Section 1.3 Systems of Linear Equations

Size: px
Start display at page:

Download "Section 1.3 Systems of Linear Equations"

Transcription

1 Section 1.3 Systems of Linear Equations A system of linear equations is a set of two or more linear equations. It is also called a linear system. In this section we will study 2 2 linear systems, which are systems that contain two equations and two unknowns. The solution set to a linear system is the set of all ordered pairs that satisfies all of the equations in the system. A linear system may have one solution, no solution or infinitely many solutions. If a linear system has one solution, then the lines intersect at one point, and that point represents the solution to the system. An illustration is shown below. If a linear system has no solution, then the two lines never intersect and are therefore parallel. An illustration is shown below. If a linear system has infinitely many solutions, then the two lines coincide and represent the same line. The solution set is represented by every point on the line, which is an infinite number of points. An illustration is shown below. Math 1313 Page 1 of 11 Section 1.3

2 In this textbook, each system of equations will be preceded by a single left curly brace, as shown in the examples below. Not all textbooks follow this convention, but it is a way to group the equations together and to quickly identify a system of equations. Example 1: Determine whether ( 1, 3) is a solution to the following system of equations. y = x + 4 2x + y = 6 Solution: To check if ( 1, 3), is a solution to the system, we substitute x = 1 and y = 3 into each equation to determine if the point satisfies both equations. y = x + 4 2x + y = 6?? 3 = = 6 ( ) ( ) ( )? 3 = = Notice that the point satisfies the first equation, but not the second. Since ( 1, 3) does not satisfy both equations, the ordered pair is not a solution to the system. Math 1313 Page 2 of 11 Section 1.3

3 Example 2: Determine whether 1 3x y = x + y = , 16 3 is a solution to the following system of equations. 5 Solution: To check if,16 3 is a solution to the system, we substitute 5 x = and y = 16 3 into each equation to determine if the point satisfies both equations x y = 13 9x + y = ? 5 3? 3 ( 16) = ( 16) = ?? 5 8 = = = = 27 Since 5, 16 3 satisfies both equations, it is a solution to the system. When solving a linear system, we are finding any points of intersection. Remember that two lines either intersect in one point, or they are parallel and do not intersect at all, or they coincide and intersect in infinitely many points. One method is to graph the lines and look for the intersection, which works well when the x- and y-values of the point of intersection are integers, and are reasonably close to the origin. In this section, we will instead focus on solving the system algebraically. To do this, we can use either the substitution method or the elimination method. You should be familiar with both of these methods. Solving a Linear System Using the Substitution Method Example 3: Solve the following system using the substitution method. y = x 1 y = x + 3 Math 1313 Page 3 of 11 Section 1.3

4 Solution: Notice that each equation is already solved for y. We can take the right hand side of one equation, and substitute it into the other equation for y. This results in an equation in the variable x: y = x 1 x + 3 = x 1 Now solve for x. x + 3 = x 1 2x = 4 x = 2 The x-coordinate of the point of intersection is x = 2. To find the y-coordinate of the point of intersection, we now substitute x = 2 into either of the two original equations, and solve for y. We only need to use one of the equations (as they yield the same result), but both methods of solving for y are shown below. y = x 1 y = x + 3 y = 2 1 or y = y = 1 y = 1 The y-coordinate of the point of intersection is y = 1. The solution to the linear system is ( 2, 1 ). Example 4: Solve the following system using the substitution method: 3x = 18y y = 15 Solution: We first need to solve one equation for either x or y. We will choose to solve the first equation for x: 3x = 18y y x = = y x = 6y 1 Math 1313 Page 4 of 11 Section 1.3

5 Next, we substitute x = 6y 1 into the second equation, + 5y = 15, and solve for y. (Notice that we do not plug x = 6y 1 into the equation 3x = 18y + 3, since they represent the same equation.) + 5y = 15 ( y ) y = 15 24y 4 + 5y = 15 19y = 19 y = 1 The y-coordinate of the point of intersection is y = 1. We now need to find the corresponding x-value. To do this, we can plug y = 1 into either of the two original equations or into x = 6y 1. We will choose to use x = 6y 1, since the equation is already solved for x. x = 6y 1 ( ) x = x = 6 1 x = 5 The x-coordinate of the point of intersection is x = 5. The point of intersection of the two lines, or the solution to the linear system, is ( 5, 1). This system of linear equations has only one solution. Example 5: Solve the following system using the substitution method: 3x = 22 15x + 10y = 1 Solution: We first need to solve one equation for either x or y. We will choose to solve the first equation for y: 3x = 22 2y = 3x x y = = x y = x Math 1313 Page 5 of 11 Section 1.3

6 Now substitute 3 y = x + 11into the second equation, 15x + 10y = 1, and solve for x. 2 15x + 10y = x + 10 x + 11 = x + 15x = = 1 The x terms cancel and we simply get 110 = 1. This is never true, which indicates there is no solution to the system. If we graphed these two lines, they would be parallel. Solving a Linear System Using the Elimination Method Example 6: Solve the following system using the elimination method: x 11y = 14 x + 11y = 2 Solution: We must first choose a variable to eliminate. Since the coefficients of the y-terms are already opposites of each other (and add to zero), we add the two equations together to obtain one equation in the variable x. We then solve that equation for x. x 11y = 14 + x + 11y = 2 2x = 12 x = 6 Now substitute x = 6 back into either one of the original equations, and solve for y. We will use the first equation: x 11y = y = 14 11y = 8 8 y = 11 Math 1313 Page 6 of 11 Section 1.3

7 The solution to the linear system is 8 6, 11. Example 7: Solve the following system using the elimination method: + 4y = 36 2x + 3y = 8 Solution: We must first choose a variable to eliminate. Two different options are shown below. Looking at the x-terms: The least common multiple of and 2x is. We could keep the first equation the same so that it contains the term, and multiply the second equation by 2 so that it contains the term. Looking at the y-terms: The least common multiple of 4y and 3y is 12y. We could multiply the first equation by 3 so that it contains the term 12y, and multiply the second equation by 4 so that it contains the term 12y. We will choose to eliminate the x-terms. This minimizes our work, since we only need to multiply one of the equations by a nonzero constant to make the coefficients of the x terms opposites. Multiply the second equation by 2 : ( x y) ( ) = 2 8 6y = 16 Now add the first equation to the revised second equation, and solve for y. + 4y = y = 16 2y = 20 y = 10 Math 1313 Page 7 of 11 Section 1.3

8 Next, we substitute y = 10 into either one of the original equations, and solve for x. We will use the first equation: + 4y = 36 ( ) = = 36 = 76 x = 19 The solution to the linear system is ( 19, 10). Example 8: Use the elimination method to find the x-coordinate of the point of intersection for the following system: 3y = 40 5x + 6y = 59 Solution: We must first choose a variable to eliminate. Two different options are shown below. Looking at the x-terms: The least common multiple of and 5x is 20x. We could multiply the first equation by 5 so that it contains the term 20x, and multiply the second equation by 4 so that it contains the term 20x. Looking at the y-terms: The least common multiple of 3y and 6y is 6y. We could multiply the first equation by 2 so that it contains a 6y. The second equation already contains the term 6y. We will choose to eliminate the y-terms for two reasons. First of all, we only need to multiply one equation by a nonzero constant to make the coefficients of the y terms opposites. Also, we are only asked to find the x-coordinate of the point of intersection, which we will be able to do directly if we eliminate the y-terms. Multiply the first equation by 2: ( x y) = ( ) x 6y = 80 Math 1313 Page 8 of 11 Section 1.3

9 Now add the revised first equation to the second original equation, and solve for x. 8x 6y = x + 6y = 59 3x = 21 x = 7 The x-coordinate of the point of intersection is x = 7. (Remember that we were only asked to solve for x, so we do not need to solve for y.) Example 9: Use the elimination method to find the y-coordinate of the point of intersection for the following system: 2x + 8y = 14 3x 6y = 3 Solution: We must first choose a variable to eliminate. Since we are asked to solve for y, we will choose to eliminate the variable x. The least common multiple of 2x and 3x is 6x. We can multiply the first equation by 3 so that it contains the term 6x, and multiply the second equation by 2 so that it contains the term 6x. ( x y) ( ) ( x y) = ( ) = We obtain the following equations: 6x 24y = 42 6x 12y = 6 Now add the resulting equations and solve for y. 6x 24y = x 12y = 6 36 y = 36 y = 1 Math 1313 Page 9 of 11 Section 1.3

10 The y-coordinate of the point of intersection is y = 1. (Remember that we were only asked to solve for y, so we do not need to solve for x.) Example 10: Use the elimination method to find the point of intersection for the following system: 2x + y = 5 = 10 Solution: We must first choose a variable to eliminate. Let us choose to eliminate the variable y. The least common multiple of y and 2 y is 2 y. Multiply the first equation by 2 : ( x y) ( ) = 2 5 2y = 10 Now add the revised first equation to the second original equation: 2y = 10 + = 10 0 = 0 The x and y terms cancel and we simply get 0 = 0. This statement is always true, which indicates that the system has infinitely many solutions. If the two equations were graphed, it would be seen that they both represent the same line. Although there are infinitely many solutions, it is not correct to say that the solution is All real numbers. While it is true that x can take on any value, the y-value needs to be chosen so that the point falls on the line, and we can conversely choose any y-value, but then the x-value needs to be chosen so that the point falls on the line. The solution set to the given system is the set of all pairs ( x, y ), where x and y are real numbers, such that each ordered pair falls on the given line. We can write this in set-builder notation as follows: Set builder notation: ( ) { x, y 2x + y = 5 } Translated in words: The set of all points (, ) x y such that 2x + y = 5. Math 1313 Page 10 of 11 Section 1.3

11 The form that the solution set is written in is not unique. Since 2x + y = 5 and = 10 represent the same line, we could have instead written the solution as: Set builder notation: ( ) { x, y = 10 } Translated in words: The set of all points (, ) x y such that = 10. Math 1313 Page 11 of 11 Section 1.3

Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables

Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables Intermediate Algebra Section 4.1 Systems of Linear Equations in Two Variables A system of equations involves more than one variable and more than one equation. In this section we will focus on systems

More information

5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems

5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems 5.1 Systems of Linear Equations Linear Systems Substitution Method Elimination Method Special Systems 5.1-1 Linear Systems The possible graphs of a linear system in two unknowns are as follows. 1. The

More information

4.1 Systems of Linear Equations

4.1 Systems of Linear Equations 4.1 Systems of Linear Equations A. Introduction Suppose we have two lines. We have three possibilities: the lines intersect the lines are parallel the lines overlap (coincide) Thus, if we have a system

More information

2.1 Solving Systems of Equations in Two Variables. Objectives Solve systems of equations graphically Solve systems of equations algebraically Page 67

2.1 Solving Systems of Equations in Two Variables. Objectives Solve systems of equations graphically Solve systems of equations algebraically Page 67 2.1 Solving Systems of Equations in Two Variables Objectives Solve systems of equations graphically Solve systems of equations algebraically Page 67 System of Equation A system of equations is a collection

More information

Solving Systems of Linear Equations using Elimination

Solving Systems of Linear Equations using Elimination Solving Systems of Linear Equations using Elimination Elimination Any system of linear equations in two variables can be solved by the elimination method also called the addition method. The first trick

More information

Systems of Linear Equations in Two Variables

Systems of Linear Equations in Two Variables Name Period Date: Topic: 3-5 Systems of Linear Equations in Two Variables Essential Question: Economists often talk about supply and demand curves. Given two linear equations for supply and demand where

More information

SOLVING SYSTEMS BY SUBSTITUTION 6.2.1

SOLVING SYSTEMS BY SUBSTITUTION 6.2.1 SOLVING SYSTEMS BY SUBSTITUTION 6.2.1 A system of equations has two or more equations with two or more variables. In Section 4.2, students were introduced to solving a system by looking at the intersection

More information

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a. Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

More information

Lesson 13: Solving Systems of Equations Algebraically

Lesson 13: Solving Systems of Equations Algebraically Algebra I Name Module 1 Lesson 13: Solving Systems of Equations Algebraically Period Date Earlier we talked about how to find the solution to a system of equations by graphing each equation. That is often

More information

SYSTEMS OF LINEAR EQUATIONS

SYSTEMS OF LINEAR EQUATIONS SYSTEMS OF LINEAR EQUATIONS Sstems of linear equations refer to a set of two or more linear equations used to find the value of the unknown variables. If the set of linear equations consist of two equations

More information

10.1 Systems of Linear Equations

10.1 Systems of Linear Equations 10.1 Systems of Linear Equations in Two Variables Copyright Cengage Learning. All rights reserved. Objectives Systems of Linear Equations and Their Solutions Substitution Method Elimination Method The

More information

CHAPTER 7: SYSTEMS AND INEQUALITIES

CHAPTER 7: SYSTEMS AND INEQUALITIES (Sections 7.1-7.3: Systems of Equations) 7.01 CHAPTER 7: SYSTEMS AND INEQUALITIES SECTIONS 7.1-7.3: SYSTEMS OF EQUATIONS PART A: INTRO A solution to a system of equations must satisfy all of the equations

More information

Chapter 4. Section 4.1: Solving Systems of Linear Equations by Graphing

Chapter 4. Section 4.1: Solving Systems of Linear Equations by Graphing Chapter 4 Section 4.1: Solving Systems of Linear Equations by Graphing Objectives: 1. Decide whether a given ordered pair is a solution of a system. 2. Solve linear systems by graphing. 3. Solve special

More information

1. Why is graphing a beneficial method for solving systems of equations? [OV, page 1]

1. Why is graphing a beneficial method for solving systems of equations? [OV, page 1] Student Activity Sheet 1; use with Overview 1. Why is graphing a beneficial method for solving systems of equations? [OV, page 1] (Answers may vary.) Graphing allows you to see quickly whether you have

More information

Module 5 Highlights. Mastered Reviewed. Sections , Appendix C

Module 5 Highlights. Mastered Reviewed. Sections , Appendix C Sections 3.1 3.6, Appendix C Module 5 Highlights Andrea Hendricks Math 0098 Pre-college Algebra Topics Identifying linear equations (Section 3.1, Obj. 1) Interpreting a line graph (Section 3.1, Obj. 5)

More information

Section 5.1 Solving Systems of Linear Equation Using Substitution and Elimination

Section 5.1 Solving Systems of Linear Equation Using Substitution and Elimination 204 Section 5.1 Solving Systems of Linear Equation Using Substitution and Elimination A system of equations consists of two or more equations. A solution to a system of equations is a point that satisfies

More information

10/2/2010. Objectives. Solving Systems of Equations and Inequalities. Solving Systems of Equations by Graphing S E C T I O N 4.1

10/2/2010. Objectives. Solving Systems of Equations and Inequalities. Solving Systems of Equations by Graphing S E C T I O N 4.1 Solving Systems of Equations and Inequalities 4 S E C T I O N 4.1 Solving Systems of Equations by Graphing Objectives 1. Determine whether a given ordered pair is a solution of a system. 2. Solve systems

More information

Lesson 12: Systems of Linear Equations

Lesson 12: Systems of Linear Equations Our final lesson involves the study of systems of linear equations. In this lesson, we examine the relationship between two distinct linear equations. Specifically, we are looking for the point where the

More information

ALGEBRA 2: CHAPTER Solve Linear Systems by Graphing

ALGEBRA 2: CHAPTER Solve Linear Systems by Graphing ALGEBRA 2: CHAPTER 3 3.1 Solve Linear Systems by Graphing Goal Solve systems of linear equations. Your Notes VOCABULARY System of two linear equations Two equations, with the variables x and y that can

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

Steps For Solving By Substitution

Steps For Solving By Substitution 6.1 Systems of Linear Equations An equation is a linear equation in two variables x and y. Similarly, is a linear equation in three variables x, y, and z. We may also consider linear equations in four,

More information

Systems of Linear Equations - Introduction

Systems of Linear Equations - Introduction Systems of Linear Equations - Introduction What are Systems of Linear Equations Use an Example of a system of linear equations If we have two linear equations, y = x + 2 and y = 3x 6, can these two equations

More information

Number of Solutions to Simultaneous Equations

Number of Solutions to Simultaneous Equations Worksheet 3.5 Simultaneous Equations Section 1 Number of Solutions to Simultaneous Equations In maths we are sometimes confronted with two equations in two variables and we want to find out which values

More information

Math 1 Chapter 7 Notes.notebook January 11, 2016

Math 1 Chapter 7 Notes.notebook January 11, 2016 Chapter 7 Things you must know 1 Math 1 Chapter 7 Notes.notebook 2 Math 1 Lesson 7-1 Date: Title: Solving linear systems by graphing pg. 427 Key Vocab: System of linear equations: also called a linear

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Chapter 4 - Systems of Equations and Inequalities

Chapter 4 - Systems of Equations and Inequalities Math 233 - Spring 2009 Chapter 4 - Systems of Equations and Inequalities 4.1 Solving Systems of equations in Two Variables Definition 1. A system of linear equations is two or more linear equations to

More information

8.1 Solving Systems of Equations Graphically

8.1 Solving Systems of Equations Graphically 8.1 Solving Systems of Equations Graphically Definitions System of Equations involves equations that contain the same variables In this section we will look at both linear-quadratic systems and quadratic-quadratic

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Recall that an equation of the form Ax + By = C is a linear equation in two variables. A solution of a linear equation in two variables is an ordered pair (x, y) that makes

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Math Refresher, Unit 3: Systems of Equations, Inequalities

Math Refresher, Unit 3: Systems of Equations, Inequalities RPAD Welcome Week August 18-24, 2012 Math Refresher, Unit 3: Systems of Equations, Inequalities Junesoo Lee PhD Candidate of Public Administration Instructor for Statistics (PUB316 and PAD505) ing1224@hotmail.com

More information

3 2: Solving Systems in Three Variables

3 2: Solving Systems in Three Variables 3 2: Solving Systems in Three Variables What is a system of 3 Equations with 3 Unknowns? A system of 3 equations with 3 unknowns is a list of three equations that have 3 variables in common. Each equation

More information

5.2. Systems of linear equations and their solution sets

5.2. Systems of linear equations and their solution sets 5.2. Systems of linear equations and their solution sets Solution sets of systems of equations as intersections of sets Any collection of two or more equations is called a system of equations. The solution

More information

2.1 Introduction to Linear Systems

2.1 Introduction to Linear Systems 2.1 Introduction to Linear Systems 1 2.1 Introduction to Linear Systems A line in the y-plane can be represented by an equation of the form : a 1 + a 2 y = b. This equation is said to be linear in the

More information

Solving a System by Substitution

Solving a System by Substitution Start the lesson by doing warm-up. The last problem on the warm-up (other) is the opening to this lesson. Warm-up Question Other How many distinct ways can the two lines lay in the same plane? [3] The

More information

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

More information

4 Solving Systems of Equations by Reducing Matrices

4 Solving Systems of Equations by Reducing Matrices Math 15 Sec S0601/S060 4 Solving Systems of Equations by Reducing Matrices 4.1 Introduction One of the main applications of matrix methods is the solution of systems of linear equations. Consider for example

More information

Sec. 3.4 Solving Systems of Linear Equations in Three Variables

Sec. 3.4 Solving Systems of Linear Equations in Three Variables Sec. 3.4 Solving Systems of Linear Equations in Three Variables A system of linear equations is any system whose equations only contain constant or linear terms. Each term can only have one variable (or

More information

Solving Systems by Elimination 35

Solving Systems by Elimination 35 10/21/13 Solving Systems by Elimination 35 EXAMPLE: 5x + 2y = 1 x 3y = 7 1.Multiply the Top equation by the coefficient of the x on the bottom equation and write that equation next to the first equation

More information

Chapter 4: Systems of Equations and Ineq. Lecture notes Math 1010

Chapter 4: Systems of Equations and Ineq. Lecture notes Math 1010 Section 4.1: Systems of Equations Systems of equations A system of equations consists of two or more equations involving two or more variables { ax + by = c dx + ey = f A solution of such a system is an

More information

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

Concepts: Graphical Solution, Algebraic: Substitution Method, Algebraic: Elimination Method.

Concepts: Graphical Solution, Algebraic: Substitution Method, Algebraic: Elimination Method. Concepts: Graphical Solution, Algebraic: Substitution Method, Algebraic: Elimination Method A solution of a system of two equations in two variables is an ordered pair of real numbers that is a solution

More information

Systems of Equations There are 3 methods to solving a system of equations: Graphing Substitution Addition/Elimination Method

Systems of Equations There are 3 methods to solving a system of equations: Graphing Substitution Addition/Elimination Method Systems of Equations There are 3 methods to solving a system of equations: Graphing Substitution Addition/Elimination Method Solving by Graphing: 1. Solve the first equation for y -> put it in the form

More information

Elementary Algebra MATH97 Practice Test Form A

Elementary Algebra MATH97 Practice Test Form A Elementary Algebra MATH97 Practice Test Form A MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. 1) Which pair of values of x and

More information

System of Linear Equations

System of Linear Equations System of Linear Equations in two variables (4.1) 1. Solve by graphing 2. Solve using substitution 3. Solve by elimination by addition 4. Applications Dr.Hayk Melikyan Departmen of Mathematics and CS melikyan@nccu.edu

More information

6.1-Systems of Linear Equations in Two Variables

6.1-Systems of Linear Equations in Two Variables 6.-Systems of Linear Equations in Two Variables Groups of equations, called systems, serve as a model for a wide variety of applications in science and business. In these notes, we will be concerned only

More information

Simultaneous Equations

Simultaneous Equations When we have 2 equations with 2 unknown variables in them, we call the equations. There is a set method for solving them. 2x 4y 20 Equation 1 with 2 variables x and y 6x 5y 15 Equation 2 with 2 variables

More information

1 Review of two equations in two unknowns

1 Review of two equations in two unknowns Contents 1 Review of two equations in two unknowns 1.1 The "standard" method for finding the solution 1.2 The geometric method of finding the solution 2 Some equations for which the "standard" method doesn't

More information

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

Solve Systems of Equations by the Addition/Elimination Method

Solve Systems of Equations by the Addition/Elimination Method Solve Systems of Equations by the Addition/Elimination Method When solving systems, we have found that graphing is very limited. We then considered the substitution method which has its limitations as

More information

Absolute Value Equations and Inequalities

Absolute Value Equations and Inequalities Absolute Value Equations and Inequalities In this unit, you will solve absolute value equations in one variable and graph their solutions on the number line. You will also solve absolute value inequalities

More information

What if systems are not in y = mx + b form? Strategies for Solving Systems and Special Cases Lesson Objective:

What if systems are not in y = mx + b form? Strategies for Solving Systems and Special Cases Lesson Objective: What if systems are not in y = mx + b form? Strategies for Solving Systems and Special Cases Lesson Objective: Length of Activity: Students will continue work with solving systems of equations using the

More information

Solving 3x3 Systems of Equations

Solving 3x3 Systems of Equations Preliminaries and Objectives Preliminaries Solving a 2 x 2 system of linear equations Substitution Method Elimination Method Objectives Find the solution to a system of 3 equations in three variables.

More information

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System. Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

More information

Systems of Linear Equations in Two Variables

Systems of Linear Equations in Two Variables 5.1 Sstems of Linear Equations in Two Variables 5.1 OBJECTIVES 1. Find ordered pairs associated with two equations 2. Solve a sstem b graphing 3. Solve a sstem b the addition method 4. Solve a sstem b

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

6.1 Systems of Equations in Two Variables

6.1 Systems of Equations in Two Variables 6.1 Systems of Equations in Two Variables Solve a system of two linear equations in two variables by graphing. Solve a system of two linear equations in two variables using the substitution and the elimination

More information

Equations of Lines Derivations

Equations of Lines Derivations Equations of Lines Derivations If you know how slope is defined mathematically, then deriving equations of lines is relatively simple. We will start off with the equation for slope, normally designated

More information

Math 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices

Math 1313 Section 3.2. Section 3.2: Solving Systems of Linear Equations Using Matrices Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved.

3 Systems of Linear. Equations and Matrices. Copyright Cengage Learning. All rights reserved. 3 Systems of Linear Equations and Matrices Copyright Cengage Learning. All rights reserved. 3.2 Using Matrices to Solve Systems of Equations Copyright Cengage Learning. All rights reserved. Using Matrices

More information

( 7, 3) means x = 7 and y = 3

( 7, 3) means x = 7 and y = 3 3 A: Solving a Sstem of Linear Equations b Graphing What is a sstem of Linear Equations? A sstem of linear equations is a list of two linear equations that each represents the graph of a line. Eamples

More information

MINI LESSON. Lesson 1b Linear Equations

MINI LESSON. Lesson 1b Linear Equations MINI LESSON Lesson 1b Linear Equations Lesson Objectives: 1. Identify LINEAR EQUATIONS 2. Determine slope and y-intercept for a LINEAR EQUATION 3. Determine the x-intercept for a LINEAR EQUATION 4. Draw

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

More information

4.1. Systems of Linear Equations in Two Variables. Systems of Linear Equations in Two Variables

4.1. Systems of Linear Equations in Two Variables. Systems of Linear Equations in Two Variables 4.1 Systems of Linear Equations in Two Variables Systems of Linear Equations in Two Variables Objectives 1 2 4 Decide whether an ordered pair is a solution of a linear system. Solve linear systems by graphing.

More information

Systems of Linear Equations Introduction

Systems of Linear Equations Introduction Systems of Linear Equations Introduction Linear Equation a x = b Solution: Case a 0, then x = b (one solution) a Case 2 a = 0, b 0, then x (no solutions) Case 3 a = 0, b = 0, then x R (infinitely many

More information

10.1 Systems of Linear Equations: Substitution and Elimination

10.1 Systems of Linear Equations: Substitution and Elimination 10.1 Systems of Linear Equations: Substitution and Elimination What does it mean to be a solution to a system of equations? - It is the set of all ordered pairs (x, y) that satisfy the two equations. You

More information

Math 002 Intermediate Algebra Spring 2012 Objectives & Assignments

Math 002 Intermediate Algebra Spring 2012 Objectives & Assignments Math 002 Intermediate Algebra Spring 2012 Objectives & Assignments Unit 2 Equations, Inequalities, and Linear Systems I. Graphs and Functions 1. Graph equations in two variables by plotting points. 2.

More information

Solving Systems of Linear Equations

Solving Systems of Linear Equations LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

More information

Warm Up State the slope and the y-intercept for each of the equations below:

Warm Up State the slope and the y-intercept for each of the equations below: Warm Up State the slope and the y-intercept for each of the equations below: 1) y = 3x + 2 2) y = -2x + 6 3) 2x + 3y = 15 4) 6y - 5x = -12 A SYSTEM OF EQUATIONS is a set of two or more equations that contain

More information

Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

More information

Lesson System of Equations (Elimination Method)

Lesson System of Equations (Elimination Method) Lesson: Lesson 5.2.4 System of Equations (Elimination Method) 5.2.4 Supplement System of Equations (Elimination Method) Teacher Lesson Plan CC Standards 8.EE.C.8 Analyze and solve pairs of simultaneous

More information

Equations and Inequalities

Equations and Inequalities Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n and b are constants, x

More information

Algebra 2. Systems of Equations Unit 3. Name:

Algebra 2. Systems of Equations Unit 3. Name: Algebra 2 Systems of Equations Unit 3 Name: 1 Notes Section 4.1 Date Graphing Systems By the end of this section, you should be able to: - Determine by graphing if a system of equations has a unique solution,

More information

Math 2280 Section 002 [SPRING 2013] 1

Math 2280 Section 002 [SPRING 2013] 1 Math 2280 Section 002 [SPRING 2013] 1 Today well learn about a method for solving systems of differential equations, the method of elimination, that is very similar to the elimination methods we learned

More information

Systems of Equations & Inequalities

Systems of Equations & Inequalities Systems of Equations & Inequalities Mrs. Daniel Algebra 1 Three Methods for Solving Systems Graphing Substitution Elimination Method selected depends on information provided and personal preference. Table

More information

INTERMEDIATE ALGEBRA CURRICULUM FRAMEWORKS

INTERMEDIATE ALGEBRA CURRICULUM FRAMEWORKS ALGEBRA (encompasses 45-52% of MCA test items) (from Grade 8 standards) Standard 1: Understand the concept of function in real-world and mathematical situations, and distinguish between linear and nonlinear

More information

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Style. Learning Outcomes

3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Style. Learning Outcomes Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

More information

Steps For Solving By Substitution

Steps For Solving By Substitution 5.1 Systems of Linear Equations An equation is a linear equation in two variables x and y. Similarly, is a linear equation in three variables x, y, and z. We may also consider linear equations in four,

More information

Systems of Equations - Graphing

Systems of Equations - Graphing 4.1 Systems of Equations - Graphing Objective: Solve systems of equations by graphing and identifying the point of intersection. We have solved problems like 3x 4 = 11 by adding 4 to both sides and then

More information

Solve Systems of Equations by the Substitution Method

Solve Systems of Equations by the Substitution Method Solve Systems of Equations by the Substitution Method Solving a system of equations by graphing has several limitations. First, it requires the graph to be perfectly drawn if the lines are not straight,

More information

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations:

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Algebra Chapter 6 Notes Systems of Equations and Inequalities Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Solution of a system of linear equations: Consistent independent system:

More information

2.1 Algebraic Expressions and Combining like Terms

2.1 Algebraic Expressions and Combining like Terms 2.1 Algebraic Expressions and Combining like Terms Evaluate the following algebraic expressions for the given values of the variables. 3 3 3 Simplify the following algebraic expressions by combining like

More information

Notes from February 11

Notes from February 11 Notes from February 11 Math 130 Course web site: www.courses.fas.harvard.edu/5811 Two lemmas Before proving the theorem which was stated at the end of class on February 8, we begin with two lemmas. The

More information

Linear Algebra Section 2.2 : The idea of elimination Monday, February 4th Math 301 Week #3

Linear Algebra Section 2.2 : The idea of elimination Monday, February 4th Math 301 Week #3 Linear Algebra Section 2.2 : The idea of elimination Monday, February 4th Math 301 Week #3 How did we solve 2x2 systems? eliminate x 3y =7 2x 7y =3 (equation 2) order is important! Apply an elementary

More information

Math Lecture 20

Math Lecture 20 Math 2280 - Lecture 20 Dylan Zwick Fall 2013 Today we ll learn about a method for solving systems of differential equations, the method of elimination, that is very similar to the elimination methods we

More information

Lesson 3 Linear Equations and Functions

Lesson 3 Linear Equations and Functions The first Function that we are going to investigate is the Linear Function. This is a good place to start because with Linear Functions, the average rate of change is constant and no exponents are involved.

More information

Unit 1, Review Transitioning from Previous Mathematics Instructional Resources: Prentice Hall: Algebra 1

Unit 1, Review Transitioning from Previous Mathematics Instructional Resources: Prentice Hall: Algebra 1 Unit 1, Review Transitioning from Previous Mathematics Transitioning from Seventh grade mathematics to Algebra 1 Read, compare and order real numbers Add, subtract, multiply and divide rational numbers

More information

Solving a System of Equations by Elimination

Solving a System of Equations by Elimination Section 5 3: Solving a System of Equations by Elimination The Addition Property of Equality states that You can add the same number to both sides of an equation and still have an equivalent equation. If

More information

M8A5b. Solve systems of equations graphically and algebraically, using technology as appropriate.

M8A5b. Solve systems of equations graphically and algebraically, using technology as appropriate. Day #1 M8A5b. Solve systems of equations graphically and algebraically, using technology as appropriate. Essential Question: What is a system of equations and how is it solved using the Graphing Method?

More information

CHAPTER 9: Systems of Equations and Matrices

CHAPTER 9: Systems of Equations and Matrices MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables Solve a system of two linear equations in

More information

Math 117 Chapter 2 Systems of Linear Equations and Matrices

Math 117 Chapter 2 Systems of Linear Equations and Matrices Math 117 Chapter 2 Systems of Linear Equations and Matrices Flathead Valley Community College Page 1 of 28 1. Systems of Linear Equations A linear equation in n unknowns is defined by a 1 x 1 + a 2 x 2

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Systems of Linear Equations. We consider the problem of solving linear systems of equations, such as x 1 2x 2 = 8 3x 1 + x 2 = 3 In general, we write a system of m equations

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2 3-2 Using Methods to to Solve Solve Linear Linear Systems Systems Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Determine if the given ordered pair is an element of the solution set of 2x y = 5 3y

More information

Section 4.1 Inequalities & Applications. Inequalities. Equations. 3x + 7 = 13 y = 7 3x + 2y = 6. 3x + 7 < 13 y > 7 3x + 2y 6. Symbols: < > 4.

Section 4.1 Inequalities & Applications. Inequalities. Equations. 3x + 7 = 13 y = 7 3x + 2y = 6. 3x + 7 < 13 y > 7 3x + 2y 6. Symbols: < > 4. Section 4.1 Inequalities & Applications Equations 3x + 7 = 13 y = 7 3x + 2y = 6 Inequalities 3x + 7 < 13 y > 7 3x + 2y 6 Symbols: < > 4.1 1 Overview of Linear Inequalities 4.1 Study Inequalities with One

More information

3. Solve the equation containing only one variable for that variable.

3. Solve the equation containing only one variable for that variable. Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated

More information

Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)

Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What

More information