# Symmetric Stretch: allows molecule to move through space

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed of energy that may behave both as a particle and as a wave. When we describe this energy as a particle, we use the word photon. When we describe this energy as a wave, we use the terms frequency (v) and wavelength (λ). Frequency is the number of wave troughs that pass a given point in a second and wavelength is the distance from one crest of a wave to an adjacent crest. Frequency and wavelength are inversely related, according to the equation E = hv = hc / λ. Therefore, as frequency increases, wavelength decreases. When we discuss IR spectroscopy, we introduce a new unit of measurement called the wavenumber (v ). The wavenumber is the number of waves in one centimeter and has the units of reciprocal centimeters (cm -1 ). Since the wavenumber is inversely proportional to wavelength, it is directly proportional to frequency and energy which makes it more convenient to use. I. Bond Vibrations: The Basis of IR Spectroscopy Spectroscopy is the study of matter and its interaction with electromagnetic radiation. All matter contains molecules; these molecules have bonds that are continually vibrating and moving around. These bonds can vibrate with stretch motions or bend motions. Imagine two balls attached by a spring, representing a diatomic molecule. The movement of each ball toward or away from the other ball along the line of the spring represents a stretching vibration (fig. 1). Stretching can either be symmetric or asymmetric. A molecule with three or more atoms can experience a bending vibration, a vibrational mode where the angle between atoms changes (fig. 2). In the following examples, imagine a triatomic molecule ABC. Fig. 1: Stretching Vibrations Symmetric Stretch: allows molecule to move through space OR

2 Asymmetric Stretch: leads to an increase or decrease in bond length OR Fig. 2: Bending Vibrations A A B OR B C C Each excited vibrational state is reached when a molecule is exposed to a specific frequency. In order for a bond to be promoted to the excited state, it must be exposed to radiation of the exact same frequency as the energy difference between ground and excited states (ΔE). Determining these frequencies and representing them allows us to determine the bonds that exist in a molecule. These frequencies all lie within the infrared region of the electromagnetic region, a region of lower wavelength than visible light. A machine called an IR Spectrometer passes infrared radiation through a sample of an unknown compound and uses a detector to plot percent transmission of the radiation through the molecule versus the wavenumber of the radiation. A downward peak on the plot represents absorption at a specific wavenumber. In sum, IR spectroscopy is useful in determining chemical structure because energy that corresponds to specific values allows us to identify various functional groups within a molecule. An IR spectrum usually extends from radiation around 4000 cm -1 to 600 cm -1 and can be split into the functional group region and the fingerprint region. The fingerprint region is different for each molecule just like a fingerprint is different for each person. Two different molecules may have similar functional group regions because they have similar functional groups, but they will always have a different fingerprint region. In this course, we will only focus on the functional group region when identifying the structures of molecules. This is because the fingerprint region, which extends from about 1450 cm -1 to 400 cm -1, is very complex. It has many absorptions and makes it quite difficult for students and scientists to make precise bond assignments. Additionally, since stretching vibrations are typically found in the functional group region, they are the most convenient vibrations to analyze when determining the types of bonds a molecule has. Thus, we tend to ignore bending vibrations because they are usually found in the fingerprint region.

3 II. Intensity and Position of Absorption bands IR spectra look quite complex because the bond vibrations create absorption bands. The intensity of an absorption band depends on the change in the dipole moment of the bond and the number of the specific bonds present. The bond dipole results from two things: the bond length and the charge difference between the two atoms. When the molecule absorbs a photon, it stretches and the bond length changes. So that only leaves the charge difference, which can be derived from the electronegativity values of the atoms involved. If we have two different atoms, there will be an electronegativty difference and a photon will be absorbed. If there is no electronegativity difference, such as in an O 2 or an N 2 molecule, then a photon will not be absorbed, and the molecule will not be excited to a higher vibrational state. On the other hand, the bigger the electronegativity difference, the more intense the absorption is. Additionally, the number of the specific bond also determines the intensity of a peak. For example, if you compare the IR spectra of methane to that of octane, the octane molecule will have a much more intense C-H peak because it has many more C-H bonds than methane. Since an IR spectrum is a plot of % transmittance vs. wavenumber, the bond vibration energies vary as you move horizontally on the graph. Thus, the horizontal position of the absorption band corresponds to a different energy. What molecular features determine what types of bonds or atoms exist on various positions of the spectrum? The strength of the bond and the masses of the bonded atoms are crucial in determining the stretching energy. The best way to understand the following concepts is to imagine two atoms connected by a spring. Imagine you have your bonded atoms the stronger the bond is, the tighter the spring, and the more energy is required to stretch it. For example, triple bonds are stronger than double bonds which are in turn stronger than single bonds. Moreover, the lighter the atoms are, the more energy is required to vibrate the atoms. Hooke s law describes the motion of a vibrating spring and shows the relationships between the masses of the atoms ( m 1, m 2 ), the force constant of the bond (f), and wavenumber (v): v = 1 f (m 1 + m 2 ) 1/2 2πc m 1 m 2 Hooke s Law shows that lighter atoms and stronger bonds lead to higher frequencies. III. The Real Deal Dr. Hardinger s Five Zone Analysis Now the time has come we ve developed enough knowledge about molecular structure to take a look at an IR spectrum and begin to divide it into zones and analyze it for various functional groups. Ultimately, we will be able to identify the main structural features of a molecule from its IR spectrum. The following is an example of an IR spectrum. Take a look at it and become familiar with its features. Later, we will analyze this spectrum and find out what molecule it is. For now, let s break it up into five zones

4 and discuss the method of five zone analysis (for a more detailed explanation, refer to the thinkbook): The best thing to do is become familiar with an IR spectrum before we conduct the five zone analysis. Remember, the vertical axis represents percent transmittance. The peaks show that there is low transmittance, and hence large absorption. The horizontal axis represents wavenumber, and it increases as we move to the left. Areas that do not have peaks show that photons are not being absorbed at that frequency, indicating that the specific bond at that frequency does not exist in the molecule. Now that we are familiar with the IR spectrum, let s break it up into the five zones. It may seem a little tedious, but with lots of practice, it will become like second nature. Refer to the IR spectrum above as you read. Zone 1 extends from about 3700 to 3200 cm -1 and is used to locate the following bonds: the alcohol O-H, the terminal alkyne C-H, and the amine or amide N-H. The alcohol peak is usually broad and wide and can be distinguished easily. The more concentrated the solution is with O-H molecules, the more likely it is to form hydrogen bonds. Since it is easier to stretch hydrogen bonds (because the oxygen pulls away the electrons), less energy is required and the peaks appear broader. Alkyne C-H bonds have strong peaks around 3300 cm -1. In Zone 2, absorptions by alkane C-H bonds, aryl and vinyl C-H bonds, aldehyde C-H bonds, and carboxylic acid C-H bonds can be found. The sp 3 C-H bond peaks can usually be found slightly to the right of the 3000 cm -1 mark. The sp 2 C-H bonds can be distinguished because they are located slightly to the right of the 3000 cm -1 mark. Both of these C-H bonds have many tiny peaks. Evidence of the presence of an aldehyde can be found around 2700 cm -1 and 2900 cm -1 mark. Lastly, the carboxylic acid O-H bond appears as a wide, broad peak in the spectrum. Zone 3 reaches from 2300 to 2100 cm -1. Here, we can find the absorptions of alkyne triple bonds and nitrile triple bonds. Their peaks are variable in intensity. In Zone 4 we find absorption peaks by carbonyl double bonds. These peaks are usually very strong and intense. They allow us to identify the existence of ester, aldehyde, ketone, carboxylic acid, or amide functional groups. Here is an important note: if conjugation exists among the carbonyl group, the peak can shift 20 to 40 cm -1 lower

6 benzene ring in this molecule. Also, note the aromatic overtones in zone 4. Now we are faced with a little dilemma: can we be sure that we have an aldehyde? Do we have an ester, ketone, or an amide? We can safely say that we do not have an amide because there is no N-H peak in zone 1. Esters require two O atoms, and we only have one, so now we must decide between aldehyde and ketone. The peak at 2700 cm -1 along with the carbonyl peak is sufficient enough to tell us that we have an aldehyde. One last thing: remember the sp 2 C-H peaks? They also tell us that the molecule has an aryl group present. So what do we have? A benzene ring with an aldehyde group attached to it. Our molecule is benzaldehyde. KEY TERMS Photon Frequency Wavelength Wavenumber Spectroscopy Stretching vibration Bending vibration Infrared IR Spectrometer Functional group region Fingerprint region Intensity Energy Hooke s law Absorption Bands Five Zone Analysis DBE Sources: -p , P. Y. Bruice, Organic Chemistry 4 th edition -p. 47, S. Hardinger PhD, Organic Molecular Structures and Interactions -p. A18, S. S. Zumdahl, Chemical Principles 1 st edition - August 22, 2006

### INFRARED SPECTROSCOPY (IR)

INFRARED SPECTROSCOPY (IR) Theory and Interpretation of IR spectra ASSIGNED READINGS Introduction to technique 25 (p. 833-834 in lab textbook) Uses of the Infrared Spectrum (p. 847-853) Look over pages

### Infrared Spectroscopy 紅 外 線 光 譜 儀

Infrared Spectroscopy 紅 外 線 光 譜 儀 Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample (nondestructive method). The amount of light absorbed

### For example: (Example is from page 50 of the Thinkbook)

SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

### Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter 13 Mass Spectrometry and Infrared Spectroscopy Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Overview of Mass Spectrometry Mass spectrometry

### Absorption of IR Light

Absorption of IR Light Absorption of IR light causes changes in the vibrational motions of a molecule. The different vibrational modes available to a molecule include stretching and bending modes. The

### Organic Chemistry Tenth Edition

Organic Chemistry Tenth Edition T. W. Graham Solomons Craig B. Fryhle Welcome to CHM 22 Organic Chemisty II Chapters 2 (IR), 9, 3-20. Chapter 2 and Chapter 9 Spectroscopy (interaction of molecule with

### CHAPTER 12 INFRARED SPECTROSCOPY. and MASS SPECTROSCOPY

KOT 222 ORGANIC CHEMISTRY II CHAPTER 12 INFRARED SPECTROSCOPY and MASS SPECTROSCOPY Part I Infrared Spectroscopy What is Spectroscopy? Spectroscopy is the study of the interaction of matter and electromagnetic

### DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY

DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) IR SPECTROSCOPY Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia 46022

### Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

### passing through (Y-axis). The peaks are those shown at frequencies when less than

Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine

### Infrared Spectroscopy

Infrared Spectroscopy 1 Chap 12 Reactions will often give a mixture of products: OH H 2 SO 4 + Major Minor How would the chemist determine which product was formed? Both are cyclopentenes; they are isomers.

### Infrared Spectroscopy: Theory

u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

### Lecture Topics: I. IR spectroscopy

IR and Mass Spectrometry Reading: Wade chapter 12, sections 12-1- 12-15 Study Problems: 12-15, 12-16, 12-23, 12-25 Key Concepts and Skills: Given an IR spectrum, identify the reliable characteristic peaks

### Introduction. Chapter 12 Mass Spectrometry and Infrared Spectroscopy. Electromagnetic Spectrum. Types of Spectroscopy 8/29/2011

Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys

### How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

### Infrared Spectroscopy and Mass Spectrometry

Infrared Spectroscopy and Mass Spectrometry Introduction It is fundamental for an organic chemist to be able to identify, or characterize, the new compound that he/she has just made. Sometimes this can

### for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

### CHEM 51LB EXP 1 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB EXP 1 SPECTRSCPIC METHDS: INFRARED AND NUCLEAR MAGNETIC RESNANCE SPECTRSCPY REACTINS: None TECHNIQUES: IR Spectroscopy, NMR Spectroscopy Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy

### Interpreting Infrared Spectra Painlessly, Quickly, and Correctly

Interpreting Infrared Spectra Painlessly, Quickly, and Correctly Knowing how to interpret infrared (IR) spectra is of immense help to structure determination. Not only will it tell you what functional

### II cm -1. Carbon hydrogen bonds absorb here. Alkanes absorb cm-1, Akene C-H cm-1 Aromatic C-H shorter and spikey

How to Interpret an IR Spectrum The IR may be broken down into 5 distinct regions. I. 3100-3600cm -1. Alcohols, Carboxylic Acids, Amines and Terminal Alkynes absorb here. The shape and exact location of

### CHEM1002 Worksheet 4: Spectroscopy Workshop (1)

CHEM1002 Worksheet 4: Spectroscopy Workshop (1) This worksheet forms part of the Spectroscopy Problem Solving Assignment which represents 10% of the assessment of this unit. You should use the support

### Experiment 11. Infrared Spectroscopy

Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

### HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

### Look for absorption bands in decreasing order of importance:

Infrared spectra: It is important to remember that the absence of an absorption band can often provide more information about the structure of a compound than the presence of a band. Be careful to avoid

### Solving Spectroscopy Problems

Solving Spectroscopy Problems The following is a detailed summary on how to solve spectroscopy problems, key terms are highlighted in bold and the definitions are from the illustrated glossary on Dr. Hardinger

### Vibrational Spectroscopy Functional Groups

hem 325 Vibrational Spectroscopy Functional roups Bonds to - single N- single - single egions of the I Spectrum The I spectrum normally spans the 4000 cm -1 to 400 cm -1 range (2500 nm to 25000 nm). This

### electron does not become part of the compound; one electron goes in but two electrons come out.

Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

### By far the most important and useful technique to identify organic molecules. Often the only technique necessary.

Chapter 13: NMR Spectroscopy 39 NMR Spectroscopy By far the most important and useful technique to identify organic molecules. Often the only technique necessary. NMR spectrum can be recorded for many

### How to Interpret an IR Spectrum

How to Interpret an IR Spectrum Don t be overwhelmed when you first view IR spectra or this document. We have simplified the interpretation by having you only focus on 4/5 regions of the spectrum. Do not

### Organic Spectroscopy. UV - Ultraviolet-Visible Spectroscopy. !! 200-800 nm. Methods for structure determination of organic compounds:

Organic Spectroscopy Methods for structure determination of organic compounds: X-ray rystallography rystall structures Mass spectroscopy Molecular formula -----------------------------------------------------------------------------

### Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

### 0 10 20 30 40 50 60 70 m/z

Mass spectrum for the ionization of acetone MS of Acetone + Relative Abundance CH 3 H 3 C O + M 15 (loss of methyl) + O H 3 C CH 3 43 58 0 10 20 30 40 50 60 70 m/z It is difficult to identify the ions

### Proton Nuclear Magnetic Resonance Spectroscopy

Proton Nuclear Magnetic Resonance Spectroscopy Introduction: The NMR Spectrum serves as a great resource in determining the structure of an organic compound by revealing the hydrogen and carbon skeleton.

### Suggested solutions for Chapter 3

s for Chapter PRBLEM Assuming that the molecular ion is the base peak (00% abundance) what peaks would appear in the mass spectrum of each of these molecules: (a) C5Br (b) C60 (c) C64Br In cases (a) and

### PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR) WHAT IS H-NMR SPECTROSCOPY? References: Bruice 14.1, 14.2 Introduction NMR or nuclear magnetic resonance spectroscopy is a technique used to determine

### MOLECULAR REPRESENTATIONS AND INFRARED SPECTROSCOPY

MLEULAR REPRESENTATINS AND INFRARED SPETRSPY A STUDENT SULD BE ABLE T: 1. Given a Lewis (dash or dot), condensed, bond-line, or wedge formula of a compound draw the other representations. 2. Give examples

### CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

CHEM 51LB: EXPERIMENT 5 SPECTROSCOPIC METHODS: INFRARED AND NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY REACTIONS: None TECHNIQUES: IR, NMR Infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy are

### Spectroscopy. The Interaction of Electromagnetic Radiation (Light) with Molecules

Spectroscopy. The Interaction of Electromagnetic Radiation (Light) with Molecules (1) Electromagnetic Radiation-wave description propagation c = 3 x 10 10 cm/sec magnetic () and electric (E) field vectors

### The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

### 13C NMR Spectroscopy

13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

### Molecular Formula Determination

Molecular Formula Determination Classical Approach Qualitative elemental analysis Quantitative elemental analysis Determination of empirical formula Molecular weight determination Molecular formula determination

### Identifying an Unknown Substance using Infrared Spectroscopy (IR), Carbon-13 Nuclear Magnetic Resonance ( 13 C NMR), and Proton Nuclear Magnetic

Identifying an Unknown Substance using Infrared Spectroscopy (I), arbon-13 Nuclear Magnetic esonance ( 13 NM), and Proton Nuclear Magnetic esonance ( 1 NM) Identifying an Unknown Substance using Infrared

### Application Note AN4

TAKING INVENTIVE STEPS IN INFRARED. MINIATURE INFRARED GAS SENSORS GOLD SERIES UK Patent App. No. 2372099A USA Patent App. No. 09/783,711 World Patents Pending INFRARED SPECTROSCOPY Application Note AN4

### Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis

Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration

### Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy

Proton Nuclear Magnetic Resonance ( 1 H-NMR) Spectroscopy Theory behind NMR: In the late 1940 s, physical chemists originally developed NMR spectroscopy to study different properties of atomic nuclei,

### where h = 6.62 10-34 J s

Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

### Ultraviolet Spectroscopy

Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name 1) Which compound would be expected to show intense IR absorption at 3300 cm-1? A) butane B) CH3CH2C CH C)CH3C CCH3 D) but-1-ene 1) 2) Which compound would be expected to show intense IR absorption

### Chapter 25 The Chemistry of Life: Organic Chemistry. 25.1 Some General Characteristics of Organic Molecules

Chapter 25 The Chemistry of Life: Organic Chemistry general characteristics of organic molecules introduction to hydrocarbons alkanes unsaturated hydrocarbons functional groups: alcohols and ethers compounds

### ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

### Monday, September 10th

Monday, September 10th Review Chapter 11 iclicker Quiz #1 Chapter 12 Chapter 13(maybe) Group assignment Keep checking the class webpage at www.bhsu.edu/danasunskis. Go to the course tab then CHEM107 Lecture

### IR Applied to Isomer Analysis

DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

### The greenhouse effect and global warming

CA1. The greenhouse effect and global warming. Vicky Wong Page 1 of 7 The greenhouse effect and global warming The sun produces radiation mainly in the ultraviolet (UV), visible (vis) and infrared (IR)

### Chapter 10 Introduction to Organic Chemistry: Alkanes. Organic Chemistry. 10.1 Organic Compounds. Organic vs. Inorganic.

Chapter 10 Introduction to Organic Chemistry: Alkanes 10.1 Organic Compounds Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also

### Organic Chemistry. O1: Ways of representing organic molecules. Dr Amanda Rousseau C503. 1. Molecular formula

O1: Ways of representing organic molecules Organic Chemistry Dr Amanda Rousseau C503 Chemistry the Central Science - Brown (Chapter 24) Extra reading: Organic Chemistry McMurry (any edition) Self study:

### (3)

1. Organic compounds are often identified by using more than one analytical technique. Some of these techniques were used to identify the compounds in the following reactions. C 3 H 7 Br C 3 H 8 O C 3

### Mass Spectrometry. Overview

Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2

### Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy Nuclear magnetic resonance spectroscopy is a powerful analytical technique used to characterize organic molecules by identifying carbonhydrogen frameworks within

### Chemical Shift (δ) 0 (by definition) 0.8-1.0 1.2-1.4 1.4-1.7 1.6-2.6 2.0-3.0 2.2-2.5 2.3-2.8 0.5-6.0 3.4-4.0 3.3-4.0 0.5-5.0

Chemical Shifts 1 H-NMR Type of Hydrogen (CH 3 ) 4 Si RCH 3 RCH 2 R R 3 CH R 2 C=CRCHR 2 RC CH ArCH 3 ArCH 2 R ROH RCH 2 OH RCH 2 OR R 2 NH O RCCH 3 O RCCH 2 R Chemical Shift (δ) 0 (by definition) 0.8-1.0

### Department of Chemistry College of Science Sultan Qaboos University. Topics and Learning Outcomes

Department of Chemistry College of Science Sultan Qaboos University Title : CHEM 3326 (Applied Spectroscopy) Credits : 3 Course Format : 2 lectures and 2 tutorials Course Text : Spectrometric Identification

### Organic Spectroscopy 1 Michaelmas Lecture 6 Dr Rob Paton.

rganic Spectroscopy 1 Michaelmas 2011 Lecture 6 Dr ob Paton robert.paton@chem.ox.ac.uk http://paton.chem.ox.ac.uk 1 ecap of Lecture 5 UV-vis Spectroscopy Measures the gaps between electronic energy levels

### Chapter 16: Infrared Spectroscopy

Where relevant, each IR spectrum will include the corresponding molecular structure. Chapter 16: Infrared Spectroscopy 16.1 Why Should I Study This? Spectroscopy is the study of the interaction of energy

### UV-Visible Spectroscopy

UV-Visible Spectroscopy UV-Visible Spectroscopy What is UV-Visible Spectroscopy? Molecular spectroscopy that involves study of the interaction of Ultra violet (UV)-Visible radiation with molecules What

### 18 electron rule : How to count electrons

18 electron rule : How to count electrons The rule states that thermodynamically stable transition metal organometallic compounds are formed when the sum of the metal d electrons and the electrons conventionally

### The Four Questions to Ask While Interpreting Spectra. 1. How many different environments are there?

1 H NMR Spectroscopy (#1c) The technique of 1 H NMR spectroscopy is central to organic chemistry and other fields involving analysis of organic chemicals, such as forensics and environmental science. It

### Background A nucleus with an odd atomic number or an odd mass number has a nuclear spin that can be observed by NMR spectrometers.

NMR Spectroscopy I Reading: Wade chapter, sections -- -7 Study Problems: -, -7 Key oncepts and Skills: Given an structure, determine which protons are equivalent and which are nonequivalent, predict the

### Symmetry. Using Symmetry in 323

Symmetry Powerful mathematical tool for understanding structures and properties Use symmetry to help us with: Detecting optical activity and dipole moments Forming MO s Predicting and understanding spectroscopy

### EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

### Lab 6: Determination of Molecular Structure

Lab 6: Determination of Molecular Structure Laboratory Goals In this lab, you will: Determine the infrared spectrum of a polymer sample Learn how to use a Fourier Transform Infrared Spectrometer to obtain

### Group Theory and Chemistry

Group Theory and Chemistry Outline: Raman and infra-red spectroscopy Symmetry operations Point Groups and Schoenflies symbols Function space and matrix representation Reducible and irreducible representation

### SPECTROSCOPY. NUCLEAR MAGNETIC RESONANCE (NMR) AND INFRARED (IR)

EXPERIMENT 9 SPETRSPY. NULEAR MAGNETI RESNANE (NMR) AND INFRARED (IR) Materials Needed approx 100 mg of an ester synthesized in Expt #7 - (octyl acetate, benzyl acetate, or isopentyl acetate) approx 1

### NMR is the most powerful structure determination tool available to organic chemists.

Nuclear Magnetic esonance (NM) Spectrometry NM is the most powerful structure determination tool available to organic chemists. An NM spectrum provides information about: 1. The number of atoms of a given

### 12.4 FUNCTIONAL-GROUP INFRARED ABSORPTIONS

552 APTER 12 INTRODUTION TO SPETROSOPY. INFRARED SPETROSOPY AND MASS SPETROMETRY PROBLEM 12.9 Which of the following vibrations should be infrared-active and which should be infrared-inactive (or nearly

### Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment

Typical Infrared Absorption Frequencies Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Alkanes 2850-3000 CH 3, CH 2 & CH 2 or 3 bands Alkenes 3020-3100 1630-1680 1900-2000

### Chapter: Introduction to Organic Chemistry: Alkanes

Chapter: Introduction to Organic Chemistry: Alkanes Organic Chemistry An organic compound is a compound made from carbon atoms. has one or more C atoms. has many H atoms. may also contain O, S, N, and

### E35 SPECTROSCOPIC TECHNIQUES IN ORGANIC CHEMISTRY

E35 SPECTRSCPIC TECNIQUES IN RGANIC CEMISTRY TE TASK To use mass spectrometry and IR, UV/vis and NMR spectroscopy to identify organic compounds. TE SKILLS By the end of the experiment you should be able

### Organic Spectroscopy

1 Organic Spectroscopy Second Year, Michaelmas term, 8 lectures: Dr TDW Claridge & Prof BG Davis Lectures 1 4 highlight the importance of spectroscopic methods in the structural elucidation of organic

### Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

### Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

Forms of Energy There are many types of energy. Kinetic energy is the energy of motion. Potential energy is energy that results from position, such as the energy in water going over a dam. Electrical energy

### NMR Spectroscopy. Introduction

Introduction NMR Spectroscopy Over the past fifty years nuclear magnetic resonance spectroscopy, commonly referred to as nmr, has become the most important technique for determining the structure of organic

### H NMR (proton NMR): determines number and type of H atoms 13. C NMR (proton NMR): determines number and type of C atoms

14.1 An Introduction to NMR Spectroscopy A. The Basics of Nuclear Magnetic Resonance (NMR) Spectroscopy nuclei with odd atomic number have a S = ½ with two spin states (+1/2 and -1/2) 1 H NMR (proton NMR):

### Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary.

Problem Set 3 Solutions CH332 (SP 06) 1. Skoog problem 15-1 (omit terms (j), (k) and (m)). Draw diagrams as necessary. a) fluorescence Relaxation of an excited state by emission of a photon without a change

### Shielding and Chemical Shift. Figure 14.3

Shielding and Chemical Shift Figure 14.3 1 Summary of Shielding Figure 14.4 2 Shielding and Signal Position 3 Characteristic Chemical Shifts Protons in a given environment absorb in a predictable region

### CHEMISTRY 251 Spectroscopy Problems

EMISTRY 251 Spectroscopy Problems The IR below is most likely of a: aldehyde alkane alkene alkyl bromide alkyne The IR below is most likely of a: acyl chloride alcohol 3 amide ether nitrile The IR spectrum

### AP Chemistry Chapter 22 - Organic and Biological Molecules

AP Chemistry Chapter - Organic and Biological Molecules.1 Alkanes: Saturated Hydrocarbons A. Straight-chain Hydrocarbons 1. Straight-chain alkanes have the formula C n H n+. Carbons are sp hybridized The

### Last Time: Alkanes (C n H 2n+2 ) Last Time: Organic Compounds. Last Time: Intermolecular Forces- BP Increases w/ Increasing Size

Announcements & Agenda (0/02/07) Welcome Visitors! Please make yourselves comfortable; we will start with a quiz Mid-term grades are only based on lecture I will give you detailed grade sheets on Monday

### NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NMR Spectroscopy F34 1 NULEAR MAGNETI RESONANE SPETROSOPY Involves interaction of materials with the low-energy radiowave region of the electromagnetic spectrum Origin of Spectra Theory All nuclei possess

### Nuclear Magnetic Resonance notes

Reminder: These notes are meant to supplement, not replace, the laboratory manual. Nuclear Magnetic Resonance notes Nuclear Magnetic Resonance (NMR) is a spectrometric technique which provides information

### Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

### Interpretation of Experimental Data

Lab References When evaluating experimental data it is important to recognize what the data you are collecting is telling you, as well as the strengths and limitations of each method you are using. Additionally,

### Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

### Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

### Ultraviolet - Visible Spectroscopy (UV)

UV Ultraviolet - Visible Spectroscopy (UV) Introduction to Ultraviolet - Visible Spectroscopy 1 (UV) Background Theory UV Absorption of ultraviolet and visible radiation Absorption of visible and ultraviolet

### Nomenclature International Union of Pure and Applied Chemistry (IUPAC)

Nomenclature International Union of Pure and Applied Chemistry (IUPAC) I. Alkanes A. Alkanes: Simple-Chain Alkanes consist of only hydrogen and carbon molecules and are known to be the simplest type of

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHM 210 Chemistry Homework #6 Alkanes (Ch. 10) Due: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Compounds that have the same molecular formula