PERRON FROBENIUS THEOREM

Save this PDF as:

Size: px
Start display at page:

Transcription

1 PERRON FROBENIUS THEOREM R. CLARK ROBINSON Defnton. A n n matrx M wth real entres m, s called a stochastc matrx provded () all the entres m satsfy 0 m, () each of the columns sum to one, m = for all, () each row has some nonzero entry (t s possble to make a transton to each of the th -states from some other state), and (v) some column has more than one nonzero entry (from one of the th -states there are two possble followng states). The entry m s the probablty that somethng taken from the th -state s returned to the th -state. In probablty, usually the rows are assumed to sum to one rather than the columns. However, n that stuaton, the columns are wrtten as rows and the matrx s multpled on the rght of the vector. We retan column vectors whch are multpled on the left by the matrx. A stochastc matrx M s called regular or eventually postve provded there s a q 0 > 0 such that M q 0 has all postve entres. Ths means that for ths terate, t s possble to make a transton from any state to any other state. It then follows that M q has all postve entres for q q 0. A regular stochastc matrx automatcally satsfes condtons () and (v) n the defnton of a stochastc matrx. Let x (0) 0 s the amount of the materal at the th -locaton at tme 0. Then m x (0) s the amount of materal from the th -locaton that s returned to the th -locaton at tme. The total amount at the th -locaton at tme s the sum of the materal from all the stes, x () = m x (0). Let x (q) = x (q). x (q) n be the vector of the amount of materal at all the stes. By the above formula, x () = Mx (0) and more generally x (q+) = Mx (q). Date: Aprl 2, 2002.

2 2 R. CLARK ROBINSON Notce that the total amount of materal at tme s the same as at tme 0: x () = m x (0) = ( ) m x (0) Call ths amount X. Then, = p (q) x (0). = x(q) X s the proporton of the materal at the th -ste at tme q. Lettng ( ) p (q) = = X x(q) be the vector of these proportons, p (q) Mp (q) = M x(q) X = X Mx(q) = X x(q+) = p (q+) also transforms by multplcaton by the matrx M. For a stochastc matrx M, s always an egenvalue of the the transpose of M, M T, wth egenvector. : M T m.. =.. m n Snce M T and M have the same egenvalues, M always has as an egenvalue. Before statng the general result, we gve some examples. Example. Let M = Ths has egenvalues, 0.5, and 0.2. (We do not gve the characterstc polynomal, but do derve an egenvector for each of these values.)

3 PERRON FROBENIUS THEOREM 3 For λ =, M I = Thus, v = 3v 3 and v 2 = 6v 3. Snce we want = v + v 2 + v 3 = ( )v 3 = 0v 3, v 3 = 0., and v = For λ 2 = 0.5, M 0.5 I = Thus, 2v = v 3 and 2v 2 = 3v 3, and v 2 = 3. 2 Notce that v 2 + v2 2 + v2 3 = = 0. Ths s always the case for the egenvectors of the other egenvalues.

4 4 R. CLARK ROBINSON For λ 3 = 0.2, Thus, v = v 3 and v 2 = 0, and M 0.2 I = v 3 = 0. Notce that v 3 + v3 2 + v3 3 = + 0 = 0 s true n ths case as well. If the orgnal dstrbuton s gven by p (0) = = , then M q p (0) = ( ) q 3 + ( ) q whch converges to the dstrbuton v = Take any ntal dstrbuton p (0) wth p(0) =. Wrtng p (0) = y v + y 2 v 2 + y 3 v 3, = p (0) ) ) ) = y ( v + y 2 ( v 2 + y 3 ( v 3 Thus, = y () + y 2 (0) + y 3 (0) = y. p (0) = v + y 2 v 2 + y 3 v 3,

5 PERRON FROBENIUS THEOREM 5 and M q p (0) = v + y 2 (0.5) q v 2 + y 3 (0.2) q v 3 converges to v, the egenvector for λ =. Example 2 (Complex Egenvalues). The followng stochastc matrx llustrates the fact that a regular stochastc matrx can have complex egenvalues. Let M = The egenvalues are λ = and 0.4 ± Notce that 0.4 ± 0. 3 = = 0.9 <. Example 3 (Not Regular). An example of a stochastc matrx whch s not regular (nor transtve) s gven by M = , whch has egenvalues λ =,, 0.5, and 0.3. Notce that states and 2 nterchange wth each other and states 3 and 4 nterchange, but there s no nterchange between the par of stes and 2 wth the par of stes 3 and 4. An example of a stochastc matrx whch s transtve but not regular s gven by M = , whch has egenvalues λ =,, and ± 0.5. Here s s possble to get from any ste to any other ste, but startng at ste one, the even terates are always at ether stes 3 or 4 and the odd terates are always at ether stes or 2. Thus there s no one power for whch all the transton probabltes are postve. Thus, M s not regular. The followng theorem summarzes some of the results about regular stochastc matrces whch the above examples llustrated. Theorem 0.. Let M be a regular stochastc matrx. (a) The matrx M has as a egenvalue of multplcty one. The egenvector v can be chosen wth all postve entres and v =. (It must have ether all postve entres or all negatve entres.) (b) All the other egenvalues λ have λ <. If v s the egenvector for λ, then v = 0. (c) If p s any probablty dstrbuton wth =, then p = v + y v. Also, M q p goes to v as q goes to nfnty. =2

6 6 R. CLARK ROBINSON Sketch of the proof. We assume below that all the m > 0, whch can be done by takng a power f necessary. (a) The multplcty of the egenvalue s one. We noted above M T always has as an egenvalues so t s always an egenvalue of M. Agan, to dscuss the multplcty, we look at M T. Assume M T v = v and not all the v are equal. Assume that k s the ndex for whch v k s largest. By scalar multplcaton by f necessary we can take v k postve. Thus, v k = v k v for all and v k > v l for some l. Then, v k = m k v < m k v k = v k. The second strct nequalty uses the fact that all the m > 0,.e., that M s regular. Snce ths shows v k > v k, the contradcton mples that there are no such other vectors,.e., that there can only be one egenvector for the egenvalue. To complete the proof, we would have to consder the case wth only one egenvector but an algebrac multplcty of the characterstc equaton. We leave ths detal to the references. (b) Case (): Assume λ s a real egenvalue. We show that λ <. Agan, assume that M T v = λv. Let k be such that v k = v k v for all and v k > v l for some l. Then, λv k = m k v < m k v k = v k. Ths shows that λv k < v k, so λ <. Case (): Assume λ s a real egenvalue. We show that λ >. Agan, assume that M T v = λv. Let k be such that v k = v k v for all and v k > v l for some l,.e., v v k for all and v l > v k for some l. Then, λv k = > m k v m k ( v k ) = v k. Ths shows that λv k > v k, so λ >.

7 PERRON FROBENIUS THEOREM 7 Care () Assume λ = r e 2πω s a complex egenvalue wth complex egenvector v. Assume the v are chosen wth v k real and v k Re(v ) for all. Then, Re(λ q v k ) = Re(r q e 2πqω v k ) = Re((M q v) k ) = (M q v)re(v) = ( ) m (q) k Re(v ) < ( ) m (q) k v k = v k. Therefore, r q Re(e 2πqω ) < for all q. Snce we can fnd a q for whch Re(e 2πqω ) s very close to, we need r q < so r = λ <. (c) Let p be a probablty dstrbuton wth p =. The egenvectors are a bass, so there exst y,... y n such that p = y v. Then, = = p Thus, = y v + = y + = y. y =2 y (0) =2 p = v + y v =2 as clamed. Wrtng the teraton as f all the egenvalues are real, M q p = M q v + v y M q v = v + =2 y λ q v =2 whch tends to v because all the λ q < for 2.

8 8 R. CLARK ROBINSON References. Gantmacher, F.R., The Theory of Matrces, Volume I, II, Chelsea Publ. Co., New York, Strang, G., Lnear Algebra and Its Applcatons, Thrd Edton, Harcourt Brace Jovanovch Publshers, San Dego, 988. Department of Mathematcs, Northwestern Unversty, Evanston IL E-mal address:

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

Graph Theory and Cayley s Formula

Graph Theory and Cayley s Formula Chad Casarotto August 10, 2006 Contents 1 Introducton 1 2 Bascs and Defntons 1 Cayley s Formula 4 4 Prüfer Encodng A Forest of Trees 7 1 Introducton In ths paper, I wll

Recurrence. 1 Definitions and main statements

Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

6. EIGENVALUES AND EIGENVECTORS 3 = 3 2

EIGENVALUES AND EIGENVECTORS The Characterstc Polynomal If A s a square matrx and v s a non-zero vector such that Av v we say that v s an egenvector of A and s the correspondng egenvalue Av v Example :

where the coordinates are related to those in the old frame as follows.

Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

The eigenvalue derivatives of linear damped systems

Control and Cybernetcs vol. 32 (2003) No. 4 The egenvalue dervatves of lnear damped systems by Yeong-Jeu Sun Department of Electrcal Engneerng I-Shou Unversty Kaohsung, Tawan 840, R.O.C e-mal: yjsun@su.edu.tw

Formula of Total Probability, Bayes Rule, and Applications

1 Formula of Total Probablty, Bayes Rule, and Applcatons Recall that for any event A, the par of events A and A has an ntersecton that s empty, whereas the unon A A represents the total populaton of nterest.

greatest common divisor

4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia

To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate

QUANTUM MECHANICS, BRAS AND KETS

PH575 SPRING QUANTUM MECHANICS, BRAS AND KETS The followng summares the man relatons and defntons from quantum mechancs that we wll be usng. State of a phscal sstem: The state of a phscal sstem s represented

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

5. Simultaneous eigenstates: Consider two operators that commute: Â η = a η (13.29)

5. Smultaneous egenstates: Consder two operators that commute: [ Â, ˆB ] = 0 (13.28) Let Â satsfy the followng egenvalue equaton: Multplyng both sdes by ˆB Â η = a η (13.29) ˆB [ Â η ] = ˆB [a η ] = a

We are now ready to answer the question: What are the possible cardinalities for finite fields?

Chapter 3 Fnte felds We have seen, n the prevous chapters, some examples of fnte felds. For example, the resdue class rng Z/pZ (when p s a prme) forms a feld wth p elements whch may be dentfed wth the

2.4 Bivariate distributions

page 28 2.4 Bvarate dstrbutons 2.4.1 Defntons Let X and Y be dscrete r.v.s defned on the same probablty space (S, F, P). Instead of treatng them separately, t s often necessary to thnk of them actng together

State function: eigenfunctions of hermitian operators-> normalization, orthogonality completeness

Schroednger equaton Basc postulates of quantum mechancs. Operators: Hermtan operators, commutators State functon: egenfunctons of hermtan operators-> normalzaton, orthogonalty completeness egenvalues and

+ + + - - This circuit than can be reduced to a planar circuit

MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

STATIONARY DISTRIBUTIONS OF THE BERNOULLI TYPE GALTON-WATSON BRANCHING PROCESS WITH IMMIGRATION

Communcatons on Stochastc Analyss Vol 5, o 3 (2 457-48 Serals Publcatons wwwseralsublcatonscom STATIOARY DISTRIBUTIOS OF THE BEROULLI TYPE GALTO-WATSO BRACHIG PROCESS WITH IMMIGRATIO YOSHIORI UCHIMURA

x f(x) 1 0.25 1 0.75 x 1 0 1 1 0.04 0.01 0.20 1 0.12 0.03 0.60

BIVARIATE DISTRIBUTIONS Let be a varable that assumes the values { 1,,..., n }. Then, a functon that epresses the relatve frequenc of these values s called a unvarate frequenc functon. It must be true

The Magnetic Field. Concepts and Principles. Moving Charges. Permanent Magnets

. The Magnetc Feld Concepts and Prncples Movng Charges All charged partcles create electrc felds, and these felds can be detected by other charged partcles resultng n electrc force. However, a completely

BERNSTEIN POLYNOMIALS

On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME

A CHARACTERIZATION FOR THE LENGTH OF CYCLES OF THE N - NUMBER DUCCI GAME NEIL J. CALKIN DEPARTMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, SC 29634-1907 AND JOHN G. STEVENS AND DIANA M. THOMAS

Solutions to the exam in SF2862, June 2009

Solutons to the exam n SF86, June 009 Exercse 1. Ths s a determnstc perodc-revew nventory model. Let n = the number of consdered wees,.e. n = 4 n ths exercse, and r = the demand at wee,.e. r 1 = r = r

Aryabhata s Root Extraction Methods. Abhishek Parakh Louisiana State University Aug 31 st 2006

Aryabhata s Root Extracton Methods Abhshek Parakh Lousana State Unversty Aug 1 st 1 Introducton Ths artcle presents an analyss of the root extracton algorthms of Aryabhata gven n hs book Āryabhatīya [1,

Lecture 2: Absorbing states in Markov chains. Mean time to absorption. Wright-Fisher Model. Moran Model.

Lecture 2: Absorbng states n Markov chans. Mean tme to absorpton. Wrght-Fsher Model. Moran Model. Antonna Mtrofanova, NYU, department of Computer Scence December 8, 2007 Hgher Order Transton Probabltes

Support Vector Machines

Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

On Robust Network Planning

On Robust Network Plannng Al Tzghadam School of Electrcal and Computer Engneerng Unversty of Toronto, Toronto, Canada Emal: al.tzghadam@utoronto.ca Alberto Leon-Garca School of Electrcal and Computer Engneerng

IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS 1

Nov Sad J. Math. Vol. 36, No. 2, 2006, 0-09 IMPROVEMENT OF CONVERGENCE CONDITION OF THE SQUARE-ROOT INTERVAL METHOD FOR MULTIPLE ZEROS Modrag S. Petkovć 2, Dušan M. Mloševć 3 Abstract. A new theorem concerned

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons

Loop Parallelization

- - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze

1 Example 1: Axis-aligned rectangles

COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

What is Candidate Sampling

What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

An Alternative Way to Measure Private Equity Performance

An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

Today s class. Chapter 13. Sources of uncertainty. Decision making with uncertainty

Today s class Probablty theory Bayesan nference From the ont dstrbuton Usng ndependence/factorng From sources of evdence Chapter 13 1 2 Sources of uncertanty Uncertan nputs Mssng data Nosy data Uncertan

SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY

SOME MATHEMATICAL FOUNDATIONS OF CRYPTOGRAPHY PARKER HAVIZA Abstract. Ths paper ntroduces three mathematcal methods of sharng encrypted nformaton: the Pohlg-Hellman Key Exchange and the ElGamal and RSA

A Note on the Decomposition of a Random Sample Size

A Note on the Decomposton of a Random Sample Sze Klaus Th. Hess Insttut für Mathematsche Stochastk Technsche Unverstät Dresden Abstract Ths note addresses some results of Hess 2000) on the decomposton

On Lockett pairs and Lockett conjecture for π-soluble Fitting classes

On Lockett pars and Lockett conjecture for π-soluble Fttng classes Lujn Zhu Department of Mathematcs, Yangzhou Unversty, Yangzhou 225002, P.R. Chna E-mal: ljzhu@yzu.edu.cn Nanyng Yang School of Mathematcs

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL Thomas S. Ferguson and C. Zachary Glsten UCLA and Bell Communcatons May 985, revsed 2004 Abstract. Optmal nvestment polces for maxmzng the expected

A Novel Methodology of Working Capital Management for Large. Public Constructions by Using Fuzzy S-curve Regression

Novel Methodology of Workng Captal Management for Large Publc Constructons by Usng Fuzzy S-curve Regresson Cheng-Wu Chen, Morrs H. L. Wang and Tng-Ya Hseh Department of Cvl Engneerng, Natonal Central Unversty,

How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence

1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh

Section 5.3 Annuities, Future Value, and Sinking Funds

Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

Linear Algebra for Quantum Mechanics

prevous ndex next Lnear Algebra for Quantum Mechancs Mchael Fowler 0/4/08 Introducton We ve seen that n quantum mechancs, the state of an electron n some potental s gven by a ψ x t, and physcal varables

The Mathematical Derivation of Least Squares

Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

Yves Genin, Yurii Nesterov, Paul Van Dooren. CESAME, Universite Catholique de Louvain. B^atiment Euler, Avenue G. Lema^tre 4-6

Submtted to ECC 99 as a regular paper n Lnear Systems Postve transfer functons and convex optmzaton 1 Yves Genn, Yur Nesterov, Paul Van Dooren CESAME, Unverste Catholque de Louvan B^atment Euler, Avenue

MANY machine learning and pattern recognition applications

1 Trace Rato Problem Revsted Yangqng Ja, Fepng Ne, and Changshu Zhang Abstract Dmensonalty reducton s an mportant ssue n many machne learnng and pattern recognton applcatons, and the trace rato problem

On Leonid Gurvits s proof for permanents

On Leond Gurvts s proof for permanents Monque Laurent and Alexander Schrver Abstract We gve a concse exposton of the elegant proof gven recently by Leond Gurvts for several lower bounds on permanents.

L10: Linear discriminants analysis

L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

Stochastic epidemic models revisited: Analysis of some continuous performance measures

Stochastc epdemc models revsted: Analyss of some contnuous performance measures J.R. Artalejo Faculty of Mathematcs, Complutense Unversty of Madrd, 28040 Madrd, Span A. Economou Department of Mathematcs,

Section 5.4 Annuities, Present Value, and Amortization

Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

How Much to Bet on Video Poker

How Much to Bet on Vdeo Poker Trstan Barnett A queston that arses whenever a gae s favorable to the player s how uch to wager on each event? Whle conservatve play (or nu bet nzes large fluctuatons, t lacks

The Distribution of Eigenvalues of Covariance Matrices of Residuals in Analysis of Variance

JOURNAL OF RESEARCH of the Natonal Bureau of Standards - B. Mathem atca l Scence s Vol. 74B, No.3, July-September 1970 The Dstrbuton of Egenvalues of Covarance Matrces of Resduals n Analyss of Varance

Ring structure of splines on triangulations

www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon

Using Series to Analyze Financial Situations: Present Value

2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

Math 31 Lesson Plan. Day 27: Fundamental Theorem of Finite Abelian Groups. Elizabeth Gillaspy. November 11, 2011

Math 31 Lesson Plan Day 27: Fundamental Theorem of Fnte Abelan Groups Elzabeth Gllaspy November 11, 2011 Supples needed: Colored chal Quzzes Homewor 4 envelopes: evals, HW, presentaton rubrcs, * probs

Journal of Computational and Applied Mathematics

Journal of Computatonal and Appled Mathematcs 37 (03) 6 35 Contents lsts avalable at ScVerse ScenceDrect Journal of Computatonal and Appled Mathematcs journal homepage: wwwelsevercom/locate/cam The nverse

Communication Networks II Contents

8 / 1 -- Communcaton Networs II (Görg) -- www.comnets.un-bremen.de Communcaton Networs II Contents 1 Fundamentals of probablty theory 2 Traffc n communcaton networs 3 Stochastc & Marovan Processes (SP

Gibbs Free Energy and Chemical Equilibrium (or how to predict chemical reactions without doing experiments)

Gbbs Free Energy and Chemcal Equlbrum (or how to predct chemcal reactons wthout dong experments) OCN 623 Chemcal Oceanography Readng: Frst half of Chapter 3, Snoeynk and Jenkns (1980) Introducton We want

The material in this lecture covers the following in Atkins. 11.5 The informtion of a wavefunction (d) superpositions and expectation values

Lecture 7: Expectaton Values The materal n ths lecture covers the followng n Atkns. 11.5 The nformton of a wavefuncton (d) superpostons and expectaton values Lecture on-lne Expectaton Values (PDF) Expectaton

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer

Generalizing the degree sequence problem

Mddlebury College March 2009 Arzona State Unversty Dscrete Mathematcs Semnar The degree sequence problem Problem: Gven an nteger sequence d = (d 1,...,d n ) determne f there exsts a graph G wth d as ts

Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Analysis & Numerik

Otto-von-Guercke-Unverstät Magdeburg Fakultät für Mathematk Insttut für Analyss & Numerk Weerstraß-Insttut für Angewandte Analyss & Stochastk Berln On the Effcency and Condton of the Core Routne of the

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

The complex inverse trigonometric and hyperbolic functions

Physcs 116A Wnter 010 The complex nerse trgonometrc and hyperbolc functons In these notes, we examne the nerse trgonometrc and hyperbolc functons, where the arguments of these functons can be complex numbers

Logical Development Of Vogel s Approximation Method (LD-VAM): An Approach To Find Basic Feasible Solution Of Transportation Problem

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME, ISSUE, FEBRUARY ISSN 77-866 Logcal Development Of Vogel s Approxmaton Method (LD- An Approach To Fnd Basc Feasble Soluton Of Transportaton

z(t) = z 1 (t) + t(z 2 z 1 ) z(t) = 1 + i + t( 2 3i (1 + i)) z(t) = 1 + i + t( 3 4i); 0 t 1

(4.): ontours. Fnd an admssble parametrzaton. (a). the lne segment from z + to z 3. z(t) z (t) + t(z z ) z(t) + + t( 3 ( + )) z(t) + + t( 3 4); t (b). the crcle jz j 4 traversed once clockwse startng at

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

Searching Algorithms. Searching and Sorting Algorithms, Complexity Analysis. Searching Algorithms. Searching Algorithms.

Searchng Algorthms Searchng and Sortng Algorthms, General defnton Locate an element x n a lst of dstnct elements a 1, or determne that t s not n the lst Lnear search Algorthm : Lnear search Input: unsorted

A Computer Technique for Solving LP Problems with Bounded Variables

Dhaka Unv. J. Sc. 60(2): 163-168, 2012 (July) A Computer Technque for Solvng LP Problems wth Bounded Varables S. M. Atqur Rahman Chowdhury * and Sanwar Uddn Ahmad Department of Mathematcs; Unversty of

Inequality and The Accounting Period. Quentin Wodon and Shlomo Yitzhaki. World Bank and Hebrew University. September 2001.

Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

9.1 The Cumulative Sum Control Chart

Learnng Objectves 9.1 The Cumulatve Sum Control Chart 9.1.1 Basc Prncples: Cusum Control Chart for Montorng the Process Mean If s the target for the process mean, then the cumulatve sum control chart s

VLSI Technology Dr. Nandita Dasgupta Department of Electrical Engineering Indian Institute of Technology, Madras

VLI Technology Dr. Nandta Dasgupta Department of Electrcal Engneerng Indan Insttute of Technology, Madras Lecture - 11 Oxdaton I netcs of Oxdaton o, the unt process step that we are gong to dscuss today

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

Calculation of Sampling Weights

Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

Math 131: Homework 4 Solutions

Math 3: Homework 4 Solutons Greg Parker, Wyatt Mackey, Chrstan Carrck October 6, 05 Problem (Munkres 3.) Let {A n } be a sequence of connected subspaces of X such that A n \ A n+ 6= ; for all n. Then S

Section C2: BJT Structure and Operational Modes

Secton 2: JT Structure and Operatonal Modes Recall that the semconductor dode s smply a pn juncton. Dependng on how the juncton s based, current may easly flow between the dode termnals (forward bas, v

1 Approximation Algorithms

CME 305: Dscrete Mathematcs and Algorthms 1 Approxmaton Algorthms In lght of the apparent ntractablty of the problems we beleve not to le n P, t makes sense to pursue deas other than complete solutons

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

Global stability of Cohen-Grossberg neural network with both time-varying and continuous distributed delays

Global stablty of Cohen-Grossberg neural network wth both tme-varyng and contnuous dstrbuted delays José J. Olvera Departamento de Matemátca e Aplcações and CMAT, Escola de Cêncas, Unversdade do Mnho,

Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio

Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of

Extending Probabilistic Dynamic Epistemic Logic

Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

2. Linear Algebraic Equations

2. Lnear Algebrac Equatons Many physcal systems yeld smultaneous algebrac equatons when mathematcal functons are requred to satsfy several condtons smultaneously. Each condton results n an equaton that

SIMPLE LINEAR CORRELATION

SIMPLE LINEAR CORRELATION Smple lnear correlaton s a measure of the degree to whch two varables vary together, or a measure of the ntensty of the assocaton between two varables. Correlaton often s abused.

Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION

Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble

Fisher Markets and Convex Programs

Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and

The Performance Analysis Of A M/M/2/2+1 Retrial Queue With Unreliable Server

Journal of Statstcal Scence and Applcaton, October 5, Vol. 3, No. 9-, 63-74 do:.765/38-4/5.9.3 D DAV I D PUBLISHING The Performance Analyss Of A M/M//+ Retral Queue Wth Unrelable Server R. Kalyanaraman

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

Non-degenerate Hilbert Cubes in Random Sets

Journal de Théore des Nombres de Bordeaux 00 (XXXX), 000 000 Non-degenerate Hlbert Cubes n Random Sets par Csaba Sándor Résumé. Une légère modfcaton de la démonstraton du lemme des cubes de Szemeréd donne

Do Hidden Variables. Improve Quantum Mechanics?

Radboud Unverstet Njmegen Do Hdden Varables Improve Quantum Mechancs? Bachelor Thess Author: Denns Hendrkx Begeleder: Prof. dr. Klaas Landsman Abstract Snce the dawn of quantum mechancs physcst have contemplated

Complex Number Representation in RCBNS Form for Arithmetic Operations and Conversion of the Result into Standard Binary Form

Complex Number epresentaton n CBNS Form for Arthmetc Operatons and Converson of the esult nto Standard Bnary Form Hatm Zan and. G. Deshmukh Florda Insttute of Technology rgd@ee.ft.edu ABSTACT Ths paper

On entropy for mixtures of discrete and continuous variables

On entropy for mxtures of dscrete and contnuous varables Chandra Nar Balaj Prabhakar Devavrat Shah Abstract Let X be a dscrete random varable wth support S and f : S S be a bjecton. hen t s wellknown that

Formulating & Solving Integer Problems Chapter 11 289

Formulatng & Solvng Integer Problems Chapter 11 289 The Optonal Stop TSP If we drop the requrement that every stop must be vsted, we then get the optonal stop TSP. Ths mght correspond to a ob sequencng

Product-Form Stationary Distributions for Deficiency Zero Chemical Reaction Networks

Bulletn of Mathematcal Bology (21 DOI 1.17/s11538-1-9517-4 ORIGINAL ARTICLE Product-Form Statonary Dstrbutons for Defcency Zero Chemcal Reacton Networks Davd F. Anderson, Gheorghe Cracun, Thomas G. Kurtz

Compiling for Parallelism & Locality. Dependence Testing in General. Algorithms for Solving the Dependence Problem. Dependence Testing

Complng for Parallelsm & Localty Dependence Testng n General Assgnments Deadlne for proect 4 extended to Dec 1 Last tme Data dependences and loops Today Fnsh data dependence analyss for loops General code