# Sample Exercise 6.1 Concepts of Wavelength and Frequency

Size: px
Start display at page:

Transcription

1 Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the other represents infrared radiation, which wave is which? (a) The lower wave has a longer wavelength (greater distance between peaks). The longer the wavelength, the lower the frequency (v = c/λ). Thus, the lower wave has the lower frequency, and the upper wave has the higher frequency. (b) The electromagnetic spectrum (Figure 6.4) indicates that infrared radiation has a longer wavelength than visible light. Thus, the lower wave would be the infrared radiation. If one of the waves in the margin represents blue light and the other red light, which is which? Answer: The expanded visible-light portion of Figure 6.4 tells you that red light has a longer wavelength than blue light. The lower wave has the longer wavelength (lower frequency) and would be the red light.. FIGURE 6.4 The electromagnetic spectrum. Wavelengths in the spectrum range from very short gamma rays to very long radio waves.

3 Sample Exercise 6.3 Energy of a Photon Calculate the energy of one photon of yellow light that has a wavelength of 589 nm. Analyze Our task is to calculate the energy, E, of a photon, given λ = 589 nm. Plan We can use Equation 6.1 to convert the wavelength to frequency: v = c/λ We can then use Equation 6.3 to calculate energy: E = hv Solve The frequency, v, is calculated from the given wavelength, as shown in Sample Exercise 6.2: v = c/λ = s -1 The value of Planck s constant, h, is given both in the text and in the table of physical constants on the inside back cover of the text, and so we can easily calculate E: E = ( J-s)( s -1 ) = J Comment If one photon of radiant energy supplies J, then one mole of these photons will supply ( photons/mol)( J/photon) = J/mol (a) A laser emits light that has a frequency of s -1. What is the energy of one photon of this radiation? (b) If the laser emits a pulse containing photons of this radiation, what is the total energy of that pulse? (c) If the laser emits J of energy during a pulse, how many photons are emitted? Answers: (a) J, (b) 0.16 J, (c) photons

4 Sample Exercise 6.4 Electronic Transitions in the Hydrogen Atom Using Figure 6.12, predict which of these electronic transitions produces the spectral line having the longest wavelength: n = 2 to n = 1, n = 3 to n = 2, or n = 4 to n = 3. The wavelength increases as frequency decreases (λ = c/v). Hence, the longest wavelength will be associated with the lowest frequency. According to Planck s equation, E = hv, the lowest frequency is associated with the lowest energy. In Figure 6.12 the energy levels (horizontal lines) that are closest together represents the smallest energy change. Thus, the n = 4 to n = 3 transition produces the longest wavelength (lowest frequency) line. Indicate whether each of the following electronic transitions emits energy or requires the absorption of energy: (a) n = 3 to n = 1; (b) n = 2 to n = 4. Answers: (a) emits energy, (b) requires absorption of energy FIGURE 6.12 Energy states in the hydrogen atom. Only states for n = 1 through n = 4 and n = are shown. Energy is released or absorbed when an electron moves from one energy state to another.

5 Sample Exercise 6.5 Matter Waves What is the wavelength of an electron moving with a speed of m/s? The mass of the electron is kg. Analyze We are given the mass, m, and velocity, v, of the electron, and we must calculate its de Broglie wavelength, λ. Plan The wavelength of a moving particle is given by Equation 6.8, so λ is calculated by inserting the known quantities h, m, and v. In doing so, however, we must pay attention to units. Solve Using the value of Planck s constant, h = J-s We have the following: Comment By comparing this value with the wavelengths of electromagnetic radiation shown in Figure 6.4, we see that the wavelength of this electron is about the same as that of X-rays. Calculate the velocity of a neutron whose de Broglie wavelength is 500 pm. The mass of a neutron is given in the table inside the back cover of the text. Answer: m/s

6 Sample Exercise 6.6 Subshells of the Hydrogen Atom (a) Without referring to Table 6.2, predict the number of subshells in the fourth shell, that is, for n = 4. (b) Give the label for each of these subshells. (c) How many orbitals are in each of these subshells? Analyze and Plan We are given the value of the principal quantum number, n. We need to determine the allowed values of l and m l for this given value of n and then count the number of orbitals in each subshell. There are four subshells in the fourth shell, corresponding to the four possible values of l (0, 1, 2, and 3). These subshells are labeled 4s, 4p, 4d, and 4f. The number given in the designation of a subshell is the principal quantum number, n; the letter designates the value of the angular momentum quantum number, l : for l = 0, s; for l = 1,p; for l = 2,d; for l = 3,f. There is one 4s orbital (when l = 0, there is only one possible value of m l : 0). There are three 4p orbitals (when l = 1, there are three possible values of m l : 1, 0, -1). There are five 4d orbitals (when 1 = 2, there are five allowed values of m l: 2, 1, 0, -1, -2). There are seven 4f orbitals (when l = 3, there are seven permitted values of m l : 3, 2, 1, 0, -1, -2, -3). (a) What is the designation for the subshell with n = 5 and l = 1? (b) How many orbitals are in this subshell? (c) Indicate the values of m l for each of these orbitals. Answers: (a) 5p; (b) 3; (c) 1, 0, -1

7 Sample Exercise 6.7 Orbital Diagrams and Electron Configurations Draw the orbital diagram for the electron configuration of oxygen, atomic number 8. How many unpaired electrons does an oxygen atom possess? Analyze and Plan Because oxygen has an atomic number of 8, each oxygen atom has 8 electrons. Figure 6.24 shows the ordering of orbitals. The electrons (represented as arrows) are placed in the orbitals (represented as boxes) beginning with the lowest-energy orbital, the 1s. Each orbital can hold a maximum of two electrons (the Pauli exclusion principle). Because the 2p orbitals are degenerate, we place one electron in each of these orbitals (spinup) before pairing any electrons (Hund s rule). Solve Two electrons each go into the 1s and 2s orbitals with their spins paired. This leaves four electrons for the three degenerate 2p orbitals. Following Hund s rule, we put one electron into each 2p orbital until all three orbitals have one electron each. The fourth electron is then paired up with one of the three electrons already in a 2p orbital, so that the orbital diagram is: FIGURE 6.24 General energy ordering of orbitals for a many-electron atom.

8 Sample Exercise 6.7 Orbital Diagrams and Electron Configurations Continued The corresponding electron configuration is written 1s 2 2s 2 2p 4. The atom has two unpaired electrons. (a) Write the electron configuration for phosphorus, element 15. (b) How many unpaired electrons does a phosphorus atom possess? Answers: (a) 1s 2 2s 2 2p 6 3s 2 3p 3, (b) three

9 Sample Exercise 6.8 Electron Configurations for a Group What is the characteristic valence electron configuration of the group 7A elements, the halogens? Analyze and Plan We first locate the halogens in the periodic table, write the electron configurations for the first two elements, and then determine the general similarity between the configurations. Solve The first member of the halogen group is fluorine (F, element 9). Moving backward from F, we find that the noble-gas core is [He]. Moving from He to the element of next higher atomic number brings us to Li, element 3. Because Li is in the second period of the s block, we add electrons to the 2s subshell. Moving across this block gives 2s 2. Continuing to move to the right, we enter the p block. Counting the squares to F gives 2p 5. Thus, the condensed electron configuration for fluorine is F: [He]2s 2 2p 5 The electron configuration for chlorine, the second halogen, is Cl: [Ne]3s 2 3p 5 From these two examples, we see that the characteristic valence electron configuration of a halogen is ns 2 np 5, where n ranges from 2 in the case of fluorine to 6 in the case of astatine. Which family of elements is characterized by an ns 2 np 2 electron configuration in the outermost occupied shell? Answer: group 4A

10 Sample Exercise 6.9 Electron Configurations from the Periodic Table (a) Based on its position in the periodic table, write the condensed electron configuration for bismuth, element 83. (b) How many unpaired electrons does a bismuth atom have? (a) Our first step is to write the noble-gas core. We do this by locating bismuth, element 83, in the periodic table. We then move backward to the nearest noble gas, which is Xe, element 54. Thus, the noble-gas core is [Xe]. Next, we trace the path in order of increasing atomic numbers from Xe to Bi. Moving from Xe to Cs, element 55, we find ourselves in period 6 of the s block. Knowing the block and the period identifies the subshell in which we begin placing outer electrons, 6s. As we move through the s block, we add two electrons: 6s 2. As we move beyond the s block, from element 56 to element 57, the curved arrow below the periodic table reminds us that we are entering the f block. The first row of the f block corresponds to the 4f subshell. As we move across this block, we add 14 electrons: 4f 14. With element 71, we move into the third row of the d block. Because the first row of the d block is 3d, the second row is 4d and the third row is 5d.Thus, as we move through the ten elements of the d block, from element 71 to element 80, we fill the 5d subshell with ten electrons: 5d 10. Moving from element 80 to element 81 puts us into the p block in the 6p subshell. (Remember that the principal quantum number in the p block is the same as in the s block.)

11 Sample Exercise 6.9 Electron Configurations from the Periodic Table Continued Moving across to Bi requires 3 electrons: 6p 3. The path we have taken is Putting the parts together, we obtain the condensed electron configuration: [Xe]6s 2 4f 14 5d 10 6p 3. This configuration can also be written with the subshells arranged in order of increasing principal quantum number: [Xe]4f 14 5d 10 6s 2 6p 3. Finally, we check our result to see if the number of electrons equals the atomic number of Bi, 83: Because Xe has 54 electrons (its atomic number), we have = 83. (If we had 14 electrons too few, we would realize that we have missed the f block.) (b) We see from the condensed electron configuration that the only partially occupied subshell is 6p. The orbital diagram representation for this subshell is In accordance with Hund s rule, the three 6p electrons occupy the three 6p orbitals singly, with their spins parallel. Thus, there are three unpaired electrons in the bismuth atom.

12 Sample Exercise 6.9 Electron Configurations from the Periodic Table Continued Use the periodic table to write the condensed electron configuration for (a) Co (element 27), (b) Te (element 52). Answers: (a) [Ar]4s 2 3d 7 or [Ar]3d 7 4s 2, (b) [Kr}5s 2 4d 10 5p 4 or [Kr]4d 10 5s 2 5p 4

### 13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### Arrangement of Electrons in Atoms

CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

### Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

### Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### CHEM 1411 Chapter 5 Homework Answers

1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of

### MODERN ATOMIC THEORY AND THE PERIODIC TABLE

CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

### Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

### Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

### Atomic Structure Ron Robertson

Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

### TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

### From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

### Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

### The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

### Unit 2: Chemical Bonding and Organic Chemistry

Chemistry AP Unit : Chemical Bonding and Organic Chemistry Unit : Chemical Bonding and Organic Chemistry Chapter 7: Atomic Structure and Periodicity 7.1: Electromagnetic Radiation Electromagnetic (EM)

### CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### CHEMSITRY NOTES Chapter 13. Electrons in Atoms

CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.

### 2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

### Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

### AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

### How To Understand Light And Color

PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

### 3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

### 3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

### Homework #10 (749508)

Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points

### Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

### neutrons are present?

AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

### Calculating particle properties of a wave

Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

### IONISATION ENERGY CONTENTS

IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

### Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

### Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

### ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

### Electron Arrangements

Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

### Basic Nuclear Concepts

Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section

### 6.5 Periodic Variations in Element Properties

324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

### Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

### Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged

### REVIEW QUESTIONS Chapter 8

Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

### DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

### CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES

CHAPTER 9 THE PERIODIC TABLE AND SOME ATOMIC PROPERTIES PRACTICE EXAMPLES 1A 1B A B A Atomic size decreases from left to right across a period, and from bottom to top in a family. We expect the smallest

### KEY. Honors Chemistry Assignment Sheet- Unit 3

KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.

### Unit 3 Study Guide: Electron Configuration & The Periodic Table

Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

### The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

### CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW

CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate

### 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

### P. Table & E Configuration Practice TEST

P. Table & E Configuration Practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A line spectrum is produced when an electron moves from one energy

### Infrared Spectroscopy: Theory

u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### 5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

### UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

### Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

### Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a

### Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

### 5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

### It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.

So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability

### Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked

### MASS DEFECT AND BINDING ENERGY

MASS DEFECT AND BINDING ENERGY The separate laws of Conservation of Mass and Conservation of Energy are not applied strictly on the nuclear level. It is possible to convert between mass and energy. Instead

### Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms The emission of light is fundamentally related to the behavior of electrons. Neon Walkway The Development of a New Atomic Model T he Rutherford model of the

### Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

### where h = 6.62 10-34 J s

Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

### Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

### Copyrighted by Gabriel Tang B.Ed., B.Sc.

Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

### Chapter 2. Quantum Theory

Chapter 2 Quantum Theory 2.0 Introduction 2.6 Orbital Shapes, Signs, and Sizes 2.1 The Nature of Light 2.7 Electron Configurations 2.2 Quantization 2.8 Quantum Theory and the Periodic Table 2.3 Bohr Model

### Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

### electron configuration

electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1

### Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

### Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

### Section 11.3 Atomic Orbitals Objectives

Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location

### Multi-electron atoms

Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

### 9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of

Chapter 7 A Quantum Model of Atoms Chapter Objectives: Understand the relationships between wavelength, frequency, and energy of light. Understand the origin of atomic line spectra. Learn how the quantum

### Periodic Table Questions

Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

### Name: Worksheet: Electron Configurations. I Heart Chemistry!

1. Which electron configuration represents an atom in an excited state? 1s 2 2s 2 2p 6 3p 1 1s 2 2s 2 2p 6 3s 2 3p 2 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2 2s 2 2p 6 3s 2 Worksheet: Electron Configurations Name:

### Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]

Ch. 9 - Electron Organization The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Predicting ion charges from electron configurations. CHEM 100 F07 1 Organization of Electrons

### Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

### Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

### CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY

CHAPTER 8 ELECTRON CONFIGURATION AND CHEMICAL PERIODICITY 8.1 Elements are listed in the periodic table in an ordered, systematic way that correlates with a periodicity of their chemical and physical properties.

### Models of the Atom and periodic Trends Exam Study Guide

Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

### Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

### ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

### PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

### The Electromagnetic Spectrum

INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have

### Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation

### Question: Do all electrons in the same level have the same energy?

Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons

### SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

### Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

### Energy. Mechanical Energy

Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

### Department of Physics and Geology The Elements and the Periodic Table

Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev

### Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties

### Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

### CHAPTER 11: MODERN ATOMIC THEORY

CHAPTER 11: MODERN ATOMIC THEORY Active Learning Questions: 1-2, 8-10, 14-18; End-of-Chapter Problems: 3-9, 11-13, 16, 18, 20-36, 45-54, 56-64, 66b, 67, 69-91, 98, 101-102, 108, 110, 113, 116, 11.2 ELECTROMAGNETIC

### Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

### ANSWER KEY : BUILD AN ATOM PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom )

ANSWER KEY : PART I: ATOM SCREEN Build an Atom simulation ( http://phet.colorado.edu/en/simulation/build an atom ) 1. Explore the Build an Atom simulation with your group. As you explore, talk about what