CHEMSITRY NOTES Chapter 13. Electrons in Atoms

Size: px
Start display at page:

Download "CHEMSITRY NOTES Chapter 13. Electrons in Atoms"

Transcription

1 CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4. Electron configurations NOTES: The different historical models are described as follows: Dalton's model of the atom - solid, tiny, indivisible particles. Thomson's model - often describe as the "plum pudding" model - electrons are scattered throughout the atom. Rutherford's model - includes the solid nucleus in the center of the atom. Niels Bohr's model - electrons are in fixed orbitals, or energy levels, at certain distances from the nucleus much the way the planets orbit the sun. Quantum mechanical model - the electrons have certain probabilities of being located at certain places and their positions are described according to four quantum numbers. The circle in the diagram below shows where the electrons have a 90% probability of being within the electron cloud. The quantum mechanical model is the most accepted model today. The diagrams you are probably most familiar with are that of the Bohr model, which is useful in teaching basic electron configuration (distribution in energy levels). Quanta (s. quantum) are the discrete amounts of energy that an electron absorbs as it moves up an energy level or releases when it moves down an energy level. Energy levels are certain regions surrounding the nucleus of an atom where electrons are likely to be found. The quantum mechanical model of the atom is a mathematical model which predicts the probability of electron locations and paths in electron clouds. The positions and orbits of electrons are referred to as energy states and are described by four quantum numbers : the principle quantum number (n) - indicates the energy level the electrons are in (there are seven energy levels, therefore n may equal 1,2,3,4,5,6 or 7) the orbital quantum number - indicates the shape of the atomic orbital (region in space where there is a high probability of finding an electron). the first four orbital numbers are indicated by the letters s (has a spherical shape), p (has a dumbbell shape), d, and f (d and f have complex shapes). magnetic quantum number - indicates the position of the orbital about the x, y, and z axes spin quantum number - indicates the direction of spin of an electron - clockwise or counterclockwise

2 These quantum numbers can be summarized as follows: Principle energy level Number of sublevels Type of sublevel (number of orbitals per sublevel) Total number of sublevels (= n 2 ) Total number of electrons(= 2n 2 ) n=1 1 1s (one orbital only) 1 2 n=2 2 2s (1 orbital), 2p (3 orbitals) 4 8 n=3 3 n=4 4 3s (1 orbital), 3p (3 orbitals), 3d (5 orbitals) 4s (1 orbital), 4p (3 orbitals), 4d (5 orbitals), 4f (7 orbitals) Note : Each quantum position as described by the first three quantum numbers can be occupied by only two electrons with opposite spins. For example, if the position of a pair of electrons are described as 4px, this means they are in the fourth energy level (n=4), and have a dumbbell shaped orbital (orbital quantum number is p) around the x axis (third quantum number). These two electrons in this orbital, as stated above, would have opposite spins. Electrons must be placed in the lowest possible energy levels first. This is referred to as the ground state of an atom - the state with the lowest possible energy level. There are three rules which govern electron configuration (the arrangement of the electrons of an atom into its orbitals). Aufbau (German for "building up') Principle - electrons enter orbitals of the lowest energy levels first. The following is the aufbau help diagram. The arrows indicate the lowest energy levels which need to be filled first. The 1s is always filled first then the 2s, 2p, 3s etc.. Note the 4s is filled before the 3d. Pauli Exclusion Principle - an atomic orbital may describe at most two electrons ; electrons in the same orbital must have opposite spins. Hund's rule - when electrons occupy orbitals of the same energy level (e.g. the three 3p orbitals or the five 4d orbitals), one electron will enter each orbital with a parallel spin until all orbitals have one electron. Then and only then will a second electron be added to those orbitals. The following diagram shows four elements and their electron configurations. They are explained below.

3 Hydrogen has only one electron so it is in the lowest orbital, the 1s orbital. The upwards arrow indicates a clockwise spin. Hydrogen's electron configuration can then be described as 1s 1. This means there is one electron in the first energy level in the s orbital (spherical shape). Helium has two electrons. The first orbital will hold two electrons so its summary electron configuration is 1s 2. Note the arrows indicating opposite spins (Pauli exclusion principle). Lithium has three electrons so one has to move into the next lowest orbital, the 2s. Its summary electron configuration is 1s 2 2s 1. Nitrogen has seven electrons. The 1s and 2s fill up first (Aufbau principle). Now one electron will go into each of the 2p orbitals with the same spin according to the Hund's rule. Nitrogen's summary electron configuration is 1s 2 2s 2 2p 3. Oxygen's electron configuration is similar to nitrogen, only now there are four electrons to put into the three 2p orbitals. Is summary electron configuration is 1s 2 2s 2 3p 4. Flame tests are tests used to identify metal or metallic ions. The substance to be identified is usually put on a wire loop and then placed into a flame. The flame will then show a color which can be used to help identify the metal. The colors in fireworks are produced by metals or metallic ions added to the fireworks. The color comes from energy being released by the metallic atoms or ions. When energy is added to the atoms or ions electrons jump up energy levels as they absorb the energy. When they fall back down energy levels they release energy in the form of light of a characteristic wavelength or color for that element. For example barium gives off a pale green color and strontium gives off a brilliant red color. Spectroscopy is the study of spectra - the types of light (wavelengths) that are absorbed or emitted by elements. Spectra allow scientists to, in a sense, see into the atomic structure of matter. The colors emitted or absorbed indicate changes in the positions of electrons in their orbitals. Emission spectra are the spectra released by substances that have been excited by the addition of energy. Absorption spectra are spectra that show the wavelengths (colors) of light that are absorbed by substances. Spectroscopy is a very important tool in the hands of an analytical chemist. Qualitative data (what is present) can be determined by the wavelengths of light that are produced - much like the flame tests. Quantitative data (how much is present) can be determined by the brightness or thickness of the spectral bands that are produced.. The elements are arranged in order of increasing atomic number across the periods (horizontal rows). The periods are arranged so that the elements in the vertical columns (groups or families) have similar properties. This causes the properties of elements to change as you move horizontally from group to group across a period. Note that their are 7 periods - one for each energy level (principle quantum number). The periodic law states that when the elements are arranged according to increasing atomic number there is a periodic pattern in their physical and chemical properties. Although the periodic table is arranged by increasing atomic number (which indicates the number of protons), the electrons configuration is what really determines the physical and chemical properties of the elements. The periodic table can be divided into four groups based on electron configurations : The Noble gases (Group 0) - have their outermost s and p orbitals filled which creates a stable and non-reactive (inert) element. The representative elements - Group A elements - have their s and p orbitals being filled. These include : o Group 1A - Li, Na, K etc. - all very reactive with one electron in the outer s orbital o Group 2A - Be, Mg, Ca etc. - all quite reactive with 2 electrons filling their outer s orbital o Group 3A - Aluminum group - 3 electrons in outer energy level (2s and 1p) properties vary from metallic to metalloid

4 o Group 4A - Carbon group - 4 electrons in outer energy level (2s and 2p) - properties vary from nonmetallic to metalloid to metallic down the group o Group 5A - Nitrogen group - 5 electrons in outer energy level (2s and 3p) - properties vary from nonmetallic to metalloid to metallic o Group 6A - Oxygen group - 6 electrons in outer energy level (2s and 4p) - properties vary from nonmetallic to metalloid o Group 7A - Halogens - all have 7 electrons in the outer energy level (2s and 5p) - properties vary from nonmetallic to metalloid. Very reactive due to the outer energy level being almost filled. The transition metals - elements whose d orbitals are being filled - found in the "d-block." These are also called the Group B elements The Inner transition metals - These are the Lanthanide and Actinide series, element whose f orbitals are being filled. The s, p, d, and f groups can be identified on the diagram below. The f block (inner transition metals) is usually shown separated and below the rest of the table. The accepted theory which explains the origin of the elements and all matter in the universe is the Big Bang theory. It states that the universe began with an explosion of tremendous energy. This energy was converted into matter, according to Einstein's equation E=mc 2. At first all matter was in the form of quarks. As the universe expanded it cooled allowing matter to condense and form the lightest elements first and then the heavier elements. The representative groups of elements : Noble gases - Group 0, helium, neon, argon, krypton, xenon and radon o inert (unreactive) because of stable electron configuration (filled s and p orbitals) o helium is used in weather balloons o helium and neon are used to create artificial, unreactive environments (less soluble than nitrogen and therefore less likely to cause the bends o other noble gases are used to create unreactive environments in flashbulbs or aluminum welding Alkali metals - Group 1A, lithium, sodium, potassium, rubidium, cesium and francium o very reactive (one electron away from a filled s and p orbital) o low density o low melting point o good electrical conductivity o react with water to form strong bases (sodium hydroxide, lithium hydroxide etc.) Alkaline earth elements - Group 2A, beryllium, magnesium, calcium, strontium, barium and radium o very reactive (2 electrons away from a filled s and p orbital) o react with water to form hydroxides o used to form metal alloys Aluminum group - Group 3A - 3 electrons in outer energy level (2s and 1p) properties vary from metallic to metalloid o aluminum is the most useful metal of this group being lightweight and strong to make boats, aircraft etc. Group 4A - Carbon group - 4 electrons in outer energy level (2s and 2p) - properties vary from nonmetallic to metalloid to metallic down the group o diamond and graphite are forms of pure carbon o silicon and germanium are semiconductors used in electronics

5 o tin and lead are useful metals Group 5A - Nitrogen group - 5 electrons in outer energy level (2s and 3p) - properties vary from nonmetallic to metalloid to metallic o nitrogen and phosphorus are elements necessary to form proteins and nucleic acids in living things Group 6A - Oxygen group - 6 electrons in outer energy level (2s and 4p) - properties vary from nonmetallic to metalloid o oxygen is the most abundant element on the earth o sulfur has many industrial uses (sulfuric acid is the most widely used industrial chemical) Group 7A - Halogens - all have 7 electrons in the outer energy level (2s and 5p) - properties vary from nonmetallic to metalloid. Very reactive due to the outer energy level being almost filled. o iodine is used as an antiseptic o chlorine is a bleaching agent and disinfecting agent o fluorine, as the fluoride ion, is used to maintain the health of our teeth o fluorine is used to make teflon The Development of a New Atomic Model I. Properties of Light A. Electromagnetic Radiation 1. Many types of EM waves a. visible light b. x-rays c. ultraviolet light d. infrared light e. radio waves 2. EM radiation are forms of energy which move through space as waves a. Move at speed of light (1) x 10 8 m/s b. Speed is equal to the frequency times the wavelength c = λν (1) Frequency (ν) is the number of waves passing a given point in one second (unit = 1/s) (2) Wavelength (λ) is the distance between peaks of adjacent waves (unit = m) c. Speed of light is a constant, so λν is also a constant (1) λ and ν must be inversely proportional B. Light and Energy - The Photoelectric Effect 1. The Photoelectric Effect a. Electrons are emitted from a metal when light shines on the metal 2. Radiant energy is transferred in units (or quanta) of energy called photons a. A photon is a particle of energy having a mass of zero and carrying a quantum of energy b. A quantum is the minimum amount of energy that can be lost or gained by an atom 3. Energy of a photon is directly proportional to the frequency of radiation a. E = hν (h is Planck s constant, x J.s )

6 4. Wave-Particle Duality a. Energy travels through space as waves, but can be thought of as a stream of particles (Einstein) II. The Hydrogen Line Spectrum A. Ground State 1. The lowest energy state of an atom B. Excited State 1. A state in which an atom has a higher potential energy than in its ground state C. Bright line spectrum 1. Light is given off by excited atoms as they return to lower energy states 2. Light is given off in very definite wavelengths 3. A spectroscope reveals lines of particular colors (with a specific wavelength and frequency) Bright line spectrum of Hydrogen III. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits (like planets around the sun) 2. The energy of the electron is greater when it is in orbits farther from the nucleus 3. The atom achieves the ground state when atoms occupy the closest possible positions around the nucleus 4. Electromagnetic radiation is emitted when electrons move closer to the nucleus

7 B. Energy transitions 1. Energies of atoms are fixed with definite quantities 2. Energy transitions occur in jumps of discrete amounts of energy 3. Electrons only lose energy when they move to a lower energy state C. Shortcomings of the Bohr Model 1. Doesn't work for atoms larger than hydrogen (with more than one electron) 2. Doesn't explain chemical behavior The Quantum Model of the Atom I. Electrons as Waves and Particles A. Louis debroglie (1924) 1. Electrons have wavelike properties 2. Consider the electron as a wave confined to a space that can have only certain frequencies B. The Heisenbery Uncertainty Principle (Werner Heisenberg ) 1. "It is impossible to determine simultaneously both the position and velocity of an electron a. Electrons are located by their interactions with photons b. Electrons and photons have similar energies c. Interaction between a photon and an electron knocks the electron off of its course C. The Schrodinger Wave Equation 1. Proved quantization of electron energies and is the basis for Quantum Theory a. Quantum theory describes mathematically the wave properties of electrons 2. Electrons do not move around the nucleus in "planetary orbits" 3. Electrons exist in regions called orbitals a. An orbital is a three-dimensional region around the nucleus that indicates the probable location of an electron (a 90% probability of finding an electron) II. Atomic Orbitals and Quantum Numbers Quantum Numbers specify the properties of atomic orbitals and the properties of the electrons in orbitals A. Principal Quantum Number (n) 1. Indicates the main energy levels occupied by the electron (distance from the nucleus) (size) 2. Values of n are positive integers a. n=1 is closest to the nucleus, and lowest in energy 3. The number of orbitals possible per energy level (or "shell") is equal to n 2 B. Angular Momentum Quantum Number (l) 1. Indicates the shape of the orbital 2. Number of orbital shapes = n a. Shapes are designated s, p, d, f (sublevels)

8 C. Magnetic Quantum Number (m) 1. The orientation of the orbital around the nucleus a. s orbitals have only one possible orientation b. p orbitals have three, d have five and f have 7 possible orientations D. Spin Quantum Number 1. Indicates the fundamental spin states of an electron in an orbital 2. Two possible values for spin, +1/2, -1/2 or 3. A single orbital can contain only two electrons, which must have opposite spins

9 Electron Configurations I. Writing Electrons Configurations A. Rules 1. Aufbau Principle a. An electron occupies the lowest-energy orbitals first 2. Pauli Exclusion Principle a. No two electrons in the same atom can have the same set of four quantum numbers (opposite spins) 3. Hund's Rule a. Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin B. Orbital Notation 1. Unoccupied orbitals are represented by a line, (or a box or circle) a. Lines are labeled with the principal quantum number and the sublevel letter 2. Arrows are used to represent electrons a. Arrows pointing up and down indicate opposite spins C. Electron Configuration Notation 1. The number of electrons in a sublevel is indicated by adding a superscript to the sublevel designation Hydrogen = 1s 1 Helium = 1s 2 Lithium = 1s 2 2s 1 II. Survey of the Periodic Table A. Elements of the Second and Third Periods 1. Highest occupied energy level a. The electron containing energy level with the highest principal quantum number 2. Inner shell electrons a. Electrons that are not in the highest energy level 3. Octet a. Highest energy level s and p electrons are filled (8 electrons) b. Characteristic of noble gases, Group Noble gas configuration a. Outer main energy level fully occupied, usually (except for He) by eight electrons b. This configuration has extra stability B. Elements of the Fourth Period 1. Irregularity of Copper a. Expected: [Ar] 4s 2 3d 9 b. Actual: [Ar] 4s 1 3d Several transition and rare-earth elements borrow from smaller sublevels in order to half fill larger d sublevels. Half filled and fully filled sublevels are particularly stable.

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

Electron Arrangements

Electron Arrangements Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

More information

P. Table & E Configuration Practice TEST

P. Table & E Configuration Practice TEST P. Table & E Configuration Practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A line spectrum is produced when an electron moves from one energy

More information

Electron Configuration Worksheet (and Lots More!!)

Electron Configuration Worksheet (and Lots More!!) Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Part I: Principal Energy Levels and Sublevels

Part I: Principal Energy Levels and Sublevels Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions 7.4 Using the Bohr Theory LEARNING TIP Models such as Figures 1 to 4, on pages 218 and 219, help you visualize scientific explanations. As you examine Figures 1 to 4, look back and forth between the diagrams

More information

Unit 3 Study Guide: Electron Configuration & The Periodic Table

Unit 3 Study Guide: Electron Configuration & The Periodic Table Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.

More information

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D

Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

Chapter 5 TEST: The Periodic Table name

Chapter 5 TEST: The Periodic Table name Chapter 5 TEST: The Periodic Table name HPS # date: Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The order of elements in the periodic table is based

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num

Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num . ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Student Exploration: Electron Configuration

Student Exploration: Electron Configuration Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion

More information

Unit 3.2: The Periodic Table and Periodic Trends Notes

Unit 3.2: The Periodic Table and Periodic Trends Notes Unit 3.2: The Periodic Table and Periodic Trends Notes The Organization of the Periodic Table Dmitri Mendeleev was the first to organize the elements by their periodic properties. In 1871 he arranged the

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

More information

Section 11.3 Atomic Orbitals Objectives

Section 11.3 Atomic Orbitals Objectives Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location

More information

Section 1: Arranging the Elements Pages 106-112

Section 1: Arranging the Elements Pages 106-112 Study Guide Chapter 5 Periodic Table Section 1: Arranging the Elements Pages 106-112 DISCOVERING A PATTERN 1. How did Mendeleev arrange the elements? a. by increasing density b. by increasing melting point

More information

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation

More information

The Periodic Table: Periodic trends

The Periodic Table: Periodic trends Unit 1 The Periodic Table: Periodic trends There are over one hundred different chemical elements. Some of these elements are familiar to you such as hydrogen, oxygen, nitrogen and carbon. Each one has

More information

Trends of the Periodic Table Diary

Trends of the Periodic Table Diary Trends of the Periodic Table Diary Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.

9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model. John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of

More information

electron configuration

electron configuration electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of

More information

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework

Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,

More information

Molecular Models & Lewis Dot Structures

Molecular Models & Lewis Dot Structures Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table 5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

More information

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11

Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11 Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties

More information

Question: Do all electrons in the same level have the same energy?

Question: Do all electrons in the same level have the same energy? Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

Trends of the Periodic Table Basics

Trends of the Periodic Table Basics Trends of the Periodic Table Basics Trends are patterns of behaviors that atoms on the periodic table of elements follow. Trends hold true most of the time, but there are exceptions, or blips, where the

More information

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.

Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a. Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

More information

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE

ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE Chapter 3 Vocabulary Words (27 words) Nucleus Atomic number Proton Mass number Neutron Isotopes Electron Atomic mass unit (amu) Energy level Average

More information

Chapter 3, Elements, Atoms, Ions, and the Periodic Table

Chapter 3, Elements, Atoms, Ions, and the Periodic Table 1. Which two scientists in 1869 arranged the elements in order of increasing atomic masses to form a precursor of the modern periodic table of elements? Ans. Mendeleev and Meyer 2. Who stated that the

More information

IONISATION ENERGY CONTENTS

IONISATION ENERGY CONTENTS IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements 1. Elements in the modern version of the periodic table are arranged in order of increasing. (a). oxidation number (b). atomic mass (c). average atomic mass

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms The emission of light is fundamentally related to the behavior of electrons. Neon Walkway The Development of a New Atomic Model T he Rutherford model of the

More information

Models of the Atom and periodic Trends Exam Study Guide

Models of the Atom and periodic Trends Exam Study Guide Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic

More information

PROTONS AND ELECTRONS

PROTONS AND ELECTRONS reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of

More information

APS Science Curriculum Unit Planner

APS Science Curriculum Unit Planner APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table

More information

CHAPTER 11: MODERN ATOMIC THEORY

CHAPTER 11: MODERN ATOMIC THEORY CHAPTER 11: MODERN ATOMIC THEORY Active Learning Questions: 1-2, 8-10, 14-18; End-of-Chapter Problems: 3-9, 11-13, 16, 18, 20-36, 45-54, 56-64, 66b, 67, 69-91, 98, 101-102, 108, 110, 113, 116, 11.2 ELECTROMAGNETIC

More information

Elements, Atoms & Ions

Elements, Atoms & Ions Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Elements, Atoms & Ions Chapter 4 1 2 Elements Aims: To learn about the relative abundances of the elements,

More information

Periodic Table Trends in Element Properties Ron Robertson

Periodic Table Trends in Element Properties Ron Robertson Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Look at a periodic table to answer the following questions:

Look at a periodic table to answer the following questions: Look at a periodic table to answer the following questions: 1. What is the name of group 1? 2. What is the name of group 2? 3. What is the name of group 17? 4. What is the name of group 18? 5. What is

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

18.2 Comparing Atoms. Atomic number. Chapter 18

18.2 Comparing Atoms. Atomic number. Chapter 18 As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,

More information

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework

Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other

More information

Multi-electron atoms

Multi-electron atoms Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.

More information

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations.

Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. The Periodic Table Horizontal Rows are called Periods. Elements in the same period have the same number of energy levels for ground state electron configurations. Vertical Rows are called Families or Groups.

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding BNDING AND INTERACTINS 71 Ions For students using the Foundation edition, assign problems 1, 3 5, 7 12, 14, 15, 18 20 Essential Understanding Ions form when atoms gain or lose

More information

******* KEY ******* Atomic Structure & Periodic Table Test Study Guide

******* KEY ******* Atomic Structure & Periodic Table Test Study Guide Atomic Structure & Periodic Table Test Study Guide VOCABULARY: Write a brief definition of each term in the space provided. 1. Atoms: smallest unit of an element that has all of the properties of that

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Department of Physics and Geology The Elements and the Periodic Table

Department of Physics and Geology The Elements and the Periodic Table Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev

More information

Name: Worksheet: Electron Configurations. I Heart Chemistry!

Name: Worksheet: Electron Configurations. I Heart Chemistry! 1. Which electron configuration represents an atom in an excited state? 1s 2 2s 2 2p 6 3p 1 1s 2 2s 2 2p 6 3s 2 3p 2 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2 2s 2 2p 6 3s 2 Worksheet: Electron Configurations Name:

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013

Chapter Outline. 3 Elements and Compounds. Elements and Atoms. Elements. Elements. Elements 9/4/2013 3 Elements and Compounds Chapter Outline 3.1 Elements A. Distribution of Elements Foundations of College Chemistry, 14 th Ed. Morris Hein and Susan Arena Copyright This reclining Buddha in Thailand is

More information

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element

Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck. atoms- the smallest particle of an element that can be identified with that element Name Block Date Ch 17 Atomic Nature of Matter Notes Mrs. Peck atoms- the smallest particle of an element that can be identified with that element are the building blocks of matter consists of protons and

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

4.1 Studying Atom. Early evidence used to develop models of atoms.

4.1 Studying Atom. Early evidence used to develop models of atoms. 4.1 Studying Atom Early evidence used to develop models of atoms. Democritus said that all matter consisted of extremely small particles that could NOT be divided called these particles atoms from the

More information

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]

Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Ch. 9 - Electron Organization The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Predicting ion charges from electron configurations. CHEM 100 F07 1 Organization of Electrons

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai, Ch1 1) Which of the following underlined items is not an intensive property? A) A chemical reaction requires 3.00 g of oxygen. B) The density of helium at 25 C is 1.64 10-4 g/cm3. C) The melting point

More information

THE PERIODIC TABLE O F T H E E L E M E N T S. The Academic Support Center @ Daytona State College (Science 117, Page 1 of 27)

THE PERIODIC TABLE O F T H E E L E M E N T S. The Academic Support Center @ Daytona State College (Science 117, Page 1 of 27) THE PERIODIC TABLE O F T H E E L E M E N T S The Academic Support Center @ Daytona State College (Science 117, Page 1 of 27) THE PERIODIC TABLE In 1872, Dmitri Mendeleev created the periodic table arranged

More information

Ions & Their Charges Worksheet

Ions & Their Charges Worksheet Ions & Their Charges Worksheet Name Date Teacher Diagram of charges based on groups on the periodic table including transition metals and noble gases: IA IIA Transition IIIA IVA VA VIA VIIA VIIIA metals

More information

19.1 Bonding and Molecules

19.1 Bonding and Molecules Most of the matter around you and inside of you is in the form of compounds. For example, your body is about 80 percent water. You learned in the last unit that water, H 2 O, is made up of hydrogen and

More information

Atomic Structure Chapter 5 Assignment & Problem Set

Atomic Structure Chapter 5 Assignment & Problem Set Atomic Structure Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Atomic Structure 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

PERIODIC TABLE. reflect

PERIODIC TABLE. reflect reflect Suppose you wanted to organize your locker at school. How could you separate and arrange everything in an organized way? You could place the books, notebooks, and folders on a shelf that is separate

More information