E3 Redox: Transferring electrons. Oxidation-Reduction (Redox)

Size: px
Start display at page:

Download "E3 Redox: Transferring electrons. Oxidation-Reduction (Redox)"

Transcription

1 E3 Redox: Transferring electrons Session one of two First hour: Discussion (E) 2nd and 3rd hour: Lab (E3, Parts and 2A) Oxidation-Reduction (Redox) Reactions involve electron transfer. Change in charge (oxidation state) of reactants. Example: 2 Na (s) + Cl 2 (g) 2 NaCl (s) Lose of e s = oxidation (Na Na + in NaCl) Gain of e s = reduction (Cl Cl - in NaCl) Redox reaction 2 Na + Cl 2 2 ΝaCl + energy LEO GER DEMO Loss of electrons (LEO) = oxidation Gain of electrons (GER) = reduction

2 REDOX alf Reactions Oxidation Reduction ( > in oxidation state) ( < in oxidation state) 2 ( Na Na + + e - ) ( Cl 2 + 2e - 2Cl - ) OXIDIZING AGENT Gains electrons and is reduced (GER) REDUCING AGENT Loses electrons and is oxidized (LEO) alf reactions always written to show electron GAIN. The final equation reflects the sum of the balanced half reactions so that electrons lost = electrons gained: 2 Na + Cl 2 2 Na Cl - An oxidizing agent brings about the oxidation of another substance. A reducing agent bring about the reduction of another substance. Redox Agents Q. Identify the reducing agents (RA) and oxidizing agents (OA) in the reaction: 2 Na + Cl 2 2 Νa Cl - + energy RA OA OA RA Metals lose electrons Non-metals gain electrons A VIIIA 2 e s IIA IIIA IVA VA VIA VIIA s 2 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 0 Ne 2s 2s 2 2s 2 2p 2s 2 2p 2 2s 2 2p 3 2s 2 2p 4 2s 2 2p 5 2s 2 2p 6 Na 3s 9 4s 3 7 Rb 5s 5 5 Cs 6s 8 7 7s 6 2 Mg 3 Al 4 Si 5 P S 7 Cl 8 Ar 3s 2 IIIB IVB VB VIB VIIBVIIIB VIIIB IB IIB 3s 2 3p 3s 2 3p 2 3s 2 3p 3 3s 2 3p 4 3s 2 3p 5 3s 2 3p Ca Sc Ti V Cr Mn Fe Co Ni Ga Ge As Se Br r 4s 2 3d 4s 2 3d 2 4s 2 3d 3 4s 2 3d 5 4s 3d 5 4s 2 3d 6 4s 2 3d 7 4s 2 3d 8 4s 2 4s 2 4p 4s 2 4p 2 4s 2 4p 3 4s 2 4p 4 4s 2 4p 5 4s 2 4p 6 3d 0 4s 3d 0 4s Sr 5s 2 Oxidation State versus Family Number Y Zr Nb Mo Tc Ru Rh Pd 4d 5s 2 4d 2 5s 2 4d 3 5s 2 4d 5 5s 4d 5 5s 2 4d 7 5s 4d 8 5s 4d Ag Cd In Sn Sb Te I Xe 4d 0 5s 4d 0 5s 2 5s 2 5p 5s 2 5p 2 5s 2 5p 3 5s 2 5p 4 5s 2 5p 5 5s 2 5p Ba La* f 7 3 Ta 7 4 W 7 5 Re 7 6 Os 7 7 Ir 7 8 Pt 7 9 Au 8 0 g 8 Tl 8 2 Pb 8 3 Bi 8 4 Po 8 5 At 8 6 Rn 6s 2 5d 6s 2 5d 6s 2 5d 6s 2 5d 6s 2 5d 6s 2 5d 6s 2 5d 6s 2 5d 6s 6s 6p 6s 2 6p 2 6s 2 6p 3 6s 2 6p 4 6s 2 6p 5 6s 2 6p d 0 6s 5d 0 6s Element synthesized, Ra Ac # but no official name assigned 7s 2 6d 7s 2 6d 2 7s 2 6d 3 7s 2 6d 4 7s 2 6d 5 7s 2 6d 6 7s 2 6d 7 7s 2 2

3 A 2 IIA Nonmetals gain electrons and reduce (GER) IIIB IVB VB 6 VIB 7 8 VIIB VIIIB 9 0 VIIIB IB 2 IIB + Element synthesized, but no official name assigned 8 VIIIA e IIIA IVA VA VIAVIIA s B C N O F Ne 2s 2 2p 2s 2 2p 2 2s 2 2p Si P 3s 2 3p 2 3s 2 3p As 4s 2 4p 3 2s 2 2p 4 2s 2 2p 5 2s 2 2p 6 6 S 7 Cl 8 Ar 3s 2 3p 4 3s 2 3p 5 3s 2 3p Se 3 5 Br 3 6 r 4s 2 4p 4 4s 2 4p 5 4s 2 4p Te I 5s 2 5p 4 5s 2 5p At 6s 2 6p Xe 5s 2 5p Rn 6s 2 6p 6 + A s 2 IIA 3 4 Li Be 2s 2s 2 2 Na Mg 3s 3s 2 3 IIIB 9 4s 3 7 Rb 5s 5 5 Cs 6s 8 7 7s Family A Metals Q. Maximum charge vs. family#? Q2. Possible oxidation states of Sn? + 3 IIIA V I I A IVA VA VIA Al VIIIB IVB VB VIB VIIB VIIIB IB IIB 3s 2 3p Ca Sc Ti V Cr Mn Fe Co Ni Ga Ge 4s 2 4s 2 3d 4s 2 3d 2 4s 2 3d 3 4s 3d 5 4s 2 3d 5 4s 2 3d 6 4s 2 3d 7 4s 2 3d 8 4s 3d 0 4s 2 3d 0 4s 2 4p 4s 2 4p Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb 5s 2 5s 2 4d 2 5s 2 4d 2 5s 2 4d 3 5s 4d 5 5s 2 3d 5 5s 4d 7 5s 4d 8 4d 0 5s 4d 0 5s 2 4d 0 5s 2 5p 5s 2 5p 2 5s 2 5p Ba L a * f Ta W Re Os Ir Pt Au g Tl Pb Bi Po 6s 2 6s 2 5d 6s 2 5d 2 6s 2 5d 3 6s 2 5d 4 6s 2 4d 5 6s 2 5d 6 5d 7 6s 2 6s 5d 9 6s 5d 0 6s 2 5d 0 6s 2 6p 6s 2 6p 2 6s 2 6p 3 6s 2 6p Element synthesized, Ra Ac # s 2 7s 2 6d 7s 2 6d 2 7s 2 7d 3 7s 2 6d 4 7s 2 3d 5 6s 2 6d 6 6d 7 7s 2 but no official name assigned 8 VIIIA Ions with multiple oxidation states Q. Sn (Group IVA) has oxidation states of zero, plus two, and plus four. Write half reactions depicting: Reduction of Sn 2+ ion: Sn e- Sn Oxidation of Sn 2+ ion: Sn 2+ Sn e- Sn 2+ can act as an oxidizing or reducing agent in redox reactions A 2 3 s IIA IIIA 4 IVA 5 VA 6 VIA 3 4 Li Be 2s 2s Na Mg Al 3s 3s 2 IIIB IVB VB VIB VIIB VIIIB " VIIIB IB IIB 3s 2 3p 9 4s 2 0 Ca 4s 2 Transition Metals Q. Maximum oxidation state vs. family #? 2 Sc 4s 2 3d 2 2 Ti 2 3 V 2 4 Cr 2 5 Mn 2 6 Fe 2 7 Co 2 8 Ni 2 9 4s 2 3d 2 4s 2 3d 3 4s 3d 5 4s 2 3d 5 4s 2 3d 6 4s 2 3d 7 4s 2 3d 8 4s 3d Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag 5s 5s 2 5s 2 4d 2 5s 2 4d 2 5s 2 4d 3 5s 4d 5 5s 2 3d 5 5s 4d 7 5s 4d 8 4d 0 5s 4d Cs Ba La* f Ta W Re Os Ir Pt Au 6s 6s 2 6s 2 5d 6s 2 5d 2 6s 2 5d 3 6s 2 5d 4 6s 2 4d 5 6s 2 5d 6 5d 7 6s 2 6s 5d 9 6s 5d Ra Ac # s 7s 2 7s 2 6d 7s 2 6d 2 7s 2 7d 3 7s 2 6d 4 7s 2 3d 5 6s 2 6d 6 6d 7 7s s 2 3d 0 3 Ga 4s 2 4p Cd In 5s 2 4d 0 5s 2 5p g Tl 6s 2 5d 0 6s 2 6p + Element synthesized, but no official name assigned 3 2 Ge 4s 2 4p Sn Sb 5s 2 5p 2 5s 2 5p Pb 8 3 Bi 8 4 Po 6s 2 6p 2 6s 2 6p 3 6s 2 6p 4 7 VIIA 8 VIIIA 3

4 Strength of Redox Agents Example: 2 Na + Cl 2 2 Νa Cl - RA OA OA RA The reactants are the stronger RA and OA and react spontaneously The non-reactive products are the weaker OA and RA. Redox agent strength Q. Rank the strength of the reducing/oxidizing agents in the reaction below: 2 Sb + 3 Cl 2 2 Sb Cl - RA OA OA RA RA strength: Sb > Cl - OA strength: Cl 2 > Sb 3+ RA: Na > Cl - OA: Cl 2 > Na + Reaction and Redox Strength If RA: > Ag OA: Ag + > 2+ Reactions and Redox Strength The stronger RA and OA react: Reactants (s) + Ag + (aq) reaction The weaker RA and OA do NOT react: (s) + Ag + (aq)? Ag(s) + 2+ (aq)? DEMO Ag(s) + 2+ (aq) no reaction 4

5 Part I B. Predicting Metal Reactivity. Determine the reducing agent (RA) strength of four team assigned metals where the metal ions of all four metals are available and only three of the four metals are available for experimental tests. Experiment Design and Data Analysis Example You need to determine the reducing agent strength of,, and Mg. Problem Available: Solutions of 2+, 2+, and Mg 2+. and only (i.e., Mg is unavailable) Experiment Design for Part B. Create a table for recording data (pre-lab). Mg Mg 2+ Reducing agent species (metals) on one side and oxidizing agents species (metal ions) on other side. Experiment Design and Data Analysis Test available metal and metal ion combinations Record observations Example: (s) + 2+ (aq) reaction 5

6 Check data. Does it make sense? Data Analysis # rxns # rxns. Rxn No Reaction Rxn No No 0 # rxns. # rxns. 0 These results don t make sense This data makes sense: The stronger RA and OA show more reactions RA and OA strength are inverse: Only one combination of metal and metal ion should react spontaneously -- the stronger RA and OA RA: > OA: 2+ > 2+ Reducing Agent Strength of Mg,, and? Part I A. Metal reactions with water. Q. Complete the table below No Rxn. No No Mg Rxn Rxn Mg 2+ No No No Rank the reducing agent strength of the metals Na,, Mg, and Ca from experimental observations. Correlate the results with the position of the metal in the periodic table. Q2. Comparative RA strength of the metals? RA strength: Mg > > 6

7 Experimental Comparison of Ca and Mg Metal + Water metal hydroxide + 2 (g) RA OA OA RA Example: Mg (s) + 2O (l) Mg(O) 2(s) + 2(g) Reactivity of and Na Experimental determination of the reactivity of and Na compared to Ca and Mg. DEMO DEMO RA: Ca > Mg Experimental Comparison of, Na, Ca, and Mg Na skitters around the skitters around the water surface water surface and ignites RA: > Na > Ca > Mg RA and OA Predictions from Electronegativity values = Electron pulling power of an atom when part of a bond Electronegativity of the elements IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA 2. Li.0 Be B C 2.5 N 3.0 O 3.5 F 4.0 Na Mg Al Si P S Cl Ca.0 Sc.3 Ti V Cr Mn Fe Co Ni Ga Ge As Se Br 2.8 Rb Sr.0 Y.2 Zr.4 Nb Mo Tc Ru Rh Pd Ag Cd.7 In.7 Sn Sb Te 2. I 2.5 Cs Ba La f Ta W Re Os Ir Pt Au g Tl Pb Bi Po At -Lu.3.7 Ra Ac. Th.3 Pa U.7 Np- No.3 = Metalloids = Nonmetals = Metals 7

8 IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA 2. Li Be B C N O F Na Mg Al Si P S Cl Ca.0 Sc.3 Ti V Cr Mn Fe Co Ni Ga Ge As Se Br 2.8 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Cs Q. Predict the RA strength of compared to Na, Mg, and Ca based on position and electronegativity values..0 Ba Ra.2.4 La f -Lu.3 Ac Th..3 Ta Pa W.7 U.7 Re Os Np- No.3 > > > Ir Pt Au.7 g.7 Tl Pb Bi 2. Po > Na > Ca > Mg 2.5 At IA IIA IIIB IVB VB VIB VIIB VIIIB IB IIB IIIA IVA VA VIA VIIA 2. Li Be B C N O F Na Mg Al Si P S Cl Ca.0 Sc.3 Ti V Cr Mn Fe Co Ni Ga Ge As Se Br 2.8 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Cs Q. Where are the best reducing and oxidizing agents located?.0 Ba Ra.2.4 La f -Lu.3 Ac Th..3 Ta Pa W.7 U.7 Re Os Np- No.3 Ir Pt Au.7 g.7 Tl Pb Bi 2. Po Caution: Attraction of metal or nonmetal ion for electrons in a bond is different from its metal or nonmetal element. 2.5 At Questions? Contact 8

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

Chapter 3 Applying Your Knowledge- Even Numbered

Chapter 3 Applying Your Knowledge- Even Numbered Chapter 3 Applying Your Knowledge- Even Numbered 2. Elements in a specific compound are always present in a definite proportion by mass; for example, in methane, CH 4, 12 g of carbon are combined with

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

Electronegativity and Polarity

Electronegativity and Polarity and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

The Periodic Table and Periodic Law

The Periodic Table and Periodic Law The Periodic Table and Periodic Law Section 6.1 Development of the Modern Periodic Table In your textbook, reads about the history of the periodic table s development. Use each of the terms below just

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

8. Relax and do well.

8. Relax and do well. CHEM 1314 3:30 pm Section Exam II ohn II. Gelder October 16, 2002 Name TA's Name Lab Section INSTRUCTIONS: 1. This examination consists of a total of 8 different pages. The last three pages include a periodic

More information

Chem 111 Evening Exam #3

Chem 111 Evening Exam #3 * Enter your answers on the bubble sheet. Turn in all sheets. * This exam is composed of 25 questions on 7 pages total. Go initially through the exam and answer the questions you can answer quickly. Then

More information

From Quantum to Matter 2006

From Quantum to Matter 2006 From Quantum to Matter 006 Why such a course? Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 4, 004 vrije Universiteit amsterdam Why study quantum mechanics? From Quantum to Matter: The main

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

12B The Periodic Table

12B The Periodic Table The Periodic Table Investigation 12B 12B The Periodic Table How is the periodic table organized? Virtually all the matter you see is made up of combinations of elements. Scientists know of 118 different

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.

It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers. So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability

More information

Rules of Nomenclature for Binary Compounds

Rules of Nomenclature for Binary Compounds NAME: DATE: Rules of Nomenclature for Binary Compounds There are three types of binary compounds: Type I. A metal of fixed charge and a nonmetal; Type II. A metal of variable charge and a nonmetal; and

More information

Chemistry 5 Test 1. You must show your work to receive credit PERIODIC TABLE OF THE ELEMENTS. 5 B 10.81 13 Al 26.98

Chemistry 5 Test 1. You must show your work to receive credit PERIODIC TABLE OF THE ELEMENTS. 5 B 10.81 13 Al 26.98 Chemistry 5 Test 1 Name: You must show your work to receive credit PERIODIC TABLE OF THE ELEMENTS 1A 1 H 1.008 2A 3A 4A 5A 6A 7A 3 Li 6.941 11 Na 22.99 19 K 39.10 37 Rb 85.47 55 Cs 132.9 87 Fr (223) 4

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

Chapter 8 Atomic Electronic Configurations and Periodicity

Chapter 8 Atomic Electronic Configurations and Periodicity Chapter 8 Electron Configurations Page 1 Chapter 8 Atomic Electronic Configurations and Periodicity 8-1. Substances that are weakly attracted to a magnetic field but lose their magnetism when removed from

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

5.4 Trends in the Periodic Table

5.4 Trends in the Periodic Table 5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

Natural Sciences I. Lecture 15: Elements and the Periodic Table

Natural Sciences I. Lecture 15: Elements and the Periodic Table Natural Sciences I Lecture 5: Elements and the Periodic Table Classifying MATTER Chapter 0 of your text opens with a discussion of the types of chemical bonds, and also includes a review (pp. 4-4) of the

More information

Worksheet 11 - Periodic Trends

Worksheet 11 - Periodic Trends Worksheet 11 - Periodic Trends A number of physical and chemical properties of elements can be predicted from their position in the Periodic Table. Among these properties are Ionization Energy, Electron

More information

Inorganic Chemistry review sheet Exam #1

Inorganic Chemistry review sheet Exam #1 Inorganic hemistry review sheet Exam #1 h. 1 General hemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,

More information

1 Arranging the Elements

1 Arranging the Elements CHAPTER 12 1 Arranging the Elements SECTION The Periodic Table BEFORE YOU READ After you read this section, you should be able to answer these questions: How are elements arranged on the periodic table?

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Periodicity. The Periodic Table. Dmitri Mendeleev. and the Periodic Table. Periods. Metals vs. Non-Metals. Groups

Periodicity. The Periodic Table. Dmitri Mendeleev. and the Periodic Table. Periods. Metals vs. Non-Metals. Groups Periodicity and the Periodic Table the result Dmitri Mendeleev arranged elements in order of their atomic numbers, such that elements with similar properties fell into the same column or group. The Periodic

More information

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s Section 8.5 Objectives Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics

More information

Exam 1. Spring 2012/13 CHE 140 Section: 5701 & 5702 100 total points Date: Mon. Feb. 11 & Tue. Feb. 12, 2013

Exam 1. Spring 2012/13 CHE 140 Section: 5701 & 5702 100 total points Date: Mon. Feb. 11 & Tue. Feb. 12, 2013 + 80 points Exam 1 Spring 2012/13 Name: CHE 140 Section: 5701 & 5702 100 total points Date: Mon. Feb. 11 & Tue. Feb. 12, 2013 Directions: Answer the following questions completely. For multiple choice

More information

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge

ATOMIC THEORY. Name Symbol Mass (approx.; kg) Charge ATOMIC THEORY The smallest component of an element that uniquely defines the identity of that element is called an atom. Individual atoms are extremely small. It would take about fifty million atoms in

More information

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

More information

BALANCING REDOX EQUATIONS EXERCISE

BALANCING REDOX EQUATIONS EXERCISE +5 6 1. Ag + NO3 Ag 1+ + NO 0 +5 2 +1 +2 2 4 +4 +2 2 2. N2H4 + H2O2 N2 + H2O 2 +1 +1 1 0 +1 2 +6 6 +4 4 3. CO + Fe2O3 FeO + CO2 +2 2 +3 2 +2 2 +4 2 +5 6 +4 4 +4 4 4. NO3 + CO CO2 + NO2 +5 2 +2 2 +4 2 +4

More information

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE

TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE TRENDS IN ATOMIC PROPERTIES: THE PERIODIC TABLE Electron configurations determine organization of the periodic table Next properties of elements and their periodic behavior Elemental properties determined

More information

Explain 'Dobereiner's Triads and its drawback.

Explain 'Dobereiner's Triads and its drawback. CLASS: X NCERT (CBSE) Chemistry: For Class 10 Page : 1 Question 1: Explain 'Dobereiner's Triads and its drawback. Dobereiner classified elements into groups of three where the atomic weight of the middle

More information

Chapter 6 Oxidation-Reduction Reactions. Section 6.1 2. Which one of the statements below is true concerning an oxidation-reduction reaction?

Chapter 6 Oxidation-Reduction Reactions. Section 6.1 2. Which one of the statements below is true concerning an oxidation-reduction reaction? Chapter 6 Oxidation-Reduction Reactions 1. Oxidation is defined as a. gain of a proton b. loss of a proton c. gain of an electron! d. loss of an electron e. capture of an electron by a neutron 2. Which

More information

Name PRE-TEST. Directions: Circle the letter indicating whether the following statements are either true ("T") or false ("F").

Name PRE-TEST. Directions: Circle the letter indicating whether the following statements are either true (T) or false (F). 1 PRETEST Directions: Circle the letter indicating whether the following statements are either true ("T") or false ("F"). T F 1. Chemical elements with similar chemical properties are referred to as a

More information

Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e -

Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e - Periodic Table give up 1e - give up 2e - give up 3e - H Li Be Na Mg K Ca Columns: Similar Valence Structure Sc Oaccept 2e- accept 1e - inert gases S Se F Cl Br He Ne Ar Kr Adapted from Fig. 2.6, Callister

More information

Physical Science Notes Properties of Atoms and the Periodic Table

Physical Science Notes Properties of Atoms and the Periodic Table Physical Science Notes Properties of Atoms and the Periodic Table Structure of the Atom Elements are abbreviated in scientific shorthand. Symbols on the periodic table are short or abbreviated ways to

More information

Chapter 6. Periodic Relationships Among the Elements

Chapter 6. Periodic Relationships Among the Elements Chapter 6. Periodic Relationships Among the Elements Student: 1. The nineteenth century chemists arranged elements in the periodic table according to increasing A. atomic number. B. number of electrons.

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Paper 3 and Paper 4. CC4 The Periodic Table. The learning journey

Paper 3 and Paper 4. CC4 The Periodic Table. The learning journey Paper 3 and Paper 4 CC4 The Periodic Table There are over 100 known elements. The modern periodic table is a chart that arranges these elements in a way that is useful to chemists. Thanks to the periodic

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Assignments in Science Class X (Term II) IMPORTANT NOTES ANIL TUTORIALS

Assignments in Science Class X (Term II) IMPORTANT NOTES ANIL TUTORIALS Assignments in Science Class X (Term II) Periodic Classification of Elements 1. Early chemists classified elements as metals and non-metals on the basis of a set of physical and chemical properties. 2.

More information

Periodic Table Trends in Element Properties Ron Robertson

Periodic Table Trends in Element Properties Ron Robertson Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together

More information

Chapter 3. Elements, Atoms, Ions, and the Periodic Table

Chapter 3. Elements, Atoms, Ions, and the Periodic Table Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's

More information

PERIODIC TABLE OF THE ELEMENTS

PERIODIC TABLE OF THE ELEMENTS PERIODIC TABLE OF THE ELEMENTS Periodic Table: an arrangement of elements in horizontal rows (Periods) and vertical columns (Groups) exhibits periodic repetition of properties First Periodic Table: discovered

More information

Chapter -9. Classification of Elements The periodic Table

Chapter -9. Classification of Elements The periodic Table Chapter -9 Classification of Elements The periodic Table SYNOPSIS From the earliest times, scientists have been trying to classify the available elements on the basis of their properties. Dobereiner proposed

More information

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements

47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements 47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.

More information

Unit 2 Matter and Chemical Change. Unit Test

Unit 2 Matter and Chemical Change. Unit Test Unit Test Student Name Class Section 1 Properties of Matter 1. Aluminum foam is used to create lighter, safer cars. The reason that a lighter car is a safer car is because aluminum foam is A. less rigid

More information

Redox and Electrochemistry

Redox and Electrochemistry Name: Thursday, May 08, 2008 Redox and Electrochemistry 1. A diagram of a chemical cell and an equation are shown below. When the switch is closed, electrons will flow from 1. the Pb(s) to the Cu(s) 2+

More information

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson

Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real

More information

ORTEC DET-SW-UPG. Latest Software Features. Ease of Use. Source Location with the Detective V3 Software

ORTEC DET-SW-UPG. Latest Software Features. Ease of Use. Source Location with the Detective V3 Software ORTEC DET-SW-UPG Latest Software Features Three Search Modes: Gamma/Neutron total count rate. SNM search mode. Sliding average "monitor" mode. (NEW) User choice of identification schemes: Classify mode

More information

UNIT (2) ATOMS AND ELEMENTS

UNIT (2) ATOMS AND ELEMENTS UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: Hour: Date: Directions: Answer each of the following questions. You need not use complete sentences. 1. Who first published the classification of the

More information

Chapter 1 1.9 I (Ca) vs. I (Zn)? (Sr) vs. I (Ba) vs. I (Ra)? 1.11 I2 of some period 4 elements?

Chapter 1 1.9 I (Ca) vs. I (Zn)? (Sr) vs. I (Ba) vs. I (Ra)? 1.11 I2 of some period 4 elements? Chapter 1 1.9 I(Ca) vs. I(Zn)? The first ionization energies of calcium and zinc are 6.11 and 9.39 ev, respectively (see Appendix 1). Both of these atoms have an electron configuration that ends with 4s

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

CHAPTER 4. AQUEOUS REACTION CHEMISTRY

CHAPTER 4. AQUEOUS REACTION CHEMISTRY CAPTER. AQUEOUS REACTION CEMISTRY solution - homogeneous mixture of or more substances; uniform distribution of particles and same properties throughout. A solution is composed of a solute dissolved in

More information

Chapter 2 Atoms, Ions, and the Periodic Table

Chapter 2 Atoms, Ions, and the Periodic Table Chapter 2 Atoms, Ions, and the Periodic Table 2.1 (a) neutron; (b) law of conservation of mass; (c) proton; (d) main-group element; (e) relative atomic mass; (f) mass number; (g) isotope; (h) cation; (i)

More information

Chemistry: The Periodic Table and Periodicity

Chemistry: The Periodic Table and Periodicity Chemistry: The Periodic Table and Periodicity Name: per: Date:. 1. By what property did Mendeleev arrange the elements? 2. By what property did Moseley suggest that the periodic table be arranged? 3. What

More information

Sustainable energy products Simulation based design for recycling

Sustainable energy products Simulation based design for recycling Sustainable energy products Simulation based design for recycling Markus A. Reuter (Prof. Dr. Dr. hc) Director: Technology Management, Outotec Oyj Aalto University (Finland), Central South University (China),

More information

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)

Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:) Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the

More information

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants

More information

CHAPTER 21 ELECTROCHEMISTRY

CHAPTER 21 ELECTROCHEMISTRY Chapter 21: Electrochemistry Page 1 CHAPTER 21 ELECTROCHEMISTRY 21-1. Consider an electrochemical cell formed from a Cu(s) electrode submerged in an aqueous Cu(NO 3 ) 2 solution and a Cd(s) electrode submerged

More information

Problem Set #10 - Answers

Problem Set #10 - Answers Problem Set #10 - Answers BIG IDEAS Fill in the blanks or circle the correct response in brackets. 1) When a reaction occurs, the stuff you start with is called the _reactants_ and the stuff you end up

More information

Standard Solutions (Traceable to NIST)

Standard Solutions (Traceable to NIST) Standard Solutions (Traceable to NIST) - Multi Element ICP Standard Solutions (Inductively Coupled Plasma Spectroscopy) - Single Element ICP Standard Solutions (Inductively Coupled Plasma Spectroscopy)

More information

3. Which of the following describes a conjugate acid-base pair for the following equilibrium? CN - (aq) + CH 3 NH 3 + (aq) H 2 CO 3 (aq) + H 2 O (l)

3. Which of the following describes a conjugate acid-base pair for the following equilibrium? CN - (aq) + CH 3 NH 3 + (aq) H 2 CO 3 (aq) + H 2 O (l) Acids, Bases & Redox 1 Practice Problems for Assignment 8 1. A substance which produces OH ions in solution is a definition for which of the following? (a) an Arrhenius acid (b) an Arrhenius base (c) a

More information

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions

Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions Balancing Reaction Equations Oxidation State Reduction-oxidation Reactions OCN 623 Chemical Oceanography Balanced chemical reactions are the math of chemistry They show the relationship between the reactants

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass

Composition and Structure of the Atom. Protons: Positively charged, high mass particle. Neutrons: Neutral (no) charge, high mass Composition and Structure of the Atom Atom: basic unit of an element; smallest unit that retains chemical properties of an element Subatomic particles: Small particles that are the building blocks from

More information

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula Purpose: Theory: Nomenclature and Formulas of Ionic Compounds 1. To become familiar with the rules of chemical nomenclature, based on the classification of compounds. 2. To write the proper name of the

More information

Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

More information

Periodic Table Puzzle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I

Periodic Table Puzzle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I Periodic Table Puzzle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I F G H B A E J D Place the letter of each of the above elements next to its description below. 1. An alkali metal 2. An alkaline earth

More information

Atomic Theory: History of the Atom

Atomic Theory: History of the Atom Atomic Theory: History of the Atom Atomic Theory: experimental observations that led scientists to postulate the existence of the atom (smallest bit of an element). 1. Law of Conservation of Mass -During

More information

6.5 Periodic Variations in Element Properties

6.5 Periodic Variations in Element Properties 324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends

More information

Mendeleev s s Table. Periodic Table Revisited. The Modern Periodic Table. Section 14.1 Classification of the Elements. Chapter 14 Chemical Periodicity

Mendeleev s s Table. Periodic Table Revisited. The Modern Periodic Table. Section 14.1 Classification of the Elements. Chapter 14 Chemical Periodicity Chapter Chemical Periodicity Section. Classification of the Elements OBJECTIVES: Explain why you can infer the properties of an element based on those of other elements in the periodic table. Use electron

More information

38. Consider the following reaction that occurs in a breathalyzer: 2Cr 2 O 7

38. Consider the following reaction that occurs in a breathalyzer: 2Cr 2 O 7 Electrochemistry Multiple Choice January 1999 37. Consider the following redox reaction: 2MnO 4 - + 3ClO 3 - + H 2 O 3ClO 4 - + 2MnO 2 + 2OH - The reducing agent is A. H 2 O B. ClO 3 - C. MnO 2 D. MnO

More information

The Role of Triads in the Evolution of the Periodic Table: Past and Present

The Role of Triads in the Evolution of the Periodic Table: Past and Present The Role of Triads in the Evolution of the Periodic Table: Past and Present Eric Scerri Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095; scerri@chem.ucla.edu

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

= 11.0 g (assuming 100 washers is exact).

= 11.0 g (assuming 100 washers is exact). CHAPTER 8 1. 100 washers 0.110 g 1 washer 100. g 1 washer 0.110 g = 11.0 g (assuming 100 washers is exact). = 909 washers 2. The empirical formula is CFH from the structure given. The empirical formula

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Electrochemistry Worksheet

Electrochemistry Worksheet Electrochemistry Worksheet 1. Assign oxidation numbers to each atom in the following: a. P 4 O 6 b. BiO 3 c. N 2 H 4 d. Mg(BrO 4 ) 2 e. MnSO 4 f. Mn(SO 4 ) 2 2. For each of the reactions below identify

More information

Electron Configurations, Orbital Notations and Quantum Numbers Understanding Electron Arrangement and Oxidation States

Electron Configurations, Orbital Notations and Quantum Numbers Understanding Electron Arrangement and Oxidation States Electron Configurations, Orbital Notations and Quantum Numbers Electron Configurations, Orbital Notations and Quantum Numbers Understanding Electron Arrangement and Oxidation States OBJECTIVE Students

More information

Nomenclature of Ionic Compounds

Nomenclature of Ionic Compounds Nomenclature of Ionic Compounds Ionic compounds are composed of ions. An ion is an atom or molecule with an electrical charge. Monatomic ions are formed from single atoms that have gained or lost electrons.

More information

Organizing the Elements

Organizing the Elements The Periodic Table Organizing the Elements A few elements, such as gold and copper, have been known for thousands of years - since ancient times Yet, only about 13 had been identified by the year 1700.

More information

Oxidation / Reduction Handout Chem 2 WS11

Oxidation / Reduction Handout Chem 2 WS11 Oxidation / Reduction Handout Chem 2 WS11 The original concept of oxidation applied to reactions where there was a union with oxygen. The oxygen was either furnished by elemental oxygen or by compounds

More information

Standard Operation Procedure. Elemental Analysis of Solution samples with Inductively Coupled Plasma Mass Spectrometry

Standard Operation Procedure. Elemental Analysis of Solution samples with Inductively Coupled Plasma Mass Spectrometry Standard Operation Procedure Elemental Analysis of Solution samples with Inductively Coupled Plasma Mass Spectrometry Soil & Plant Analysis Laboratory University of Wisconsin Madison http://uwlab.soils.wisc.edu

More information

EXPERIMENT 8: Activity Series (Single Displacement Reactions)

EXPERIMENT 8: Activity Series (Single Displacement Reactions) EPERIMENT 8: Activity Series (Single Displacement Reactions) PURPOSE a) Reactions of metals with acids and salt solutions b) Determine the activity of metals c) Write a balanced molecular equation, complete

More information

Electrochemistry Voltaic Cells

Electrochemistry Voltaic Cells Electrochemistry Voltaic Cells Many chemical reactions can be classified as oxidation-reduction or redox reactions. In these reactions one species loses electrons or is oxidized while another species gains

More information

WASTE STREAM 2Y51 Analytical Services Process Facilities - North Labs

WASTE STREAM 2Y51 Analytical Services Process Facilities - North Labs WASTE STREAM 2Y51 Analytical Services Process Facilities North Labs SITE SITE OWNER WASTE CUSTODIAN WASTE TYPE Sellafield Nuclear Decommissioning Authority Sellafield Limited LLW WASTE VOLUMES Stocks:

More information

Worksheet # 11. 4. When heated, nickel (II) carbonate undergoes a decomposition reaction. Write a balanced equation to describe this reaction

Worksheet # 11. 4. When heated, nickel (II) carbonate undergoes a decomposition reaction. Write a balanced equation to describe this reaction Worksheet # 11 1. A solution of sodium chloride is mixed with a solution of lead (II) nitrate. A precipitate of lead (II) chloride results, leaving a solution of sodium nitrated. Determine the class of

More information

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions. 1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

More information

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS

ELECTROCHEMISTRY. these are systems involving oxidation or reduction there are several types METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS 1 ELECTROCHEMISTRY REDOX Reduction gain of electrons Cu 2+ + 2e > Cu (s) Oxidation removal of electrons Zn (s) > Zn 2+ + 2e HALF CELLS these are systems involving oxidation or reduction there are several

More information