# Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass, temperature Microscopic Properties at the molecular level Not readily observable Mass of molecules, molecular speed, energy, collision frequency CHEM 1000A 3.0 Gases 2 Macroscopic Properties Our aim is to look at the relationship between the macroscopic properties of a gas and end up with the gas laws CHEM 1000A 3.0 Gases 3

2 Pressure To contain a gas you must have a container capable of exerting a force on it (e.g. the walls of a balloon). This implies that the the gas is exerting a balancing force Normally we talk about the pressure (force/area) rather than force CHEM 1000A 3.0 Gases 4 Measuring Pressure The simplest way to measure gas pressure is to have it balance a liquid pressure. Therefore we need to quantify the liquid pressure CHEM 1000A 3.0 Gases 5 Consider a cylinder of liquid with area A and height h The force exerted at the bottom of the cylinder is its weight F = m.g The pressure exerted is P = F/A = m.g/a The density of the liquid is d=m/ and m = d. but =A.h So P = m.g/a = g..d/a = g.a.h.d/a = g.h.d h A CHEM 1000A 3.0 Gases 6

3 Barometer To measure Atmospheric Pressure On the left the tube is open On the right the tube is closed and a liquid column is supported by the atmospheric pressure: Air pressure equals the liquid pressure CHEM 1000A 3.0 Gases 7 Barometer ctd So for a barometer P=g.h.d P=atmospheric pressure h = height of liquid column d = density of the liquid CHEM 1000A 3.0 Gases 8 Atmospheric Pressure By definition the average pressure at sea level will support a column of 760 mm of mercury. (760 torr) What is this in SI units? P=g.h.d g = 9.81 m.s -2, h = 0.76 m, d Hg = 13.6 g.cm -3 = 13.6 kg.l -1 = 13.6x10 3 kg.m -3 P = 9.81x0.76x13.6x10 3 = 1.013x10 5 Pa (N.m -2 ) CHEM 1000A 3.0 Gases 9

4 If we made a barometer out of water, what would be the height of the water column if the pressure is 745 torr? The problem calls for the relationship between P and h P = g.h.d P = Pa d = 1.00 g cm = kg m g = 9.81m s -2 P = g.h.d = 9.81 h ˆ h = 10.1 m CHEM 1000A 3.0 Gases 10 Measuring Gas Pressures Gas pressures can be measured with a manometer. This is similar to a barometer but measures pressure differences using a liquid. CHEM 1000A 3.0 Gases 11 When one side of the manometer is open to the atmosphere P = g.h.d CHEM 1000A 3.0 Gases 12

5 Gas Laws The aim is to determine the relationship between the gas observables (pressure, volume, mass, temperature). These were determined experimentally CHEM 1000A 3.0 Gases 13 Boyle s Law Boyle (~1622) kept the mass of gas and the temperature constant and studied the relationship between pressure and volume olume of gas P CHEM 1000A 3.0 Gases 14 Boyle s Law Boyle found that pressure and volume were inversely proportional. (double the pressure and the volume goes to one half). This is usually expressed as P. = constant or P 1 1 = P 2 2 CHEM 1000A 3.0 Gases 15

6 Charles s Law Charles (1787) and Gay-Lussac (1822) kept the mass of gas and the pressure constant and studied the relationship between temperature and volume They found o (100 C) o (0 C) = CHEM 1000A 3.0 Gases 16 Charles s Law Further experiments showed that volume and temperature were linearly related and that the temperature intercept (when volume is zero) was at o C. This temperature is now defined as absolute zero and the Kelvin temperature scale given by T(K) = t( o C) CHEM 1000A 3.0 Gases 17 Charles s Law Graphically: CHEM 1000A 3.0 Gases 18

7 Charles s Law/Combined Gas Law Charles's Law can be expressed as = constant T Combining Boyle's Law and Charles's Law P. = constant and = constant T gives P. P. P2.2 = constant or = T T 1 1 T1 2 CHEM 1000A 3.0 Gases 19 Avogadro s Law From Gay-Lussac s experiment on reacting gases Avogadro concluded Equal volumes of different gases, at the same temperature and pressure, contain equal numbers of molecules Extending this to a consideration of adding volumes of gases- one concludes that gas volume is proportional to number of molecules and subsequently to number of moles. %n or /n = constant CHEM 1000A 3.0 Gases 20 Given that : P. = constant P. = constant n.t Gas Law (Boyle's Law) = constant (Charles's Law) T = constant (Avogadro's Law) n leads to Usually written P = nrt (Where R is a constant) CHEM 1000A 3.0 Gases 21

8 Ideal Gas Law The ideal gas law can be written in terms of moles or molecules P = nrt n=number of moles R= Gas constant P = NkT N=number of molecules k= Boltzmann s constant CHEM 1000A 3.0 Gases 22 alues of the constants Ideal Gas Law R = J K -1 mol -1 (Pa m 3 K -1 mol -1, kpa L K -1 mol -1 ) R = L atm K -1 mol -1 k = 1.38x10-23 J K -1 (really J K -1 molecule -1 but molecule is just a number) CHEM 1000A 3.0 Gases 23 Other useful forms of the ideal gas law P = m RT M m = mass of gas M = molar mass (molecular weight) m PM d gas = = RT CHEM 1000A 3.0 Gases 24

9 Dalton s Law In a gas mixture each component fills the container and exerts the pressure it would if the other gases were not present. Alternatively, each component acts as if it were alone in the container CHEM 1000A 3.0 Gases 25 Dalton s Law Thus for any component i P i = n i RT We call P i the partial pressure of component i The total pressure is given by the sum of the partial pressures P = P 1 + P 2 + P 3 +. Also note that the mole fraction in the gas phase ni Pi χ i = = n P CHEM 1000A 3.0 Gases 26 Dalton s Law CHEM 1000A 3.0 Gases 27

10 Dalton s Law A common use of Dalton s Law is when gases are collected over water P sample + P water = P bar CHEM 1000A 3.0 Gases 28

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### Gases. Gas: fluid, occupies all available volume Liquid: fluid, fixed volume Solid: fixed volume, fixed shape Others?

CHAPTER 5: Gases Chemistry of Gases Pressure and Boyle s Law Temperature and Charles Law The Ideal Gas Law Chemical Calculations of Gases Mixtures of Gases Kinetic Theory of Gases Real Gases Gases The

### Gas particles move in straight line paths. As they collide, they create a force, pressure.

#28 notes Unit 4: Gases Ch. Gases I. Pressure and Manometers Gas particles move in straight line paths. As they collide, they create a force, pressure. Pressure = Force / Area Standard Atmospheric Pressure

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

### = 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

### Gas - a substance that is characterized by widely separated molecules in rapid motion.

Chapter 10 - Gases Gas - a substance that is characterized by widely separated molecules in rapid motion. Mixtures of gases are uniform. Gases will expand to fill containers (compare with solids and liquids

### Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

### Bloom s Taxonomy. Study Habits and Study Resources: Pause. Expectations: Develop a working knowledge of the topics.

Dr. C. Weldon Mathews Chem 1 Office: 004 Evans Lab Telephone: 9-1574 email: mathews.6@osu.edu web: www.chemistry.ohio-state.edu/~mathews/ Office hours: TR 1:30 - :00 pm TR 4:00-5:00 pm or by appointment

### Chapter 13 Gases. An Introduction to Chemistry by Mark Bishop

Chapter 13 Gases An Introduction to Chemistry by Mark Bishop Chapter Map Gas Gas Model Gases are composed of tiny, widely-spaced particles. For a typical gas, the average distance between particles is

### AP Chemistry ( MCSEMENICK2015 ) My Courses Course Settings Chemistry: The Central Science, 12e Brown/LeMay/Bursten/Murphy/Woodward

Signed in as Daniel Semenick, Instructor Help Sign Out AP Chemistry ( MCSEMENICK2015 ) My Courses Course Settings Chemistry: The Central Science, 12e Brown/LeMay/Bursten/Murphy/Woodward Instructor Resources

### Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

### Overview of Physical Properties of Gases. Gas Pressure

Overview of Physical Properties of Gases! volume changes with pressure! volume changes with temperature! completely miscible! low density gases: < 2 g/l liquids and solids: 1000 g/l Gas Pressure force

### The Gas Laws. The effect of adding gas. 4 things. Pressure and the number of molecules are directly related. Page 1

The Gas Laws Describe HOW gases behave. Can be predicted by the theory. The Kinetic Theory Amount of change can be calculated with mathematical equations. The effect of adding gas. When we blow up a balloon

### General Properties of Gases. Properties of Gases. K is for Kelvin. C is for degrees Celsius. F is for degrees Fahrenheit PROPERTIES OF GASES GAS LAWS

PROPERTIES OF GASES or GAS LAWS 1 General Properties of Gases There is a lot of empty space in a gas. Gases can be expanded infinitely. Gases fill containers uniformly and completely. Gases diffuse and

### Figure 10.3 A mercury manometer. This device is sometimes employed in the laboratory to measure gas pressures near atmospheric pressure.

Characteristics of Gases Practice Problems A. Section 10.2 Pressure Pressure Conversions: 1 ATM = 101.3 kpa = 760 mm Hg (torr) SAMPLE EXERCISE 10.1 Converting Units of Pressure (a) Convert 0.357 atm to

### CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

### Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

### Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

### Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

Chapter 6 Gases Kinetic Theory of Gases 6.1 Properties of Gases 6.2 Gas Pressure A gas consists of small particles that move rapidly in straight lines. have essentially no attractive (or repulsive) forces.

### Chapter 4 The Properties of Gases

Chapter 4 The Properties of Gases Significant Figure Convention At least one extra significant figure is displayed in all intermediate calculations. The final answer is expressed with the correct number

### The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

### CHEMISTRY GAS LAW S WORKSHEET

Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is

### 10. Gases. P= g h Pressure. Pressure is defined as the force across a unit area. Force N

0. Gases 0. ressure ressure is defined as the force across a unit area. Force N ascal, a Area m In chemistry, the SI unit for pressure, the ascal (a), is typically too small to be of practical use. Typically

### Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases

Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 Gases A Gas Has neither a definite volume nor shape. Uniformly fills any container.

### Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

### Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10 Gases.

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 10 The things we will cover in this chapter: How differ from solids and liquids Pressure,

### Honors Chemistry. Chapter 11: Gas Law Worksheet Answer Key Date / / Period

Honors Chemistry Name Chapter 11: Gas Law Worksheet Answer Key Date / / Period Complete the following calculation by list the given information, rewriting the formula to solve for the unknown, and plugging

### AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

### Tutorial 6 GASES. PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg. STP: Standard Temperature and Pressure: 273 K and 1 atm (or 760 mm Hg)

T-41 Tutorial 6 GASES Before working with gases some definitions are needed: PRESSURE: atmospheres or mm Hg; 1 atm = 760 mm Hg TEMPERATURE: Kelvin, K, which is o C + 273 STP: Standard Temperature and Pressure:

### Chapter 5. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the pressure of the sample of gas trapped in the open-tube mercury manometer

### CHAPTER 25 IDEAL GAS LAWS

EXERCISE 139, Page 303 CHAPTER 5 IDEAL GAS LAWS 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

### 2. If pressure is constant, the relationship between temperature and volume is a. direct b. Inverse

Name Unit 11 Review: Gas Laws and Intermolecular Forces Date Block 1. If temperature is constant, the relationship between pressure and volume is a. direct b. inverse 2. If pressure is constant, the relationship

### F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

### Use each of the terms below to complete the passage. Each term may be used more than once.

Gases Section 13.1 The Gas Laws In your textbook, read about the basic concepts of the three gas laws. Use each of the terms below to complete the passage. Each term may be used more than once. pressure

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

### 7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

### Abbreviations Conversions Standard Conditions Boyle s Law

Gas Law Problems Abbreviations Conversions atm - atmosphere K = C + 273 mmhg - millimeters of mercury 1 cm 3 (cubic centimeter) = 1 ml (milliliter) torr - another name for mmhg 1 dm 3 (cubic decimeter)

### The Gas, Liquid, and Solid Phase

The Gas, Liquid, and Solid Phase When are interparticle forces important? Ron Robertson Kinetic Theory A. Principles Matter is composed of particles in constant, random, motion Particles collide elastically

### Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Properties of Gases

Common Student Misconceptions Students need to be told to always use Kelvin temperatures in gas problems. Students should always use units (and unit factor analysis) in gas-law problems to keep track of

### Sample Exercise 10.1 Converting Pressure Units

Sample Exercise 10.1 Converting Pressure Units (a) Convert 0.357 atm to torr. (b) Convert 6.6 10 2 torr to atmospheres. (c) Convert 147.2 kpa to torr. Solution Analyze In each case we are given the pressure

### Course 2 Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving

Course Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving 1 Basic Algebra Computations 1st degree equations - =0 Collect numerical values on one side and unknown to the otherside

### Wed Sep 12, 2007 THE GASEOUS STATE

Chapter 5: Gases Gas Stoichiometry Partial Pressure Kinetic Theory Effusion and Diffusion Wed Sep 12, 2007 Exam #1 - Friday, Sep 14 Attendance is mandatory! Practice exam today in recitation Week 3 CHEM

### Guide to Chapter 9. Gases Answers in green and red.

Guide to Chapter 9. Gases Answers in green and red. We will spend three lecture days on this chapter. Day 1. Pressure, barometers, STP, manometers, Charles Law, Boyles Law, Aogadro's Law, Combined Gas

### Ground Rules. PC1221 Fundamentals of Physics I. Temperature. Thermal Contact. Lectures 19 and 20. Temperature. Dr Tay Seng Chuan

PC1221 Fundamentals of Physics I Lectures 19 and 20 Temperature Dr Tay Seng Chuan Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture is

### 6 Evaluation of the Gas Law Constant

6 Evaluation of the Gas Law Constant Name: Date: Section: Objectives Measure the value of the gas constant R Use Dalton s Law to calculate the partial pressure of hydrogen in a closed container Learn to

### Gas Thermometer and Absolute Zero

Chapter 1 Gas Thermometer and Absolute Zero Name: Lab Partner: Section: 1.1 Purpose Construct a temperature scale and determine absolute zero temperature (the temperature at which molecular motion ceases).

### Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

### CHE141 Chapter 10. Chapter 10 Gases

Chapter 0 Gases. A sample of gas (4.g) initially at 4.00 atm was compressed from 8.00 L to.00 L at constant temperature. After the compression, the gas pressure was atm. (a). 4.00 (b)..00 (c)..00 (d).

### Kinetic Molecular Theory

Kinetic Molecular Theory Particle volume - The volume of an individual gas particle is small compaired to that of its container. Therefore, gas particles are considered to have mass, but no volume. There

### How many moles are in a breath of air whose volume is 2.32L at body temperature (37 C) and a pressure of 745 torr?

Lecture 9 State of gas described by (n,p,v,t) n # moles P pressure V volume T (absolute) temperature (K) Sample Problem A balloon filled with helium has a volume of 1.60 L at 1.00 atm and 25oC. What will

### Force. Pressure = ; Area. Force = Mass times Acceleration;

Force Pressure = ; Area Force = Mass times Acceleration; If mass = kg, and acceleration = m/s 2, Force = kg.m/s 2 = Newton (N) If Area = m 2, Pressure = (kg.m/s 2 )/m 2 = N/m 2 = Pascal; (1 Pa = 1 N/m

### PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

### CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

### Physics Courseware Physics I Ideal Gases

Physics Courseware Physics I Ideal Gases Problem 1.- How much mass of helium is contained in a 0.0 L cylinder at a pressure of.0 atm and a temperature of.0 C? [The atomic mass of helium is 4 amu] PV (

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law. Copyright 2009 Pearson Education, Inc.

Chapter 17 Temperature, Thermal Expansion, and the Ideal Gas Law Units of Chapter 17 Atomic Theory of Matter Temperature and Thermometers Thermal Equilibrium and the Zeroth Law of Thermodynamics Thermal

### An increase in temperature causes an increase in pressure due to more collisions.

SESSION 7: KINETIC THEORY OF GASES Key Concepts In this session we will focus on summarising what you need to know about: Kinetic molecular theory Pressure, volume and temperature relationships Properties

### CHEM 1411, chapter 5 exercises

CHEM 1411, chapter 5 exercises 1. A gas-filled balloon with a volume of 12.5 L at 0.90 atm and 21 C is allowed to rise to the stratosphere where the temperature is 5 C and the pressure is 1.0 millibar.

### THE IDEAL GAS LAW AND KINETIC THEORY

Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

### Gas Laws. E k = ½ (mass)(speed) 2. v101613_10am

Gas Laws v101613_10am Objective: In this lab you will become familiar with the Ideal Gas Law and Dalton s Law of Partial Pressures. You will be able to use the information collected along with stoichiometry

### momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

### Major chemistry laws. Mole and Avogadro s number. Calculating concentrations.

Major chemistry laws. Mole and Avogadro s number. Calculating concentrations. Major chemistry laws Avogadro's Law Equal volumes of gases under identical temperature and pressure conditions will contain

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### HW#13a Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 8

Note: numbers used in solution steps are different from your WebAssign values. Page 1 of 8 Note: numbers used in solution steps are different from your WebAssign values. 1. Walker3 17.P.003. [565748] Show

### Physical and chemical properties of water Gas Laws Chemical Potential of Water Rainfall/Drought

Lecture 14, Water, Humidity, Pressure and Trace Gases, Part 1 Physical and chemical properties of water Gas Laws Chemical Potential of Water Rainfall/Drought Atmospheric Gas Composition constitue nt percent

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### Type: Double Date: Kinetic Energy of an Ideal Gas II. Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (28, 29, 31, 37)

Type: Double Date: Objective: Kinetic Energy of an Ideal Gas I Kinetic Energy of an Ideal Gas II Homework: Read 14.3, Do Concept Q. # (15), Do Problems # (8, 9, 31, 37) AP Physics Mr. Mirro Kinetic Energy

### EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

### EXPERIMENT 9 Evaluation of the Universal Gas Constant, R

Outcomes EXPERIMENT 9 Evaluation of the Universal Gas Constant, R After completing this experiment, the student should be able to: 1. Determine universal gas constant using reaction of an acid with a metal.

### PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES

PHASE CHEMISTRY AND COLLIGATIVE PROPERTIES Phase Diagrams Solutions Solution Concentrations Colligative Properties Brown et al., Chapter 10, 385 394, Chapter 11, 423-437 CHEM120 Lecture Series Two : 2011/01

### <v 1 > 1/ 2. = 444 ms -1 PN RT. ρ = (πd 2 ) C rel ρ = m -3 s -1. = = mol L -1 s -1

TOPIC - THE COLLISIO THEORY Example of solved problems. For molecular oxygen at 5 o C, (a) calculate the collision frequency z and (b) the collision density Z at a pressure of atm. Given: d oxy. 0.36 nm.

### KINETIC THEORY OF GASES. Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure.

KINETIC THEORY OF GASES Boyle s Law: At constant temperature volume of given mass of gas is inversely proportional to its pressure. Charle s Law: At constant pressure volume of a given mass of gas is directly

### Molar Mass of Butane

Suggested reading: Chang 10 th edition text pages 175-201 Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine

### Molar Mass of Butane

Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

### Version 001 HW04-Ideal Gas Laws, Gas Mixtures and KMT sparks (52100) 1

Version 001 HW04-Ideal Gas Laws, Gas Mixtures and KMT sparks (52100) 1 This print-out should have 15 questions. Multiple-choice questions may continue on the next column or page find all choices before

### CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### Ideal Gas Law Introduction Lesson Plan Keith Newman Chemistry 511 Final Project 2006/2007

Ideal Gas Law Introduction Lesson Plan Keith Newman Chemistry 511 Final Project 2006/2007 Objectives: Students will be able to solve ideal gas law problems using algebraic ratios. Students will be able

### Exam 4 Practice Problems false false

Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

### Chapter 3 Process Variables. Mass and Volume

Chapter 3 Process Variables Process: to a chemical engineer, the set of tasks or operations that accomplish a chemical or material transformation to produce a product Feed or inputs: raw materials and

### Gas Laws. vacuum. 760 mm. air pressure. mercury

Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.

### Kinetic Theory of Gases

Kinetic Theory of Gases Important Points:. Assumptions: a) Every gas consists of extremely small particles called molecules. b) The molecules of a gas are identical, spherical, rigid and perfectly elastic

### The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical

### 1.23 Gas Calculations

1.23 Gas Calculations Gas calculations at A-level are done in two different ways although both link the volumes of a gas to the amount in moles of the gas. The same amount in moles of any gas will have

### THE BEHAVIOR OF GASES

12 THE BEHAVIOR OF GASES Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### CHAPTER 3: FORCES AND PRESSURE

CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or

### WEEK 1. Engineering Calculations Processes Process Variables

WEEK 1 Engineering Calculations Processes Process Variables 2.1 Units and Dimensions Units and dimensions are important in science and engineering A measured quantity has a numerical value and a unit (ex:

### CHM1045 Practice Test 3 v.1 - Answers Name Fall 2013 & 2011 (Ch. 5, 6, 7, & part 11) Revised April 10, 2014

CHM1045 Practice Test 3 v.1 - Answers Name Fall 013 & 011 (Ch. 5, 6, 7, & part 11) Revised April 10, 014 Given: Speed of light in a vacuum = 3.00 x 10 8 m/s Planck s constant = 6.66 x 10 34 J s E (-.18x10

### Chapter 5 Practise Test

Chapter 5 Practise Test 1. An open end mercury manometer was constructed from a U shaped tube. In a particular measurement, the level in the end connected to the gas manifold, on which the experiment was

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air)

Chapter 11 - Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human

### SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN. FUNDAMENTALS of. Thermodynamics. Sixth Edition

SOLUTION MANUAL ENGLISH UNIT PROBLEMS CHAPTER 2 SONNTAG BORGNAKKE VAN WYLEN FUNDAMENTALS of Thermodynamics Sixth Edition CHAPTER 2 SUBSECTION PROB NO. Concept-Study Guide Problems 87-91 Properties and

### b. As you draw a vacuum in your mouth, atmospheric pressure pushing on the surface of the liquid forces the liquid up the straw.

CHAPTER FIVE Questions 16. a. Heating the can will increase the pressure of the gas inside the can, P T, V and n constant. As the pressure increases, it may be enough to rupture the can. b. As you draw