STAT 155 Introductory Statistics. Lecture 15 &16: Sampling Distributions for Counts and Proportions

Size: px
Start display at page:

Download "STAT 155 Introductory Statistics. Lecture 15 &16: Sampling Distributions for Counts and Proportions"

Transcription

1 The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 15 &16: Sampling Distributions for Counts and Proportions 10/26/06 Lecture 15&16 1

2 Statistic & Its Sampling Distribution A statistic is any numeric measure calculated from data. It is a random variable, its value varies from sample to sample. count/proportion: Ex: number/proportion of free throws made by a Tar Heel player who shoots 20 free throws in a practice sample mean Ex: average SAT score of a group of 10 students randomly selected from STAT 155 The probability distribution of a statistic is called its sampling distribution. It depends on the population distribution, and the sample size. 10/26/06 Lecture 15&16 2

3 Binomial Experiment n trials (with n fixed in advance). Each trial has two possible outcomes, success (S) and failure (F). The probability of success, p, remains the same from one trial to the next. The trials are independent, i.e. the outcome of each trial does not affect outcomes of other trials. 10/26/06 Lecture 15&16 3

4 Example The experiment: randomly draw n balls with replacement from an urn containing 10 red balls and 20 black balls. Let S represent {drawing a red ball} and F represent {drawing a black ball}. Then this is a binomial experiment with p =1/3. Q: Would it still be a binomial experiment if the balls were drawn without replacement? No! 10/26/06 Lecture 15&16 4

5 Binomial Distribution 10/26/06 Lecture 15&16 5

6 Do they follow binomial distributions (approximately)? X = number of stocks on the NY stock exchange whose prices increase today X = number of games the Tar Heel will win next season A couple decides to have children until they have a girl. X = number of boys the couple will have Answer: NO in all 3 cases. Why? 10/26/06 Lecture 15&16 6

7 Binomial Distribution If X ~ B(n, p), then µ X = np, σ 2 X = np(1-p). P(X=x) depends on n and p, which can be calculated using software or Table C (for some n and p), or a Binomial Formula (page 349) --- a simple argument given in class 10/26/06 Lecture 15&16 7

8 Binomial Table: for n 20, and certain values of p. Table C: Page T-6 10/26/06 Lecture 15&16 8

9 Credit Card Example Records show that 5% of the customers in a shoe store make their payments using a credit card. This morning 8 customers purchased shoes. Use the binomial table to answer the following questions. 1. Find the probability that exactly 6 customers did not use a credit card. X: number of customers who did not use a credit card. Then X ~ B(8, 0.95), which is not on the table. Y: number of customers who did use a credit card. Then Y ~ B(8, 0.05), which is on the table. P(X= 6) = P(Y = 2) = What is the probability that at least 3 customers used a credit card? (See the board ) 10/26/06 Lecture 15&16 9

10 Credit Card Example (continued) 3. What is the expected number of customers who used a credit card? µ Y = np = 8(0.05) = What is the standard deviation of the number of customers who used a credit card? σ 2 Y = np (1 p) = 8(0.05)(0.95) = The standard deviation is σy = 0.38 = /26/06 Lecture 15&16 10

11 Parking Example (bad impact?) Sarah drives to work everyday, but does not own a parking permit. She decides to take her chances and risk getting a parking ticket each day. Suppose A parking permit for a week (5 days) cost $ 30. A parking fine costs $ 50. The probability of getting a parking ticket each day is 0.1. Her chances of getting a ticket each day is independent of other days. She can get only 1 ticket per day. What is her probability of getting at least 1 parking ticket in one week (5 days)? What is the expected number of parking tickets that Sarah will get per week? Is she better off paying the parking permit in the long run? 10/26/06 Lecture 15&16 11

12 Sample Proportion If X ~ B(n, p), the sample proportion is defined as X pˆ = = n # of successes sample size mean & variance of a sample proportion:. µ pˆ = p σ, pˆ = p(1 p) / n. 10/26/06 Lecture 15&16 12

13 Example: Clinton's vote 43% of the population voted for Clinton in Suppose we survey a sample of size 2300 and see if they voted for Clinton or not in We are interested in the sampling distribution of the sample proportion pˆ, for samples of size What's the mean and variance of pˆ? 10/26/06 Lecture 15&16 13

14 Count & Proportion of Success A Tar Heel basketball player is a 95% free throw shooter. Suppose he will shoot 5 free throws during each practice. X: number of free throws he makes in a practice. pˆ : proportion of free throws made during practice. pˆ P(X=3) = P( =0.6). Why? 10/26/06 Lecture 15&16 14

15 10/26/06 Lecture 15&16 15

16 Normal Approximation for Counts and Proportions Let X ~ B(n, p) and If n is large, then p ˆ = X / n. X is approx. N ( np, np(1-p)) pˆ is approx. N ( p, p(1-p) / n ). Rule of Thumb: np 10, n(1 - p) /26/06 Lecture 15&16 16

17 Switches Inspection A quality engineer selects an SRS of 100 switches from a large shipment for detailed inspection. Unknown to the engineer, 10% of the switches in the shipment fail to meet the specifications. Software tells us that the actual probability that no more than 9 of the switches in the sample fail inspection is P(X 9) = What will the normal approximation say? 10/26/06 Lecture 15&16 17

18 10/26/06 Lecture 15&16 18

19 Switches Inspection The normal approximation to the probability of no more than 9 bad switches is the area to the left of X = 9 under the normal curve. µ X = np = ( 100)(.1) = 10, σ = np(1 p) = 100(.1)(.9) = 3. Using Table A, we have X P( X 9) = P( ) = P( Z 0.33) = 3 3 X The approximation.3707 to the binomial probability of is not very accurate. In this case np = /26/06 Lecture 15&16 19

20 10/26/06 Lecture 15&16 20

21 Continuity Correction The normal approximation is more accurate if we consider X = 9 to extend from 8.5 to 9.5, X = 10 to extend from 9.5 to 10.5, and so on. Example (Cont.): P( X 9) = P( X P( Z X ) = P( ) = ) 3 10/26/06 Lecture 15&16 21

22 Continuity Correction P(X 8) replaced by P(X < 8.5) P(X 14) replaced by P(X > 13.5) P(X < 8) = P(X 7) replaced by P(X < 7.5) For large n the effects of the continuity correction factor is very small and will be omitted. 10/26/06 Lecture 15&16 22

23 Coin Tossing Example Toss a fair coin 200 times, what is the probability that the total number of heads is between 90 and 110? X = the total number of heads X ~ B(200, 0.5). Want: P(90 X 110). µ X = = 100, σ X = ( ) 1/2 = With continuity correction: P(90 X 110) = P(X 110) - P(X 89) P( Z ( )/7.07) - P (Z ( )/7.07) = P (Z 1.48) - P (Z -1.48)= /26/06 Lecture 15&16 23

24 Normal Approximation for Sample Proportions Let X ~ B(n, p) and If n is large, then p ˆ = X / n. pˆ is approx. N ( p, p(1-p) / n ). Rule of Thumb: np 10, n(1 - p) /26/06 Lecture 15&16 24

25 Example The Laurier company s brand has a market share of 30%. In a survey 1000 consumers were asked which brand they prefer. What is the probability that more than 32% of the respondents say they prefer the Laurier brand? Solution: The number of respondents who prefer Laurier is binomial with n = 1000 and p =0.3. Also, np = 1000(0.3) > 10, n(1-p) = 1000(1-0.3) > 10. ˆ ( ˆ.32) p p P p > = P > = P( Z > 1.38) = (1 ) p p n /26/06 Lecture 15&16 25

26 Take Home Message Sampling distribution Binomial experiments Binomial distribution for count X: using Table C or the formula Sample proportion Normal approximation Continuity correction (for count X, not for proportion X/n) 10/26/06 Lecture 15&16 26

Lecture 10: Depicting Sampling Distributions of a Sample Proportion

Lecture 10: Depicting Sampling Distributions of a Sample Proportion Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a

More information

Binomial Probability Distribution

Binomial Probability Distribution Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are

More information

Section 6.1 Discrete Random variables Probability Distribution

Section 6.1 Discrete Random variables Probability Distribution Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values

More information

WHERE DOES THE 10% CONDITION COME FROM?

WHERE DOES THE 10% CONDITION COME FROM? 1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. Childers-Day UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025. Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

More information

Chapter 5 - Practice Problems 1

Chapter 5 - Practice Problems 1 Chapter 5 - Practice Problems 1 Identify the given random variable as being discrete or continuous. 1) The number of oil spills occurring off the Alaskan coast 1) A) Continuous B) Discrete 2) The ph level

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

AP Statistics 7!3! 6!

AP Statistics 7!3! 6! Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Stat 20: Intro to Probability and Statistics

Stat 20: Intro to Probability and Statistics Stat 20: Intro to Probability and Statistics Lecture 18: Simple Random Sampling Tessa L. Childers-Day UC Berkeley 24 July 2014 By the end of this lecture... You will be able to: Draw box models for real-world

More information

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values. MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

More information

AP Stats - Probability Review

AP Stats - Probability Review AP Stats - Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose

More information

The Procedures of Monte Carlo Simulation (and Resampling)

The Procedures of Monte Carlo Simulation (and Resampling) 154 Resampling: The New Statistics CHAPTER 10 The Procedures of Monte Carlo Simulation (and Resampling) A Definition and General Procedure for Monte Carlo Simulation Summary Until now, the steps to follow

More information

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR.

Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. Exam 3 Review/WIR 9 These problems will be started in class on April 7 and continued on April 8 at the WIR. 1. Urn A contains 6 white marbles and 4 red marbles. Urn B contains 3 red marbles and two white

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution James H. Steiger November 10, 00 1 Topics for this Module 1. The Binomial Process. The Binomial Random Variable. The Binomial Distribution (a) Computing the Binomial pdf (b) Computing

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.

6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0. Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.

More information

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.

3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved. 3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately

More information

13.0 Central Limit Theorem

13.0 Central Limit Theorem 13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated

More information

2. Discrete random variables

2. Discrete random variables 2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.

Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary. Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate

More information

Assessment For The California Mathematics Standards Grade 6

Assessment For The California Mathematics Standards Grade 6 Introduction: Summary of Goals GRADE SIX By the end of grade six, students have mastered the four arithmetic operations with whole numbers, positive fractions, positive decimals, and positive and negative

More information

AP STATISTICS 2010 SCORING GUIDELINES

AP STATISTICS 2010 SCORING GUIDELINES 2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

More information

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

More information

BINOMIAL DISTRIBUTION

BINOMIAL DISTRIBUTION MODULE IV BINOMIAL DISTRIBUTION A random variable X is said to follow binomial distribution with parameters n & p if P ( X ) = nc x p x q n x where x = 0, 1,2,3..n, p is the probability of success & q

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

More information

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density

Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density HW MATH 461/561 Lecture Notes 15 1 Definition: Suppose that two random variables, either continuous or discrete, X and Y have joint density and marginal densities f(x, y), (x, y) Λ X,Y f X (x), x Λ X,

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

STAT 35A HW2 Solutions

STAT 35A HW2 Solutions STAT 35A HW2 Solutions http://www.stat.ucla.edu/~dinov/courses_students.dir/09/spring/stat35.dir 1. A computer consulting firm presently has bids out on three projects. Let A i = { awarded project i },

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0. Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

More information

Chapter 5. Random variables

Chapter 5. Random variables Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Sample Questions for Mastery #5

Sample Questions for Mastery #5 Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could

More information

M 1313 Review Test 4 1

M 1313 Review Test 4 1 M 1313 Review Test 4 1 Review for test 4: 1. Let E and F be two events of an experiment, P (E) =. 3 and P (F) =. 2, and P (E F) =.35. Find the following probabilities: a. P(E F) b. P(E c F) c. P (E F)

More information

AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Chapter 1 Dr. Ghamsary Page 1 Elementary Statistics M. Ghamsary, Ph.D. Chap 01 1 Elementary Statistics Chapter 1 Dr. Ghamsary Page 2 Statistics: Statistics is the science of collecting,

More information

Some special discrete probability distributions

Some special discrete probability distributions University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

More information

Construct and Interpret Binomial Distributions

Construct and Interpret Binomial Distributions CH 6.2 Distribution.notebook A random variable is a variable whose values are determined by the outcome of the experiment. 1 CH 6.2 Distribution.notebook A probability distribution is a function which

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025. Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

More information

Unit 4 The Bernoulli and Binomial Distributions

Unit 4 The Bernoulli and Binomial Distributions PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population

More information

Number of observations is fixed. Independent observations --- knowledge of the outcomes of earlier trials does not affect the

Number of observations is fixed. Independent observations --- knowledge of the outcomes of earlier trials does not affect the Binomial Probability Frequently used in analyzing and setting up surveys Our interest is in a binomial random variable X, which is the count of successes in n trials. The probability distribution of X

More information

ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

More information

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables

DETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables 1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random

More information

Hypothesis Testing: Two Means, Paired Data, Two Proportions

Hypothesis Testing: Two Means, Paired Data, Two Proportions Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

More information

MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

More information

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

More information

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2 Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

More information

Section 7C: The Law of Large Numbers

Section 7C: The Law of Large Numbers Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half

More information

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch. 4 Discrete Probability Distributions 4.1 Probability Distributions 1 Decide if a Random Variable is Discrete or Continuous 1) State whether the variable is discrete or continuous. The number of cups

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001 Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

More information

Pr(X = x) = f(x) = λe λx

Pr(X = x) = f(x) = λe λx Old Business - variance/std. dev. of binomial distribution - mid-term (day, policies) - class strategies (problems, etc.) - exponential distributions New Business - Central Limit Theorem, standard error

More information

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions

SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions SOLUTIONS: 4.1 Probability Distributions and 4.2 Binomial Distributions 1. The following table contains a probability distribution for a random variable X. a. Find the expected value (mean) of X. x 1 2

More information

Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

More information

Opgaven Onderzoeksmethoden, Onderdeel Statistiek

Opgaven Onderzoeksmethoden, Onderdeel Statistiek Opgaven Onderzoeksmethoden, Onderdeel Statistiek 1. What is the measurement scale of the following variables? a Shoe size b Religion c Car brand d Score in a tennis game e Number of work hours per week

More information

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1

Lecture 2: Discrete Distributions, Normal Distributions. Chapter 1 Lecture 2: Discrete Distributions, Normal Distributions Chapter 1 Reminders Course website: www. stat.purdue.edu/~xuanyaoh/stat350 Office Hour: Mon 3:30-4:30, Wed 4-5 Bring a calculator, and copy Tables

More information

Mind on Statistics. Chapter 8

Mind on Statistics. Chapter 8 Mind on Statistics Chapter 8 Sections 8.1-8.2 Questions 1 to 4: For each situation, decide if the random variable described is a discrete random variable or a continuous random variable. 1. Random variable

More information

Section 6.2 Definition of Probability

Section 6.2 Definition of Probability Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will

More information

The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?

The Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going? The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

Week 3&4: Z tables and the Sampling Distribution of X

Week 3&4: Z tables and the Sampling Distribution of X Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal

More information

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4 MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay

Question of the Day. Key Concepts. Vocabulary. Mathematical Ideas. QuestionofDay QuestionofDay Question of the Day What is the probability that in a family with two children, both are boys? What is the probability that in a family with two children, both are boys, if we already know

More information

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300

Decision Making Under Uncertainty. Professor Peter Cramton Economics 300 Decision Making Under Uncertainty Professor Peter Cramton Economics 300 Uncertainty Consumers and firms are usually uncertain about the payoffs from their choices Example 1: A farmer chooses to cultivate

More information

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52.

Chapter 6. 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? Ans: 4/52. Chapter 6 1. What is the probability that a card chosen from an ordinary deck of 52 cards is an ace? 4/52. 2. What is the probability that a randomly selected integer chosen from the first 100 positive

More information

Lab 11. Simulations. The Concept

Lab 11. Simulations. The Concept Lab 11 Simulations In this lab you ll learn how to create simulations to provide approximate answers to probability questions. We ll make use of a particular kind of structure, called a box model, that

More information

Lecture 13. Understanding Probability and Long-Term Expectations

Lecture 13. Understanding Probability and Long-Term Expectations Lecture 13 Understanding Probability and Long-Term Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).

More information

Statistics 100A Homework 3 Solutions

Statistics 100A Homework 3 Solutions Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we

More information

Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems

Math 408, Actuarial Statistics I, Spring 2008. Solutions to combinatorial problems , Spring 2008 Word counting problems 1. Find the number of possible character passwords under the following restrictions: Note there are 26 letters in the alphabet. a All characters must be lower case

More information

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution

Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 3-5, 3-6 Special discrete random variable distributions we will cover

More information

PROBABILITY SECOND EDITION

PROBABILITY SECOND EDITION PROBABILITY SECOND EDITION Table of Contents How to Use This Series........................................... v Foreword..................................................... vi Basics 1. Probability All

More information

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000

Lecture 14. Chapter 7: Probability. Rule 1: Rule 2: Rule 3: Nancy Pfenning Stats 1000 Lecture 4 Nancy Pfenning Stats 000 Chapter 7: Probability Last time we established some basic definitions and rules of probability: Rule : P (A C ) = P (A). Rule 2: In general, the probability of one event

More information

of course the mean is p. That is just saying the average sample would have 82% answering

of course the mean is p. That is just saying the average sample would have 82% answering Sampling Distribution for a Proportion Start with a population, adult Americans and a binary variable, whether they believe in God. The key parameter is the population proportion p. In this case let us

More information

Review #2. Statistics

Review #2. Statistics Review #2 Statistics Find the mean of the given probability distribution. 1) x P(x) 0 0.19 1 0.37 2 0.16 3 0.26 4 0.02 A) 1.64 B) 1.45 C) 1.55 D) 1.74 2) The number of golf balls ordered by customers of

More information

Midterm Review Problems

Midterm Review Problems Midterm Review Problems October 19, 2013 1. Consider the following research title: Cooperation among nursery school children under two types of instruction. In this study, what is the independent variable?

More information

It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important

It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important PROBABILLITY 271 PROBABILITY CHAPTER 15 It is remarkable that a science, which began with the consideration of games of chance, should be elevated to the rank of the most important subject of human knowledge.

More information

Normal Probability Distribution

Normal Probability Distribution Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

More information

Binomial random variables (Review)

Binomial random variables (Review) Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level S2 of challenge: B/C S2 Mathematical goals Starting points Materials required Time needed Evaluating probability statements To help learners to: discuss and clarify some common misconceptions about

More information

Important Probability Distributions OPRE 6301

Important Probability Distributions OPRE 6301 Important Probability Distributions OPRE 6301 Important Distributions... Certain probability distributions occur with such regularity in real-life applications that they have been given their own names.

More information

Concepts of Probability

Concepts of Probability Concepts of Probability Trial question: we are given a die. How can we determine the probability that any given throw results in a six? Try doing many tosses: Plot cumulative proportion of sixes Also look

More information

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

More information

AP Statistics Chapters 11-12 Practice Problems MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

AP Statistics Chapters 11-12 Practice Problems MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Statistics Chapters 11-12 Practice Problems Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Criticize the following simulation: A student

More information

Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below:

Sample Term Test 2A. 1. A variable X has a distribution which is described by the density curve shown below: Sample Term Test 2A 1. A variable X has a distribution which is described by the density curve shown below: What proportion of values of X fall between 1 and 6? (A) 0.550 (B) 0.575 (C) 0.600 (D) 0.625

More information

Math 431 An Introduction to Probability. Final Exam Solutions

Math 431 An Introduction to Probability. Final Exam Solutions Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

More information