Lecture 8. Static and Kinetic Friction

Size: px
Start display at page:

Download "Lecture 8. Static and Kinetic Friction"

Transcription

1 Lecture 8 Goals: Solve 1D motion with friction Differentiate between Newton s 1 st, 2 nd and 3 rd Laws Begin to use Newton s 3 rd Law in problem solving Assignment: HW4, (Chapter 6, due 2/17, Wednesday) Finish Chapter 7 1 st Exam Wed., Feb. 17 th from 7:15-8:45 PM Chapters 1-6 in room 2103 Chamberlin Hall Physics 207: Lecture 8, Pg 1 Static and Kinetic Friction Friction exists between objects and its behavior has been modeled. At Static Equilibrium: A block, mass m, with a horizontal force F applied, Direction: A force vector to the normal force vector N and the vector is opposite to the direction of acceleration if µ were 0. Magnitude: f is proportional to the applied forces such that f s µ s N µ s called the coefficient of static friction Physics 207: Lecture 8, Pg 2 Page 1

2 Dynamics: Case study... big F x-axis i : ma x = F µ K N y-axis j : ma y = 0 = N mg or N = mg so F µ K mg = m a x f k v N j F f k µ K mg mg ma x i Physics 207: Lecture 8, Pg 3 Dynamics: Case study... little F x-axis i : ma x = F µ K N y-axis j : ma y = 0 = N mg or N = mg so F µ K mg = m a x f k v N j F i f k µ K mg mg ma x Physics 207: Lecture 8, Pg 4 Page 2

3 Friction: Static friction Static equilibrium: A block with a horizontal force F applied, Σ F x = 0 = -F + f s f s = F FBD Σ F y = 0 = - N + mg N = mg As F increases so does f s F mg N m 1 f s Physics 207: Lecture 8, Pg 5 Static friction, at maximum (just before slipping) Equilibrium: A block, mass m, with a horizontal force F applied, Direction: A force vector to the normal force vector N and the vector is opposite to the direction of acceleration if µ were 0. Magnitude: f S is proportional to the magnitude of N f s = µ s N F N m f s mg Physics 207: Lecture 8, Pg 6 Page 3

4 Kinetic or Sliding friction (f k < f s ) Dynamic equilibrium, moving but acceleration is still zero FBD Σ F x = 0 = -F + f k f k = F Σ F y = 0 = - N + mg N = mg As F increases f k remains nearly constant (but now there acceleration is acceleration) v F mg N m 1 f k f k = µ k N Physics 207: Lecture 8, Pg 7 Sliding Friction: Modeling Direction: A force vector to the normal force vector N and the vector is opposite to the velocity. Magnitude: f k is proportional to the magnitude of N f k = µ k N ( = µ K mg in the previous example) The constant µ k is called the coefficient of kinetic friction Logic dictates that µ S > µ K for any system Physics 207: Lecture 8, Pg 8 Page 4

5 Coefficients of Friction Material on Material steel / steel add grease to steel metal / ice brake lining / iron tire / dry pavement tire / wet pavement µ s = static friction µ k = kinetic friction Physics 207: Lecture 8, Pg 9 An experiment Two blocks are connected on the table as shown. The table has unknown static and kinetic friction coefficients. Design an experiment to find µ S Static equilibrium: Set m 2 and add mass to m 1 to reach the breaking point. Requires two FBDs Mass 1 Σ F y = 0 = T m 1 g T m 1 m 1 g Mass 2 Σ F x = 0 = -T + f s Σ F y = 0 = N m 2 g f S N T = -T + µ S N m 2 m 2 g T = m 1 g = µ S m 2 g µ S = m 1 /m 2 Physics 207: Lecture 8, Pg 10 Page 5

6 A 2 nd experiment Two blocks are connected on the table as shown. The table has unknown static and kinetic friction coefficients. Design an experiment to find µ K. Dynamic equilibrium: Set m 2 and adjust m 1 to find place when a = 0 and v 0 Requires two FBDs Mass 1 Σ F y = 0 = T m 1 g T m 1 m 1 g Mass 2 Σ F x = 0 = -T + f f Σ F y = 0 = N m 2 g f k N T = -T + µ k N m 2 m 2 g T = m 1 g = µ k m 2 g µ k = m 1 /m 2 Physics 207: Lecture 8, Pg 11 An experiment (with a 0) Two blocks are connected on the table as shown. The table has unknown static and kinetic friction coefficients. Design an experiment to find µ K. N T Non-equilibrium: Set m 2 and adjust m 1 to find regime where a 0 Requires two FBDs T m 1 m 1 g f k m 2 m 2 g Mass 1 Mass 2 Σ F y = m 1 a = T m 1 g Σ F x = m 2 a = -T + f k = -T + µ k N Σ F y = 0 = N m 2 g T = m 1 g + m 1 a = µ k m 2 g m 2 a µ k = (m 1 (g+a)+m 2 a)/m 2 g Physics 207: Lecture 8, Pg 12 Page 6

7 Sample Problem You have been hired to measure the coefficients of friction for the newly discovered substance jelloium. Today you will measure the coefficient of kinetic friction for jelloium sliding on steel. To do so, you pull a 200 g chunk of jelloium across a horizontal steel table with a constant string tension of 1.00 N. A motion detector records the motion and displays the graph shown. What is the value of µ k for jelloium on steel? Physics 207: Lecture 8, Pg 13 Sample Problem Σ F x =ma = F - f f = F - µ k N = F - µ k mg Σ F y = 0 = N mg µ k = (F - ma) / mg & x = ½ a t m = ½ a 4 s 2 a = 0.40 m/s 2 µ k = ( ) / ( ) = 0.46 Physics 207: Lecture 8, Pg 14 Page 7

8 Inclined plane with Normal and Frictional Forces 1. Static Equilibrium Case 2. Dynamic Equilibrium (see 1) 3. Dynamic case with non-zero acceleration Normal means perpendicular Normal Force Σ F = 0 F x = 0 = mg sin θ f F y = 0 = mg cos θ + N with mg sin θ = f µ S N if mg sin θ > µ S N, must slide Critical angle µ s = tan θ c f Friction Force θ mg sin θ mg cos θ θ Block weight is mg θ Physics 207: Lecture 8, Pg 15 y x Inclined plane with Normal and Frictional Forces 1. Static Equilibrium Case 2. Dynamic Equilibrium Friction opposite velocity (down the incline) v Normal means perpendicular Normal Force Σ F = 0 f k F x = 0 = mg sin θ f k F y = 0 = mg cos θ + N = µ k N = µ k mg cos θ f K F x = 0 = mg sin θ µ k mg cos θ Friction Force µ k = tan θ (only one angle) mg sin θ mg cos θ θ θ mg θ Physics 207: Lecture 8, Pg 16 y x Page 8

9 Inclined plane with Normal and Frictional Forces 3. Dynamic case with non-zero acceleration Result depends on direction of velocity v Friction Force Sliding Down Normal Force θ mg sin θ f k Sliding Up θ F x = ma x = mg sin θ ± f k F y = 0 = mg cos θ + N f k = µ k N = µ k mg cos θ F x = ma x = mg sin θ ± µ k mg cos θ a x = g sin θ ± µ k g cos θ Weight of block is mg Physics 207: Lecture 8, Pg 17 The inclined plane coming and going (not static): the component of mg along the surface > kinetic friction Σ F x = ma x = mg sin θ ± u k N Σ F y = ma y = 0 = -mg cos θ + N Putting it all together gives two different accelerations, a x = g sin θ ± u k g cos θ. A tidy result but ultimately it is the process of applying Newton s Laws that is key. Physics 207: Lecture 8, Pg 18 Page 9

10 Velocity and acceleration plots: Notice that the acceleration is always down the slide and that, even at the turnaround point, the block is always motion although there is an infinitesimal point at which the velocity of the block passes through zero. At this moment, depending on the static friction the block may become stuck. Physics 207: Lecture 8, Pg 19 Friction in a viscous medium Drag Force Quantified With a cross sectional area, A (in m 2 ), coefficient of drag of 1.0 (most objects), ρ sea-level density of air, and velocity, v (m/s), the drag force is: D = ½ C ρ A v 2 c A v 2 in Newtons c = ¼ kg/m 3 In falling, when D = mg, then at terminal velocity Example: Bicycling at 10 m/s (22 m.p.h.), with projected area of 0.5 m 2 exerts ~30 Newtons Minimizing drag is often important Physics 207: Lecture 8, Pg 20 Page 10

11 Fish Schools Physics 207: Lecture 8, Pg 21 By swimming in synchrony in the correct formation, each fish can take advantage of moving water created by the fish in front to reduce drag. Fish swimming in schools can swim 2 to 6 times as long as individual fish. Physics 207: Lecture 8, Pg 22 Page 11

12 Free Fall Terminal velocity reached when F drag = F grav (= mg) For 75 kg person with a frontal area of 0.5 m 2, v term 50 m/s, or 110 mph which is reached in about 5 seconds, over 125 m of fall Physics 207: Lecture 8, Pg 23 Trajectories with Air Resistance Baseball launched at 45 with v = 50 m/s: Without air resistance, reaches about 63 m high, 254 m range With air resistance, about 31 m high, 122 m range Vacuum trajectory vs. air trajectory for 45 launch angle. Physics 207: Lecture 8, Pg 24 Page 12

13 Newton s Laws Law 1: An object subject to no external forces is at rest or moves with a constant velocity if viewed from an inertial reference frame. Law 2: For any object, F NET = Σ F = ma Law 3: Forces occur in pairs: F A, B = - F B, A (For every action there is an equal and opposite reaction.) Read: Force of B on A Physics 207: Lecture 8, Pg 25 Newton s Third Law: If object 1 exerts a force on object 2 (F 2,1 ) then object 2 exerts an equal and opposite force on object 1 (F 1,2 ) F 1,2 = -F 2,1 For every action there is an equal and opposite reaction IMPORTANT: Newton s 3 rd law concerns force pairs which act on two different objects (not on the same object)! Physics 207: Lecture 8, Pg 26 Page 13

14 Gravity Newton also recognized that gravity is an attractive, long-range force between any two objects. When two objects with masses m 1 and m 2 are separated by distance r, each object pulls on the other with a force given by Newton s law of gravity, as follows: Physics 207: Lecture 8, Pg 27 Cavendish s Experiment F = m 1 g = G m 1 m 2 / r 2 g = G m 2 / r 2 If we know big G, little g and r then will can find m 2 the mass of the Earth!!! Physics 207: Lecture 8, Pg 28 Page 14

15 Example (non-contact) Consider the forces on an object undergoing projectile motion EARTH F B,E = - m B g F E,B = m B g F B,E = - m B g F E,B = m B g Question: By how much does g change at an altitude of 40 miles? (Radius of the Earth ~4000 mi) Physics 207: Lecture 8, Pg 29 Example (non-contact) Consider the forces on an object undergoing projectile motion EARTH F B,E = - m B g F E,B = m B g F B,E = - m B g F E,B = m B g Compare: g = G m 2 / g = G m 2 / ( ) 2 g / g = / ( ) 2 / = 0.98 Physics 207: Lecture 8, Pg 30 Page 15

16 The flying bird in the cage You have a bird in a cage that is resting on your upward turned palm. The cage is completely sealed to the outside (at least while we run the experiment!). The bird is initially sitting at rest on the perch. It decides it needs a bit of exercise and starts to fly. Question: How does the weight of the cage plus bird vary when the bird is flying up, when the bird is flying sideways, when the bird is flying down? Follow up question: So, what is holding the airplane up in the sky? Physics 207: Lecture 8, Pg 31 Exercise Newton s Third Law A fly is deformed by hitting the windshield of a speeding bus. v The force exerted by the bus on the fly is, A. greater than B. equal to C. less than that exerted by the fly on the bus. Physics 207: Lecture 8, Pg 32 Page 16

17 Exercise Newton s Third Law A fly is deformed by hitting the windshield of a speeding bus. v The force exerted by the bus on the fly is, B. equal to that exerted by the fly on the bus. Physics 207: Lecture 8, Pg 33 Exercise 2 Newton s Third Law Same scenario but now we examine the accelerations A fly is deformed by hitting the windshield of a speeding bus. v The magnitude of the acceleration, due to this collision, of the bus is A. greater than B. equal to C. less than that of the fly. Physics 207: Lecture 8, Pg 34 Page 17

18 Exercise 2 Newton s Third Law Solution By Newton s third law these two forces form an interaction pair which are equal (but in opposing directions). Thus the forces are the same However, by Newton s second law F net = ma or a = F net /m. So F b, f = -F f, b = F 0 but a bus = F 0 / m bus << a fly = F 0 /m fly Answer for acceleration is (C) Physics 207: Lecture 8, Pg 35 Exercise 3 Newton s 3rd Law Two blocks are being pushed by a finger on a horizontal frictionless floor. How many action-reaction force pairs are present in this exercise? a b A. 2 B. 4 C. 6 D. Something else Physics 207: Lecture 8, Pg 36 Page 18

19 Exercise 3 Solution: F a,f F f,a F b,a F a,b F g,a a F E,a F g,b b F E,b F a,g F b,g 6 F a,e F b,e Physics 207: Lecture 8, Pg 37 Lecture 8 Recap Assignment: HW4, (Chapter 6, due 2/17, Wednesday) Finish Chapter 7 1 st Exam Wed., Feb. 17 th from 7:15-8:45 PM Chapters 1-6 in room 2103 Chamberlin Hall Physics 207: Lecture 8, Pg 38 Page 19

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Two-Body System: Two Hanging Masses

Two-Body System: Two Hanging Masses Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7

Lecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.8-4.12, second half of section 4.7 Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.8-4.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal

More information

Newton s Law of Motion

Newton s Law of Motion chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Resistance in the Mechanical System. Overview

Resistance in the Mechanical System. Overview Overview 1. What is resistance? A force that opposes motion 2. In the mechanical system, what are two common forms of resistance? friction and drag 3. What is friction? resistance that is produced when

More information

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Class: Date: Chapter 07 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. An example of a vector quantity is: a. temperature. b. length. c. velocity.

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction

There are four types of friction, they are 1).Static friction 2) Dynamic friction 3) Sliding friction 4) Rolling friction 2.3 RICTION The property by virtue of which a resisting force is created between two rough bodies that resists the sliding of one body over the other is known as friction. The force that always opposes

More information

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B.

B Answer: neither of these. Mass A is accelerating, so the net force on A must be non-zero Likewise for mass B. CTA-1. An Atwood's machine is a pulley with two masses connected by a string as shown. The mass of object A, m A, is twice the mass of object B, m B. The tension T in the string on the left, above mass

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction

University Physics 226N/231N Old Dominion University. Getting Loopy and Friction University Physics 226N/231N Old Dominion University Getting Loopy and Friction Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Friday, September 28 2012 Happy

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

AP Physics Applying Forces

AP Physics Applying Forces AP Physics Applying Forces This section of your text will be very tedious, very tedious indeed. (The Physics Kahuna is just as sorry as he can be.) It s mostly just a bunch of complicated problems and

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

Experiment: Static and Kinetic Friction

Experiment: Static and Kinetic Friction PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

More information

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013

PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7. February 13, 2013 PHYSICS 111 HOMEWORK SOLUTION, week 4, chapter 5, sec 1-7 February 13, 2013 0.1 A 2.00-kg object undergoes an acceleration given by a = (6.00î + 4.00ĵ)m/s 2 a) Find the resultatnt force acting on the object

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Recitation Week 4 Chapter 5

Recitation Week 4 Chapter 5 Recitation Week 4 Chapter 5 Problem 5.5. A bag of cement whose weight is hangs in equilibrium from three wires shown in igure P5.4. wo of the wires make angles θ = 60.0 and θ = 40.0 with the horizontal.

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1

Classical Physics I. PHY131 Lecture 7 Friction Forces and Newton s Laws. Lecture 7 1 Classical Phsics I PHY131 Lecture 7 Friction Forces and Newton s Laws Lecture 7 1 Newton s Laws: 1 & 2: F Net = ma Recap LHS: All the forces acting ON the object of mass m RHS: the resulting acceleration,

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law. 1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

Video Killed the Radio Star! Watch a video of me explaining the difference between static and kinetic friction by clicking here.

Video Killed the Radio Star! Watch a video of me explaining the difference between static and kinetic friction by clicking here. Lesson 26: Friction Friction is a force that always exists between any two surfaces in contact with each other. There is no such thing as a perfectly frictionless environment. Even in deep space, bits

More information

Objective: Equilibrium Applications of Newton s Laws of Motion I

Objective: Equilibrium Applications of Newton s Laws of Motion I Type: Single Date: Objective: Equilibrium Applications of Newton s Laws of Motion I Homework: Assignment (1-11) Read (4.1-4.5, 4.8, 4.11); Do PROB # s (46, 47, 52, 58) Ch. 4 AP Physics B Mr. Mirro Equilibrium,

More information

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite 4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Physics 40 Lab 1: Tests of Newton s Second Law

Physics 40 Lab 1: Tests of Newton s Second Law Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity

More information

COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2

Name Class Period. F = G m 1 m 2 d 2. G =6.67 x 10-11 Nm 2 /kg 2 Gravitational Forces 13.1 Newton s Law of Universal Gravity Newton discovered that gravity is universal. Everything pulls on everything else in the universe in a way that involves only mass and distance.

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This print-out should have 4 questions. Multiple-choice questions ay continue on the next colun or page find all choices before aking your selection.

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Lecture-IV. Contact forces & Newton s laws of motion

Lecture-IV. Contact forces & Newton s laws of motion Lecture-IV Contact forces & Newton s laws of motion Contact forces: Force arises from interaction between two bodies. By contact forces we mean the forces which are transmitted between bodies by short-range

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E00123456 Partner - Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test

More information

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set VI page 1 of 9 10-30 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 10-33 ). The bullet emerges from the

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

Physical Science Chapter 2. Forces

Physical Science Chapter 2. Forces Physical Science Chapter 2 Forces The Nature of Force By definition, a Force is a push or a pull. A Push Or A Pull Just like Velocity & Acceleration Forces have both magnitude and direction components

More information

HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions

HW Set II page 1 of 9 PHYSICS 1401 (1) homework solutions HW Set II page 1 of 9 4-50 When a large star becomes a supernova, its core may be compressed so tightly that it becomes a neutron star, with a radius of about 20 km (about the size of the San Francisco

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a non-zero speed carries energy

More information

Awell-known lecture demonstration1

Awell-known lecture demonstration1 Acceleration of a Pulled Spool Carl E. Mungan, Physics Department, U.S. Naval Academy, Annapolis, MD 40-506; mungan@usna.edu Awell-known lecture demonstration consists of pulling a spool by the free end

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Longitudinal and lateral dynamics

Longitudinal and lateral dynamics Longitudinal and lateral dynamics Lecturer dr. Arunas Tautkus Kaunas University of technology Powering the Future With Zero Emission and Human Powered Vehicles Terrassa 2011 1 Content of lecture Basic

More information

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass

Copyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of

More information

Angular acceleration α

Angular acceleration α Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

More information

Physics 211 Lecture 4

Physics 211 Lecture 4 Physics 211 Lecture 4 Today's Concepts: Newton s Laws a) Acceleration is caused by forces b) Force changes momentum c) Forces always come in pairs d) Good reference frames Mechanics Lecture 4, Slide 1

More information

5-Minute Refresher: FRICTION

5-Minute Refresher: FRICTION 5-Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to

More information

The Big Idea. Key Concepts

The Big Idea. Key Concepts The Big Idea Acceleration is caused by force. All forces come in pairs because they arise in the interaction of two objects you can t hit without being hit back! The more force applied, the greater the

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information