuration & Chemical Bonding. Lecture 7 The Periodic Table, Electron Configuration & Chemical Bonding Lecture 7 Electrons We will start to look at the periodic table by focusing on the information it gives about each element s electrons. How

More information

1) is credited with developing the concept of atomic numbers.

1) is credited with developing the concept of atomic numbers. Chemistry Chapter 14 Review Name answer key General Concept Questions 1) is credited with developing the concept of atomic numbers. A) Dmitri Mendeleev B) Lothar Meyer C) Henry Moseley D) Ernest Rutherford

More information

PSI AP Chemistry Unit 2: Free Response CW/HW. The Periodic Law and Ionic Charge Classwork: 1. The PES spectrum for an element can be found below:

PSI AP Chemistry Unit 2: Free Response CW/HW. The Periodic Law and Ionic Charge Classwork: 1. The PES spectrum for an element can be found below: PSI AP Chemistry Unit 2: Free Response CW/HW Name The Periodic Law and Ionic Charge Classwork: 1. The PES spectrum for an element can be found below: Intensity 0.63 0.77 3.24 5.44 39.2 48.5 433 Binding

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Chapter 6 Electronic Structure of Atoms

Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. Electromagnetic radiation travels through vacuum at a speed of m/s. (a). 6.626 x 26 (b). 4186 (c). 3.00 x 8 (d). It depends on wavelength Explanation: The speed

More information

Periodic Properties of the Elements. Effective Nuclear Charge, Zeff

Periodic Properties of the Elements. Effective Nuclear Charge, Zeff Key Concepts: Periodic Properties of the Elements 1. Understand and be able to predict and explain trends in effective nuclear charge, Z eff. 2. Understand and be able to predict and explain the periodic

More information

2. What is the wavelength of light that has a frequency of 4.22 x Hz? 3. What is the energy of light that has a frequency of 1.30 x Hz?

2. What is the wavelength of light that has a frequency of 4.22 x Hz? 3. What is the energy of light that has a frequency of 1.30 x Hz? Skill Practice 10 1. Define the terms ground state and excited state. Ground state: the normal energy level that an electron occupies. Excited state: when an electron has absorbed energy to occupy a higher

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

DEVELOPMENT OF THE PERIODIC TABLE

DEVELOPMENT OF THE PERIODIC TABLE DEVELOPMENT OF THE PERIODIC TABLE Prior to the 1700s, relatively few element were known, and consisted mostly of metals used for coinage, jewelry and weapons. From early 1700s to mid-1800s, chemists discovered

More information

Answers and Solutions to Text Problems

Answers and Solutions to Text Problems Atoms and Elements 2 Answers and Solutions to Text Problems 2.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 2.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 2.3 a. carbon b. chlorine c. iodine d. mercury

More information

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08

CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 CHAPTER 6: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 8/03/08 6.9 What are the basic SI units for? (a) the wavelength of light meters, although colors are usually reported in 3 digit

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

Test 7: Periodic Table Review Questions

Test 7: Periodic Table Review Questions Name: Wednesday, January 16, 2008 Test 7: Periodic Table Review Questions 1. Which halogen is a solid at STP? 1. fluorine 3. bromine 2. chlorine 4. iodine 2. Element M is a metal and its chloride has the

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

Unit 2: Atomic Theory Practice Packet

Unit 2: Atomic Theory Practice Packet Unit 2: Atomic Theory Practice Packet 1 Name History of Atomic Theory Period Fill in the missing information in the chart below: Name of Researcher Equipment Sketch of Model Major Idea/Discovery N/A All

More information

Crystal Chemistry. This document last updated on 22-Sep-2014

Crystal Chemistry. This document last updated on 22-Sep-2014 Page 1 of 14 EENS 2110 Tulane University Crystal Chemistry Mineralogy Prof. Stephen A. Nelson This document last updated on 22-Sep-2014 As we have been discussing for the last several weeks, crystals,

More information

Blocks on the periodic table. Atomic weight: This is either a decimal number or a number in parenthesis.

Blocks on the periodic table. Atomic weight: This is either a decimal number or a number in parenthesis. 68 Blocks on the periodic table 11 Sodium 22.99 Atomic number: This is always a whole number. The periodic table is arranged by atomic number! Element symbol: A one or two letter abbreviation for the name

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

The Periodic Table: Chapter Problems Periodic Table Class Work Homework Special Groups Class Work Homework Periodic Families Class Work

The Periodic Table: Chapter Problems Periodic Table Class Work Homework Special Groups Class Work Homework Periodic Families Class Work The Periodic Table: Chapter Problems Periodic Table 1. As you move from left to right across the periodic table, how does atomic number change? 2. What element is located in period 3, group 13? 3. What

More information

Pultz 1. Test # 1 on F 14 Sept 2012 over Chapter 8 and 9

Pultz 1. Test # 1 on F 14 Sept 2012 over Chapter 8 and 9 Test # 1 on F 14 Sept 2012 over Chapter 8 and 9 Pultz 1 Order for writing orbitals for ground state electron configuration for Sc and higher atomic numbers: Sc: [Ar] 3d 1 4s 2 or [Ar]4s 2 3d 1 Both are

More information

O P O O. This structure puts the negative charges on the more electronegative element which is preferred. Molecular Geometry: O Xe O

O P O O. This structure puts the negative charges on the more electronegative element which is preferred. Molecular Geometry: O Xe O hemistry& 141 lark ollege Exam 4 olution 1. Draw the Lewis structures for the following molecules and ions. Include formal charges and resonance structures, where appropriate. Fill out the table for the

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Chem Hughbanks Exam 2, March 10, 2016

Chem Hughbanks Exam 2, March 10, 2016 Chem 107 - Hughbanks Exam 2, March 10, 2016 Name (Print) UIN # Section 502 Exam 2, On the last page of this exam, you ve been given a periodic table and some physical constants. You ll probably want to

More information

Ionic bonds and main group chemistry

Ionic bonds and main group chemistry Ionic bonds and main group chemistry Learning objectives Write Lewis dot structures of atoms and ions Describe physical basis underlying octet rule Predict ionic charges using periodic table Define lattice

More information

Lewis dot symbols are representations of the elements which give a dot (. ) for each valence electron on the atom.

Lewis dot symbols are representations of the elements which give a dot (. ) for each valence electron on the atom. Worksheet 12 - Chemical Bonding The concept of electron configurations allowed chemists to explain why chemical molecules are formed from the elements. In 1916 the American chemist Gilbert Lewis proposed

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented below. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the other

More information

UNIT-3 Classification of elements and periodicity in properties

UNIT-3 Classification of elements and periodicity in properties UNIT-3 Classification of elements and periodicity in properties One mark questions:. For the triad of elements A, B and C if the atomic weights of A and C are 7 and 39. Predict the atomic weight of B..

More information

AUS-e-TUTE. Periodic Table Lessons and Activities. ausetute.com.au. Definition of Terms used in this publication: Crossword: Drill: Exam:

AUS-e-TUTE. Periodic Table Lessons and Activities. ausetute.com.au. Definition of Terms used in this publication: Crossword: Drill: Exam: 2012 AUS-e-TUTE Periodic Table Lessons and Activities Definition of Terms used in this publication: requires students to find and enter information, Interactive Learning Activity: then guides them through

More information

A1_Lotukerfið og uppbygging atómanna

A1_Lotukerfið og uppbygging atómanna Instructor Solutions Manual for Chemistry for Engineering Students, 2 nd Edition 6-1 Lota_2 A1_Lotukerfið og uppbygging atómanna The Electromagnetic Spectrum 6.8 Which of the waves depicted here has the

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

The Periodic Table and Periodic Law

The Periodic Table and Periodic Law The Periodic Table and Periodic Law Section 6.1 Development of the Modern Periodic Table In your textbook, reads about the history of the periodic table s development. Use each of the terms below just

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Chapter 11 Atoms, Energy and Electron Configurations Objectives

Chapter 11 Atoms, Energy and Electron Configurations Objectives Objectives 1. To review Rutherford s model of the atom 2. To explore the nature of electromagnetic radiation 3. To see how atoms emit light A. Rutherford s Atom.but there is a problem here!! Using Rutherford

More information

Dr. Chris Kozak Memorial University of Newfoundland, Canada. Contents

Dr. Chris Kozak Memorial University of Newfoundland, Canada. Contents General Chemistry Principles and Modern Applications Petrucci Harwood Herring 9 th Edition Chapter 9: The Periodic Table and Some Atomic Properties Dr. Chris Kozak Memorial University of Newfoundland,

More information

2. What happens to the number of protons and electrons in atoms across a period on the periodic table?

2. What happens to the number of protons and electrons in atoms across a period on the periodic table? Name Period Date Honors Chemistry - Periodic Trends Check Your Understanding Answer the following, formulating responses in your own words. (This helps you better understand the concepts) 1. Define shielding

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Slater s rules 1,2,3,4

Slater s rules 1,2,3,4 Slater s rules 1,2,3,4 Slater s rules are a guideline for determining shielding and, therefore, Z eff. The rules are best used for atoms with n > 1. Remember, when we wish to determine or conceptualize

More information

He Ne Ar Kr. Concept/Skills Development FAMILY RESEMBLANCE. [Wolfgram, D. (1987, December). ChemMatters, p. 16.]

He Ne Ar Kr. Concept/Skills Development FAMILY RESEMBLANCE. [Wolfgram, D. (1987, December). ChemMatters, p. 16.] Concept/Skills Development [Wolfgram, D. (1987, December). ChemMatters, p. 16.] FAMILY RESEMBLANCE Can you place these elements in their proper positions on the Periodic Table without knowing their identity?

More information

Electronic Stability & Periodic Table

Electronic Stability & Periodic Table Electronic Stability & Periodic Table Things at higher energy are less stable!! All living things are dependent on their ability to acquire energy from unstable things! The compounds in the food you eat

More information

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY 8.1 Elements are listed in the periodic table in an ordered, systematic way that correlates with a periodicity of their chemical and physical properties.

More information

CLASSIFICATION OF ELEMENTS

CLASSIFICATION OF ELEMENTS Some Basic Concepts & Classification of Elements Test No. 15 Time: 2 Hrs. Total Marks: 311 Date: 07/07/2013 Name Batch: CLASSIFICATION OF ELEMENTS Section A (Objective Question only one correct answer)

More information

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge ATOMIC THEORY The smallest component of an element that uniquely defines the identity of that element is called an atom. Individual atoms are extremely small. It would take about fifty million atoms in

More information

Name: Date: A) -156 kj/mol B) kj/mol C) -272 kj/mol D) -198 kj/mol E) -122 kj/mol

Name: Date: A) -156 kj/mol B) kj/mol C) -272 kj/mol D) -198 kj/mol E) -122 kj/mol Name: Date: 1. A coffee cup calorimeter containing 100.0 ml of concentrated HCl at 20.3 C. When 1.82 g Zn(s) is added, the temperature rises to 30.5 C. What is the heat of reaction per mol of reacted Zn?

More information

Electron Configuration Activity

Electron Configuration Activity Electron Configuration Activity Purpose To find the relationship between electron configuration and organization of the periodic table. Materials Paper copy of the periodic table colored pencils or markers

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

ALE 7. Ionization Energies & Electron Affinities. (Reference: Sections Silberberg 5 th edition)

ALE 7. Ionization Energies & Electron Affinities. (Reference: Sections Silberberg 5 th edition) Answer Key ALE 7. Ionization Energies & Electron Affinities (Reference: Sections 8.4 - Silberberg 5 th edition) How can one use the Periodic Table to make predictions of atomic properties? The Model: First

More information

CHEM 10113, Quiz 7 December 7, 2011

CHEM 10113, Quiz 7 December 7, 2011 CHEM 10113, Quiz 7 December 7, 2011 Name (please print) All equations must be balanced and show phases for full credit. Significant figures count, show charges as appropriate, and please box your answers!

More information

10/17/11. Chapter 8. Electron Configuration and Chemical 8.3 The Quantum-Mechanical Model and the Periodic Table. The Fourth Quantum Number

10/17/11. Chapter 8. Electron Configuration and Chemical 8.3 The Quantum-Mechanical Model and the Periodic Table. The Fourth Quantum Number Electron Configuration and Chemical Periodicity Chapter 8 8.1 Development of the Periodic Table 8.2 Characteristics of Many-Electron Atoms Electron Configuration and Chemical Periodicity 8.3 The Quantum-Mechanical

More information

Chapter 3 Atoms and Elements

Chapter 3 Atoms and Elements Chapter 3 Atoms and Elements 1 Elements Elements are pure substances that cannot be separated into simpler substances by ordinary laboratory processes the building blocks of matter listed on the inside

More information