Homework 3 Answer (Due 02/04/2011 Friday) P2.3, P2.7, P2.8, P2.11, P2.16, P2.19, P2.20, P2.21, P2.23, P2.25, P2.26

Size: px
Start display at page:

Download "Homework 3 Answer (Due 02/04/2011 Friday) P2.3, P2.7, P2.8, P2.11, P2.16, P2.19, P2.20, P2.21, P2.23, P2.25, P2.26"

Transcription

1 Homework Answer (Due 0/04/0 Frday) P., P.7, P.8, P., P.6, P.9, P.0, P., P., P., P.6 P.).00 moles o an deal gas are comressed sothermally rom 60.0 to 0.0 L usng a constant external ressure o.00 atm. Calculate q, w, U, and H. he work aganst a constant ressure: w external 4 0 Pa 0 0 m 60 0 m.00 U 0 and H 0 snce 0 and H U P q w.00 4 P.7) For.00 mol o an deal gas, P external = P = Pa. he temerature s changed rom 00.0 C to.0 C, and C,m = /R. Calculate q, w, U, and H. U n C mol K mol 98 K - 7 K 9, m H n C, m,m - - n C R.0 mol K mol 98 K - 7 K 9 q P H 9 w U - q P ( 9 ) ( 9 ) 64 P.) Calculate H and U or the transormaton o.00 mol o an deal gas rom 7.0 C and.00 atm to 7 C and 7.0 atm C P,m K n unts o K mol For an deal gas, H s gven by:

2 ΔH n C d n 600 K K, m d 00 K 600 K K 00K K ΔH ΔU ΔH Δ ΔH n R Δ mol mol K 00 K 9.40 P.) Calculate w or the adabatc exanson o.00 mol o an deal gas at an ntal ressure o.00 bar rom an ntal temerature o 40. K to a nal temerature o 00. K. Wrte an exresson or the work done n the sothermal reversble exanson o the gas at 00. K rom an ntal ressure o.00 bar. What value o the nal ressure would gve the same value o w as the rst art o ths roblem? Assume that C P,m = /R. w ad U n C R - - mol K mol 0 K.870,m w reversble n R ln and ln w n R reversble mol8.447 K mol 00 K w reversble ln n R bar P.) An deal gas undergoes an exanson rom the ntal state descrbed by P,, to a nal state descrbed by P,, n (a) a rocess at the constant external ressure P and (b) n a reversble rocess. Derve exressons or the largest mass that can be lted through a heght h n the surroundngs n these rocesses.

3 wmgh m gh w mgh nr ln nr m ln gh Alternate answer: mg ext A mg ext Ahmgh A m ext gh I w s the average weght to be lted m g w Ah m gh nr ln A m nr ln gh I m s the nal weght mg Ah A m A g gh P.9).0 moles o an deal gas are exanded rom 40. K and an ntal ressure o.00 bar to a nal ressure o.00 bar, and C P,m = /R. Calculate w or the ollowng two cases: a. he exanson s sothermal and reversble. b. he exanson s adabatc and reversble.

4 Wthout resortng to equatons, exlan why the result or art (b) s greater than or less than the result or art (a). a) Calculatng the ntal and nal volumna: n R n R.0 mol K mol 40 K.000 Pa.0 mol K mol 40 K.000 Pa w or an sothermal, reversble rocess s then gven by: nal n R ln ntal w k m.0 mol K mol 40 K ln 0.06 m w b) For an adabatc, reversble rocess: nal ln, where γ C P, m/c, m equaton.4 ntal ln nal ntal nal - ln ntal hereore: nal - ln ntal nal ntal nal ntal - ln - ln ln ln ntal ntal nal nal ntal γ - ntal nal ntalex ln γ nal Wth C P, m R, and C,m R, the nal temerature s: bar nal 40K Ex 0.4 ln 6K bar And nally w or an adabatc rocess and or. moles o gas: w q nc (.mol) (8.447K mol ) (6K 40K) k Less work s done on the surroundngs n art b) because n the adabatc exanson, the temerature alls and thereore the nal volume s less that that n art a). nal m m 4

5 P.0) An deal gas descrbed by = 00. K, P =.00 bar, and = 0.0 L s heated at constant volume untl P = 0.0 bar. It then undergoes a reversble sothermal exanson untl P =.00 bar. It s then restored to ts orgnal state by the extracton o heat at constant ressure. Dect ths closed-cycle rocess n a P dagram. Calculate w or each ste and or the total rocess. What values or w would you calculate the cycle were traversed n the ooste drecton? 0 [bar] [L] Frst we calculate the number o moles: R.00 bar 0.0 L n L bar K mol 00 K 0.40 mol he rocess n the dagram above s descrbed by the stes: ste :,,,, ste :,,,, ste :,,,, In ste (,,,, ) w = 0 snce stays constant In ste (,,,, ) we rst calculate :

6 0.0 bar 00 K bar K hen the work s: w n R ln n R ln 0.0 bar.00 bar mol K mol 000 K ln.0 0 In ste (,,,, ) we rst calculate : and 0 00L And the work: 0 Pa.00 bar 0 m 0 L 00 L w externmal bar L And or the entre crcle: w cycle w w w I the cycle were traversed n the ooste drecton, work o each ste has the same value wth ooste sgn. P.) A ellet o Zn o mass 0.0 g s droed nto a lask contanng dlute H SO 4 at a ressure o P =.00 bar and temerature o = 98 K. What s the reacton that occurs? Calculate w or the rocess. he chemcal equaton or the rocess s: Zn (s) H SO 4 (aq) Zn (aq) SO 4 (aq) H (g) - Frst we calculate the volume o H that s roduced: 6

7 n H H n Zn nh R P 0g 6.9gmol - 0.9mol 0.9mol 8.447K 0 Pa mol 98K.79 0 m Assumng that H w ext, the work s: - 0 Pa.79 0 m - 79 P.) One mole o an deal gas, or whch C,m = /R, ntally at 0.0 C and Pa undergoes a two-stage transormaton. For each o the stages descrbed n the ollowng lst, calculate the nal ressure, as well as q, w, U, and H. Also calculate q, w, U, and H or the comlete rocess. a. he gas s exanded sothermally and reversbly untl the volume doubles. b. Begnnng at the end o the rst stage, the temerature s rased to 80.0 C at constant volume. 6 a) Pa w n R ln mol K mol 9. K ln.69 0 U H 0 because 0 q w.69 0 b) constant volume, then 6, thereore Pa K K Pa U n C, m mol K mol K - 9 K 748 7

8 w = 0 because = 0 q = U = 748 H n C, m n,m R For the overall rocess: - - C.0 mol K mol K - 9 K. 0 q w U H P.6) One mole o an deal gas, or whch C,m = /R, ntally at 98 K and.00 0 Pa undergoes a reversble adabatc comresson. At the end o the rocess, the ressure s Pa. Calculate the nal temerature o the gas. Calculate q, w, U, and H or ths rocess Pa Pa

9 . 98 K 749 K q = 0 or an adabatc rocess. w U n C, m mol K mol 749 K - 98 K H U U R K mol 749 K-98 K P.6) One mole o an deal gas, or whch C,m = /R, ntally at 98 K and.00 0 Pa undergoes a reversble adabatc comresson. At the end o the rocess, the ressure s Pa. Calculate the nal temerature o the gas. Calculate q, w, U, and H or ths rocess Pa Pa. 98 K 749 K q = 0 or an adabatc rocess. w U n C, m mol K mol 749 K - 98 K H U U R K mol 749 K-98 K P.9) A cylndrcal vessel wth rgd adabatc walls s searated nto two arts by a rctonless 9

10 0 adabatc ston. Each art contans 0.0 L o an deal monatomc gas wth C,m = /R. Intally, = 98 K and P =.00 bar n each art. Heat s slowly ntroduced nto the let art usng an electrcal heater untl the ston has moved sucently to the rght to result n a nal ressure P = 7.0 bar n the rght art. Consder the comresson o the gas n the rght art to be a reversble rocess. a. Calculate the work done on the rght art n ths rocess and the nal temerature n the rght art. b. Calculate the nal temerature n the let art and the amount o heat that lowed nto ths art. he number o moles n each art s gven by: mol.0 98 K mol K L bar L.00 bar R n - a) We rst calculate the nal temerature n the rght sde: bar.00 bar.4 98 K 667 K

11 w ΔU n C Δ.0 mol K mol 667 K - 98 K b) Frst we calculate the volume o the rght art: r n R -.0 mol bar L K mol 667 K r r 7.0 bar 4.9 L hereore 000 L 4.9 L 8. L l, and 7.0 bar8. L 800 K n R.0 mol bar L K mol l l l - ΔU n C Δ.0 mol K mol 800 K - 98 K From art a) w = q = U w = P.4) One mole o N n a state dened by = 00. K and =.0 L undergoes an sothermal reversble exanson untl =.0 L. Calculate w assumng (a) that the gas s descrbed by the deal gas law and (b) that the gas s descrbed by the van der Waals equaton o state. What s the ercent error n usng the deal gas law nstead o the van der Waals equaton? he van der Waals arameters or N are lsted n able.. a) For an deal gas: w reversble n R ln.0 L.0 L mol K mol 00 K ln.4 0 b) For a van der Waals gas:

12 w external d R a m b m d R d m b he rst ntegral can be solved by substtutng y = m - b: a m d R d m b y y R dy R ln y hereore, the work s gven by: b ln b w reversble n R ln mol K mol 00 K 0 Pa.66 L bar bar b a b 0 6 m 6 L ln.0 L L.0 L L m.0 0 m.0 And the ercent error s: ercent error %

13 . Calculate dy/dx or the ollowng y: (a) y =ax+b; (b) y =x ; (c) y = x + (x+a) - (d) y = ln(x/); (e) y = C ex(-ax); () Acos(x) (g) Asn(bx) +Ccos(x/b) (h) y = x ex(-ax ) a) dy d(ax+b) a dx dx b) dy d(x ) x 4x dx dx c) ( ) - - dy d(x xa ) d x d( xa ) x ( ) xa x 6 x a dx dx dx dx d) x x d ln( ) d ln( ) dy a a a dx dx x a x x ad a e) dy d[ C ex(- ax)] Cd[ex(- ax)] ac ex( ax) dx dx d (- ax ) a ) dy d[ Acos( x)] Ad[cos( x)] Asn( x) dx dx d( x) g) dy d[ Asn( bx) C cos( x / b)] d[ Asn( bx)] d[ C cos( x / b)] Abcos( bx) C/ bsn( x/ b) dx dx dx dx h) dy d[ x ex(- ax )] ( ) [ex(- )] [ex( d x d ax d ax )] ex( ax ) x ex( ax ) x x dx dx dx dx d( ax ) ax xex( ax ) ax ex( ax ) xex( ax )( ax ) { d( uv) udv vdu }. Calculate dy/dx rom the ollowng equatons (a) ln(x) + y = xy (b) = cos(x)y

14 a) ln( x) ln( x) y xy y x dy dx ln(x) d d[ln(x)] (x -) - ln(x) x - dx dx (x -) d(x -) dx ( x ) ln( x) ln( ) x x x x ( x ) x( x ) { u vdu udv d( ) } v v b) cos( x) y y cos( x) d cos(x) dy cos(x) 0 - (-snx) sn( x) dx dx (cosx) (cos x) mc. P ( C) 4 C ex / Z k. (a) Calculate dp(c)/dc. (b) Show there are two solutons o dp(c)/dc = 0 (C 0) and one soluton gves the most robable seed, C =(R/M) /, where m s the weght o a gas molecule, M s ts molar mass, and k s the Boltzmann constant. a) 4 P( C) C Z mc ex k mc d ex( ) dp( C) 4 k mc d( C ) 4 C ex C dc Z dc k dc Z 4 mc mc mc ex C ex Z k k k 4 mc mc C ex Z k k b) dp( C) 4 mc 0 ex mc C dc Z k k 0 mc d ex( ) k mc mc d( C ) ex mc k k dc d k 4

15 C 0 or mc k Nk A R R 0C C k m N Am M M R C C 0 M / 4. Calculate / x and / y or the ollowng (x, y, z): (a) = xy - (b) = sn(xy) (c) = ln(x y) (d) = yx 4 + ex(-xy ) a) x y y x x x x y x y ) x y y y y b) snxy snxy y cos(xy) x x xy y snxy snxy x cos(xy) y y xy x c) ln xy ln xy y x x xy xy x y ln xy ln xy xy y y xy xy y xy d) 4 4 yx yex( xy) yx y ex( xy) 4yx x x x x yexxy yx y ex( xy) yx y ex( xy) x y y ex xy xy ex xy y y y y 4. Calculate C v = ( U/ ) and C = { (U + P)/ } P or n mole o deal gas assumng that U = nr/ and n s a constant. What knd o molecular roertes do they deend on? U nr

16 C nr U nr C P 7 nr nr nr U P 7 nr P C and C P deend on moles n. P P 6

University Physics AI No. 11 Kinetic Theory

University Physics AI No. 11 Kinetic Theory Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Lecture 2 The First Law of Thermodynamics (Ch.1)

Lecture 2 The First Law of Thermodynamics (Ch.1) Lecture he Frst Law o hermodynamcs (Ch.) Outlne:. Internal Energy, Work, Heatng. Energy Conservaton the Frst Law 3. Quas-statc processes 4. Enthalpy 5. Heat Capacty Internal Energy he nternal energy o

More information

05 Enthalpy of hydration of sodium acetate

05 Enthalpy of hydration of sodium acetate 05 Enthaly of hydraton of sodum acetate Theoretcal background Imortant concets The law of energy conservaton, extensve and ntensve quanttes, thermodynamc state functons, heat, work, nternal energy, enthaly,

More information

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as Mxtures and Solutons Partal Molar Quanttes Partal molar volume he total volume of a mxture of substances s a functon of the amounts of both V V n,n substances (among other varables as well). hus the change

More information

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Mean Molecular Weight

Mean Molecular Weight Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions 1 (a) One mole of an ideal gas at 98 K is expanded reversibly and isothermally from 10 L to 10 L Determine the amount of work in Joules We start

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

THERMAL PROPERTIES OF MATTER 12

THERMAL PROPERTIES OF MATTER 12 HERMAL PROPERIES OF MAER Q.. Reason: he mass o a mole o a substance n grams equals the atomc or molecular mass o the substance. Snce neon has an atomc mass o 0, a mole o neon has a mass o 0 g. Snce N has

More information

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

5 Solving systems of non-linear equations

5 Solving systems of non-linear equations umercal Methods n Chemcal Engneerng 5 Solvng systems o non-lnear equatons 5 Solvng systems o non-lnear equatons... 5. Overvew... 5. assng unctons... 5. D ewtons Method somethng you dd at school... 5. ewton's

More information

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6 Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

More information

Laws of Electromagnetism

Laws of Electromagnetism There are four laws of electromagnetsm: Laws of Electromagnetsm The law of Bot-Savart Ampere's law Force law Faraday's law magnetc feld generated by currents n wres the effect of a current on a loop of

More information

THE IDEAL GAS LAW AND KINETIC THEORY

THE IDEAL GAS LAW AND KINETIC THEORY Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

More information

Physics 100A Homework 8 Chapter 9

Physics 100A Homework 8 Chapter 9 Physcs 00A Hoework 8 Chater 9 9.4 Two ar-track carts oe toward one another on an ar track. Cart has a ass o 0.35 kg and a seed o. /s. Cart has a ass o 0.6 kg. A)What seed ust cart hae the total oentu o

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

Thermodynamics worked examples

Thermodynamics worked examples An Introduction to Mechanical Engineering Part hermodynamics worked examles. What is the absolute ressure, in SI units, of a fluid at a gauge ressure of. bar if atmosheric ressure is.0 bar? Absolute ressure

More information

JCM_VN_AM003_ver01.0 Sectoral scope: 03

JCM_VN_AM003_ver01.0 Sectoral scope: 03 Sectoral scoe: 03 Jont Credtng Mechansm Aroved Methodology VN_AM003 Imrovng the energy effcency of commercal buldngs by utlzaton of hgh effcency equment A. Ttle of the methodology Imrovng the energy effcency

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Heat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics.

Heat and Work. First Law of Thermodynamics 9.1. Heat is a form of energy. Calorimetry. Work. First Law of Thermodynamics. Heat and First Law of Thermodynamics 9. Heat Heat and Thermodynamic rocesses Thermodynamics is the science of heat and work Heat is a form of energy Calorimetry Mechanical equivalent of heat Mechanical

More information

First Law, Heat Capacity, Latent Heat and Enthalpy

First Law, Heat Capacity, Latent Heat and Enthalpy First Law, Heat Caacity, Latent Heat and Enthaly Stehen R. Addison January 29, 2003 Introduction In this section, we introduce the first law of thermodynamics and examine sign conentions. Heat and Work

More information

Ideal Gas and Real Gases

Ideal Gas and Real Gases Ideal Gas and Real Gases Lectures in Physical Chemistry 1 Tamás Turányi Institute of Chemistry, ELTE State roerties state roerty: determines the macroscoic state of a hysical system state roerties of single

More information

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange

More information

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration?

EXERCISES. 16. What is the ionic strength in a solution containing NaCl in c=0.14 mol/dm 3 concentration and Na 3 PO 4 in 0.21 mol/dm 3 concentration? EXERISES 1. The standard enthalpy of reaction is 512 kj/mol and the standard entropy of reaction is 1.60 kj/(k mol) for the denaturalization of a certain protein. Determine the temperature range where

More information

Type: Single Date: Kinetic Theory of Gases. Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14

Type: Single Date: Kinetic Theory of Gases. Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14 Type: Single Date: Objective: Kinetic Theory of Gases Homework: Read (14.1), Do CONCEPT Q. # (1), Do PROBLEMS # (2, 3, 5) Ch. 14 AP Physics Mr. Mirro Kinetic Theory of Gases Date Unlike the condensed phases

More information

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random) Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

More information

THE KINETIC THEORY OF GASES

THE KINETIC THEORY OF GASES Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors

Point cloud to point cloud rigid transformations. Minimizing Rigid Registration Errors Pont cloud to pont cloud rgd transformatons Russell Taylor 600.445 1 600.445 Fall 000-014 Copyrght R. H. Taylor Mnmzng Rgd Regstraton Errors Typcally, gven a set of ponts {a } n one coordnate system and

More information

- The value of a state function is independent of the history of the system. - Temperature is an example of a state function.

- The value of a state function is independent of the history of the system. - Temperature is an example of a state function. First Law of hermodynamics 1 State Functions - A State Function is a thermodynamic quantity whose value deends only on the state at the moment, i. e., the temerature, ressure, volume, etc - he value of

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

MOLECULAR PARTITION FUNCTIONS

MOLECULAR PARTITION FUNCTIONS MOLECULR PRTITIO FUCTIOS Introducton In the last chapter, we have been ntroduced to the three man ensembles used n statstcal mechancs and some examples of calculatons of partton functons were also gven.

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

A Three-Point Combined Compact Difference Scheme

A Three-Point Combined Compact Difference Scheme JOURNAL OF COMPUTATIONAL PHYSICS 140, 370 399 (1998) ARTICLE NO. CP985899 A Three-Pont Combned Compact Derence Scheme Peter C. Chu and Chenwu Fan Department o Oceanography, Naval Postgraduate School, Monterey,

More information

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10 Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

More information

Gas Deliverability Model with Different Vertical Wells Properties

Gas Deliverability Model with Different Vertical Wells Properties PROC. ITB En. Scence Vol. 35 B, No., 003, 5-38 5 Gas Delverablty Model wth Dfferent Vertcal Wells Proertes L. Mucharam, P. Sukarno, S. Srear,3, Z. Syhab, E. Soewono,3, M. Ar 3 & F. Iral 3 Deartment of

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

More information

total A A reag total A A r eag

total A A reag total A A r eag hapter 5 Standardzng nalytcal Methods hapter Overvew 5 nalytcal Standards 5B albratng the Sgnal (S total ) 5 Determnng the Senstvty (k ) 5D Lnear Regresson and albraton urves 5E ompensatng for the Reagent

More information

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

More information

Review C: Work and Kinetic Energy

Review C: Work and Kinetic Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physcs 8.2 Revew C: Work and Knetc Energy C. Energy... 2 C.. The Concept o Energy... 2 C..2 Knetc Energy... 3 C.2 Work and Power... 4 C.2. Work Done by

More information

Chapter 8: Quantities in Chemical Reactions

Chapter 8: Quantities in Chemical Reactions Ch 8 Page 1 Chapter 8: Quantities in Chemical Reactions Stoichiometry: the numerical relationship between chemical quantities in a balanced chemical equation. Ex. 4NH 3 + 5O 2 4NO + 6H 2 O The reaction

More information

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry 1 Battery Technology and Markets, Sprng 2010 Lecture 1: Introducton to Electrochemstry 1. Defnton of battery 2. Energy storage devce: voltage and capacty 3. Descrpton of electrochemcal cell and standard

More information

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

More information

Viscosity of Solutions of Macromolecules

Viscosity of Solutions of Macromolecules Vscosty of Solutons of Macromolecules When a lqud flows, whether through a tube or as the result of pourng from a vessel, layers of lqud slde over each other. The force f requred s drectly proportonal

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

A Master Time Value of Money Formula. Floyd Vest

A Master Time Value of Money Formula. Floyd Vest A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.

More information

Loop Parallelization

Loop Parallelization - - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

CHAPTER 8: CHEMICAL COMPOSITION

CHAPTER 8: CHEMICAL COMPOSITION CHAPTER 8: CHEMICAL COMPOSITION Active Learning: 1-4, 6-8, 12, 18-25; End-of-Chapter Problems: 3-4, 9-82, 84-85, 87-92, 94-104, 107-109, 111, 113, 119, 125-126 8.2 ATOMIC MASSES: COUNTING ATOMS BY WEIGHING

More information

Texas Instruments 30X IIS Calculator

Texas Instruments 30X IIS Calculator Texas Instruments 30X IIS Calculator Keystrokes for the TI-30X IIS are shown for a few topcs n whch keystrokes are unque. Start by readng the Quk Start secton. Then, before begnnng a specfc unt of the

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mt.edu 5.74 Introductory Quantum Mechancs II Sprng 9 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 4-1 4.1. INTERACTION OF LIGHT

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

Rotation and Conservation of Angular Momentum

Rotation and Conservation of Angular Momentum Chapter 4. Rotaton and Conservaton of Angular Momentum Notes: Most of the materal n ths chapter s taken from Young and Freedman, Chaps. 9 and 0. 4. Angular Velocty and Acceleraton We have already brefly

More information

Shielding Equations and Buildup Factors Explained

Shielding Equations and Buildup Factors Explained Sheldng Equatons and uldup Factors Explaned Gamma Exposure Fluence Rate Equatons For an explanaton of the fluence rate equatons used n the unshelded and shelded calculatons, vst ths US Health Physcs Socety

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O Chem 100 Mole conversions and stoichiometry worksheet 1. How many Ag atoms are in.4 mol Ag atoms? 6.0 10 Ag atoms 4.4 mol Ag atoms = 1.46 10 Ag atoms 1 mol Ag atoms. How many Br molecules are in 18. mol

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Chapter 3 Calculations with Chemical Formulas and Equations Concept Check 3.1 You have 1.5 moles of tricycles. a. How many moles of seats do you have? b. How many moles of tires do you have? c. How could

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8

Chemical Composition. Introductory Chemistry: A Foundation FOURTH EDITION. Atomic Masses. Atomic Masses. Atomic Masses. Chapter 8 Introductory Chemistry: A Foundation FOURTH EDITION by Steven S. Zumdahl University of Illinois Chemical Composition Chapter 8 1 2 Atomic Masses Balanced equation tells us the relative numbers of molecules

More information

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique.

How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. How much does a single atom weigh? Different elements weigh different amounts related to what makes them unique. What units do we use to define the weight of an atom? amu units of atomic weight. (atomic

More information

0.02t if 0 t 3 δ t = 0.045 if 3 < t

0.02t if 0 t 3 δ t = 0.045 if 3 < t 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

Optimal maintenance of a production-inventory system with continuous repair times and idle periods

Optimal maintenance of a production-inventory system with continuous repair times and idle periods Proceedngs o the 3 Internatonal Conerence on Aled Mathematcs and Comutatonal Methods Otmal mantenance o a roducton-nventory system wth contnuous rear tmes and dle erods T. D. Dmtrakos* Deartment o Mathematcs

More information

THE BAROMETRIC FALLACY

THE BAROMETRIC FALLACY THE BAROMETRIC FALLACY It is often assumed that the atmosheric ressure at the surface is related to the atmosheric ressure at elevation by a recise mathematical relationshi. This relationshi is that given

More information

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest 1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Chapter 12 Inductors and AC Circuits

Chapter 12 Inductors and AC Circuits hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for

More information

Effects of Extreme-Low Frequency Electromagnetic Fields on the Weight of the Hg at the Superconducting State.

Effects of Extreme-Low Frequency Electromagnetic Fields on the Weight of the Hg at the Superconducting State. Effects of Etreme-Low Frequency Electromagnetc Felds on the Weght of the at the Superconductng State. Fran De Aquno Maranhao State Unversty, Physcs Department, S.Lus/MA, Brazl. Copyrght 200 by Fran De

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass.

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass. Counting Atoms Mg burns in air (O 2 ) to produce white magnesium oxide, MgO. How can we figure out how much oxide is produced from a given mass of Mg? PROBLEM: If If 0.200 g of Mg is is burned, how much

More information

The issue of June, 1925 of Industrial and Engineering Chemistry published a famous paper entitled

The issue of June, 1925 of Industrial and Engineering Chemistry published a famous paper entitled Revsta Cêncas & Tecnologa Reflectons on the use of the Mccabe and Thele method GOMES, João Fernando Perera Chemcal Engneerng Department, IST - Insttuto Superor Técnco, Torre Sul, Av. Rovsco Pas, 1, 1049-001

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Fugacity, Activity, and Standard States

Fugacity, Activity, and Standard States Fugacity, Activity, and Standard States Fugacity of gases: Since dg = VdP SdT, for an isothermal rocess, we have,g = 1 Vd. For ideal gas, we can substitute for V and obtain,g = nrt ln 1, or with reference

More information

Experiment 5 Elastic and Inelastic Collisions

Experiment 5 Elastic and Inelastic Collisions PHY191 Experment 5: Elastc and Inelastc Collsons 8/1/014 Page 1 Experment 5 Elastc and Inelastc Collsons Readng: Bauer&Westall: Chapter 7 (and 8, or center o mass deas) as needed 1. Goals 1. Study momentum

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

Factoring Quadratic Expressions

Factoring Quadratic Expressions Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Chapter 6 Inductance, Capacitance, and Mutual Inductance

Chapter 6 Inductance, Capacitance, and Mutual Inductance Chapter 6 Inductance Capactance and Mutual Inductance 6. The nductor 6. The capactor 6.3 Seres-parallel combnatons of nductance and capactance 6.4 Mutual nductance 6.5 Closer look at mutual nductance Oerew

More information

PERRON FROBENIUS THEOREM

PERRON FROBENIUS THEOREM PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, ()

More information

Support vector domain description

Support vector domain description Pattern Recognton Letters 20 (1999) 1191±1199 www.elsever.nl/locate/patrec Support vector doman descrpton Davd M.J. Tax *,1, Robert P.W. Dun Pattern Recognton Group, Faculty of Appled Scence, Delft Unversty

More information

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004 Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

More information