t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.


 Antony Carr
 2 years ago
 Views:
Transcription
1 The area under a graph often gives useful information. Velocittime graphs Constant velocit The sketch shows the velocittime graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The area under this graph is rectangular in shape. The shaded area = 7 = t hours This is the distance in miles travelled in hours when the speed is 7mph. Area under a velocittime graph = distance travelled. Constant acceleration Now consider the case when a car is accelerating steadil from to mph in seconds. ( d/s) The graph shows this situation, but note that the velocit is in miles per hour whilst the time is in seconds. The units need to be converted in order to find the distance travelled. mph = = ards per second. The distance travelled is given b the area under the graph: Distance travelled = = ards. ( mile = 76 ards) Note that this is equivalent to the car travelling for seconds at the average speed of ards per second. In each case sketch a velocittime graph and find the distance travelled in miles or ards: Car travels at a stead velocit of 6 mph for hours. Car decelerates steadil from a velocit of 6 mph until it stops seconds later. Car accelerates steadil from mph to 6 mph over a period of 6 seconds. Car decelerates steadil from 7 mph to mph over a period of seconds. The Nuffield Foundation
2 Variable velocit and acceleration The table and graph give the velocit of a car as it travels between sets of traffic lights. An estimate for the area under this graph can be found b splitting it into strips as shown. The strips at each end are approimatel triangular in shape and each strip between them is approimatel in the shape of a trapezium. t (s) 6 8 v (ms  ) 8 8 v ms  Area of A = Area of B = Area of C = ( + 8) ( 8 + ) 7 Total area = 7 This is an estimate of the distance travelled b the car (in metres) between the sets of traffic lights. A B C C B A 6 8 This is a simplified model of this situation. In practice the change in velocit is unlikel to be so smooth and smmetrical. Note that better estimates can be found b using more data and narrower strips. In each of the following: draw a velocittime graph on a graphic calculator or spreadsheet describe what happens during the given time interval estimate the distance travelled t (s) v (ms  ) t (s) v (ms  ) t (s) 6 8 v (ms  ) 6 t (s) v (ms  ) The Nuffield Foundation
3 Integration The area under a graph between = a and = b is: = b A = lim = a δ = b a d This means the limit of the sum of rectangles of area δ as δ tends to zero. The increment of area δa = δ δ A This can be written as =. δ δa da The limit of as δ tends to zero is δ d i.e. the derivative of A with respect to. So A = b a δ da d is equivalent to = d If the area under a graph is divided into ver narrow strips, each strip is approimatel rectangular in shape. a δ b δa i.e. the gradient of a graph of A against. Integration is the inverse of differentiation. Rules of Integration Reversing differentiation gives the rules shown: eg = gives d = d so d = In general, for an constant k, Also d = gives = d so d = k d = k d and = gives = d so d = In general, n d = + n n + The derivative of a constant is zero. This means that when a constant is differentiated it disappears. When integrating a constant appears this is called the constant of integration. Epression Integral k (constant) k + c + c + c + n + c + c n + c n + k n + k n + c n c + = + + c where c is the constant of integration. Because the value of the constant is not known (unless more information is given), these are known as indefinite integrals. The Nuffield Foundation
4 Finding areas b integration The area under a graph of a function is found b subtracting the value of the integral of the function at the lower limit from its value at the upper limit. The eample below shows the method and notation used. Eample Find the area under the curve = between = and = A = ( + 6) + d 6 = lower limit upper limit The sketch shows the area required. = = = The constant of integration has been omitted because it would be in both parts it alwas disappears when the parts are subtracted, so is normall left out of the working. Because integration with limits does not give a result involving an unknown constant, it is known as definite integration = [ ] [ ] A = The shaded area is square units. Integration can be used to find the area of an shape as long as its boundaries can be written as functions of. In each case: use a graphic calculator or spreadsheet to draw a graph of the function integrate to find the area under the graph between the given values of. = between = and = = between = and = = + between = and = = 6 between = and = 6 = + between = and = 6 = + between = and = 7 = + between = and = 8 = between = and = = between = and = = between = and = The Nuffield Foundation
5 More about velocittime graphs In velocittime graphs the area gives the distance travelled. The following eamples rework some of the previous eamples using integration. Eample Find the distance travelled when a car travels at a constant velocit of 7 mph for hours. s = 7 dt = [ 7t ] = [ 7 ] [ 7 ] = The car travels miles. Eample Find the distance travelled when a car accelerates steadil to a velocit of ards per second in seconds. In this case v is used instead of and t instead of. The distance is s. 7 s (intercept =, gradient =.) v ards/s v = 7 t hours s =.t.t dt =.t.. = = [ ] [ ] = [ ] s v =.t The car travels ards. Eample The velocit of a car as it travels between two sets of traffic lights is modelled b v =.t( t) where v is the velocit in metres per second and t is the time in seconds. Find the distance travelled. v ms  v =.t( t) s = ( t.t ) dt t =.t. = The car travels 7 metres. [ ] = 7 Compare the answers from these eamples with those given earlier. Use integration to check our answers to the questions at the bottom of page. 6 The Nuffield Foundation
6 The functions given below can be used to model the velocit v metres per second at time t seconds for the eamples given in questions to at the bottom of page. In each case: use a graphic calculator or spreadsheet to draw the graph of the model and compare the result with the graph ou drew earlier use integration to estimate the distance travelled over the given time interval and compare the result with our earlier answer. v = t between t = and t = 8 v = + t.t between t = and t = v = t t + between t = and t = v = 6 t between t = and t = Each of the following functions models the velocit v metres per second in terms of the time. In each case: use a graphic calculator or spreadsheet to draw the graph of the model briefl describe how the velocit varies over the given time interval integrate to find the distance travelled between the given values of t. v =.t between t = and t = 8 6 v = 8 t between t = and t = 7 v = t t + between t = and t = 8 v =. t between t = and t = 6 The Nuffield Foundation 6
7 Teacher Notes Unit Advanced Level, Modelling with calculus Skills used in this activit: finding areas under graphs estimating areas using triangles and trapezia integrating polnomial functions Preparation Students need to know how to use a graphc calculator or spreadsheet to draw graphs from a set of data values or given functions and how to find the area of rectangles, triangles and trapezia. Notes on Activit This activit uses areas under velocittime graphs to introduce integration. The main points are also included in the Powerpoint presentation of the same name. If our students have calculators that can integrate, this method could be used to check their answers. The answers to the questions, including sketches of the graphs, are given on the following two pages. The Nuffield Foundation 7
8 Answers Page miles ards 6 6 t hours ards ards Page v ms . 8 Accelerates from ms  to. ms  in 8 seconds 7. m v ms  Decelerates from ms  to ms  in seconds 8 m v ms  v ms  Accelerates from ms  to ms  in seconds 8. m Decelerates from ms  to ms  in seconds 7. m Page = = = The Nuffield Foundation 8
9 = + = + = = + 8 = = 8 =. Page 6 7. m (sf) 8 m 8 m 7 m (Graphs ver similar to sketches given for Page.) v ms  v =.t 6.6 Accelerates from ms  to.6 ms  in 8 seconds 8 v ms  v = 8 t Decelerates from 8 ms  to ms  in seconds.6 m m 7 v ms  Decelerates from 8 ms  to ms  v = t t + in seconds, then accelerates to ms  in the net seconds m v ms  v =. t Decelerates from ms  to ms  in 6 seconds m 6 The Nuffield Foundation
14.3. The Area Bounded by a Curve. Introduction. Prerequisites. Learning Outcomes. Learning Style
The Area Bounded b a Curve 14.3 Introduction One of the important applications of integration is to find the area bounded b a curve. Often such an area can have a phsical significance like the work done
More informationSL Calculus Practice Problems
Alei  Desert Academ SL Calculus Practice Problems. The point P (, ) lies on the graph of the curve of = sin ( ). Find the gradient of the tangent to the curve at P. Working:... (Total marks). The diagram
More informationCALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES
6 LESSON CALCULUS 1: LIMITS, AVERAGE GRADIENT AND FIRST PRINCIPLES DERIVATIVES Learning Outcome : Functions and Algebra Assessment Standard 1..7 (a) In this section: The limit concept and solving for limits
More informationCore Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
More informationA Resource for Freestanding Mathematics Qualifications
To find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y say) in terms of one other variable (x). dy Find an expression for and put it equal to 0. Solve
More information13 Graphs, Equations and Inequalities
13 Graphs, Equations and Inequalities 13.1 Linear Inequalities In this section we look at how to solve linear inequalities and illustrate their solutions using a number line. When using a number line,
More informationTo define concepts such as distance, displacement, speed, velocity, and acceleration.
Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at
More informationHomework #10 Solutions
MAT Fall Homework # Solutions Problems Bolded problems are worth points. Section 5.:, 6, 8,, Section 5.:, 6,, 8,, Notes: On 5.., evaluate the integral using the fnint function (available through MATH 9
More informationBetween Curves. Definition. The average value of a continuous function on an interval [a, b] is given by: average value on [a, b] = 1 b a
Section 5.: Average Value and Area Between Curves Definition. The average value of a continuous function on an interval [a, b] is given b: average value on [a, b] = b a b a f() d. Eample. Find the average
More informationCHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often
7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.
More informationMaximum and minimum problems. Information sheet. Think about
Maximum and minimum problems This activity is about using graphs to solve some maximum and minimum problems which occur in industry and in working life. The graphs can be drawn using a graphic calculator
More informationHigher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
More informationSolving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
More informationWe start with the basic operations on polynomials, that is adding, subtracting, and multiplying.
R. Polnomials In this section we want to review all that we know about polnomials. We start with the basic operations on polnomials, that is adding, subtracting, and multipling. Recall, to add subtract
More information4.4 Logarithmic Functions
SECTION 4.4 Logarithmic Functions 87 4.4 Logarithmic Functions PREPARING FOR THIS SECTION Before getting started, review the following: Solving Inequalities (Appendi, Section A.8, pp. 04 05) Polnomial
More informationFACTORING QUADRATICS 8.1.1 through 8.1.4
Chapter 8 FACTORING QUADRATICS 8.. through 8..4 Chapter 8 introduces students to rewriting quadratic epressions and solving quadratic equations. Quadratic functions are any function which can be rewritten
More informationSECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
More informationIf (a)(b) 5 0, then a 5 0 or b 5 0.
chapter Algebra Ke words substitution discriminant completing the square real and distinct imaginar rational verte parabola maimum minimum surd irrational rationalising the denominator Section. Quadratic
More informationMathematics. Total marks 100. Section I Pages marks Attempt Questions 1 10 Allow about 15 minutes for this section
04 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics General Instructions Reading time 5 minutes Working time hours Write using black or blue pen Black pen is preferred Boardapproved calculators ma be
More informationVector Analysis. VectorValued Functions
Appendi G Vector Analsis G G Vector Analsis VectorValued Functions In Section 0., a plane curve was defined as the set of ordered pairs together with their defining parametric equations f t, g t f t and
More informationINVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
More information4 NonLinear relationships
NUMBER AND ALGEBRA NonLinear relationships A Solving quadratic equations B Plotting quadratic relationships C Parabolas and transformations D Sketching parabolas using transformations E Sketching parabolas
More informationVARIABLES AND COMBINING LIKE TERMS 2.1.1 and 2.1.2
VARIABLES AND COMBINING LIKE TERMS 2.. and 2..2 Algebraic epressions can be represented b the perimeters and areas of algebra tiles 2 (rectangles and squares) and combinations of algebra tiles. The dimensions
More informationMATH Area Between Curves
MATH  Area Between Curves Philippe Laval September, 8 Abstract This handout discusses techniques used to nd the area of regions which lie between two curves. Area Between Curves. Theor Given two functions
More informationSECTION 25 Combining Functions
2 Combining Functions 16 91. Phsics. A stunt driver is planning to jump a motorccle from one ramp to another as illustrated in the figure. The ramps are 10 feet high, and the distance between the ramps
More informationImplicit Differentiation
Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [EMAIL: roper@math.utah.edu] Standard Disclaimer These notes are not a complete review of the course thus far, and some
More informationAN Trapezoidal Move Calculations
AN00115001  Trapezoidal Move Calculations Related Applications or Terminology Relative and Absolute Moves Point to point moves Overview To move motors in a controlled way it is necessary to understand
More informationGraph each function. Compare to the parent graph. State the domain and range. 1. SOLUTION:
 Root Functions Graph each function. Compare to the parent graph. State the domain and range...5.. 5. 6 is multiplied b a value greater than, so the graph is a vertical stretch of. Another wa to identif
More informationThe NotFormula Book for C1
Not The NotFormula Book for C1 Everything you need to know for Core 1 that won t be in the formula book Examination Board: AQA Brief This document is intended as an aid for revision. Although it includes
More informationMaths curriculum information
Maths curriculum information Year 7 Learning outcomes Place value, add and subtract Multiply and divide Geometry Fractions Algebra Percentages & pie charts Topics taught Place value (inc decimals) Add
More informationChapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
More information3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.
BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's
More informationSection C Non Linear Graphs
1 of 8 Section C Non Linear Graphs Graphic Calculators will be useful for this topic of 8 Cop into our notes Some words to learn Plot a graph: Draw graph b plotting points Sketch/Draw a graph: Do not plot,
More informationPacket 1 for Unit 2 Intercept Form of a Quadratic Function. M2 Alg 2
Packet 1 for Unit Intercept Form of a Quadratic Function M Alg 1 Assignment A: Graphs of Quadratic Functions in Intercept Form (Section 4.) In this lesson, you will: Determine whether a function is linear
More informationQuadratic Equations and Functions
Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In
More informationIn this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
More informationMotion Along A Straight Line DISPLACEMENT IDENTIFY DIRECTION OF DISPLACEMENT OF A PARTICLE FROM A FIXED POINT NOTES If the right side of
PROGRAM DIDIK CEMERLANG AKADEMIK SPM ADDITIONAL MATHEMATICS FORM 5 MODULE 15 MOTION ALONG A STRAIGHT LINE Motion Along A Straight Line 15.1. DISPLACEMENT 15.1.1. IDENTIFY DIRECTION OF DISPLACEMENT OF A
More informationNorth Carolina Community College System Diagnostic and Placement Test Sample Questions
North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College
More informationWhen I was 3.1 POLYNOMIAL FUNCTIONS
146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we
More informationPROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS
PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers
More informationUse & Value Connections
Use & Value Connections Project Maths Workshop 9 Name: School: Contents WS09.01 Nets... 2 WS09.02 Integration... 5 Activity 1... 5 Activity 2... 6 Activity 3... 7 Activity 4... 8 Activity 5... 9 Activity
More informationCore Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
More informationChapter 6 Quadratic Functions
Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where
More informationDISTANCE, CIRCLES, AND QUADRATIC EQUATIONS
a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the
More informationHigher. Functions and Graphs. Functions and Graphs 18
hsn.uk.net Higher Mathematics UNIT UTCME Functions and Graphs Contents Functions and Graphs 8 Sets 8 Functions 9 Composite Functions 4 Inverse Functions 5 Eponential Functions 4 6 Introduction to Logarithms
More informationAlgebra ConceptReadiness Test, Form A
Algebra ConceptReadiness Test, Form A Concept : The Distributive Property Study the concept, and then answer the test questions on the net page. You can use the distributive property to simplify an epression
More information135 Final Review. Determine whether the graph is symmetric with respect to the xaxis, the yaxis, and/or the origin.
13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, 6); P2 = (7, 2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the ais, the ais, and/or the
More informationAppendix C: Review of Graphs, Equations, and Inequalities
Appendi C: Review of Graphs, Equations, and Inequalities C.1 The Cartesian Plane The Cartesian Plane Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs
More informationCOMPONENTS OF VECTORS
COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two
More informationTHE PARABOLA 13.2. section
698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.
More information15.1. Integration as the limit of a sum. Introduction. Prerequisites. Learning Outcomes. Learning Style
Integration as the limit of a sum 15.1 Introduction In Chapter 14, integration was introduced as the reverse of differentiation. A more rigorous treatment would show that integration is a process of adding
More informationTo find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y, say) in terms of one other variable (x).
Maxima and minima In this activity you will learn how to use differentiation to find maximum and minimum values of functions. You will then put this into practice on functions that model practical contexts.
More informationMath 40 Chapter 3 Lecture Notes. Professor Miguel Ornelas
Math 0 Chapter Lecture Notes Professor Miguel Ornelas M. Ornelas Math 0 Lecture Notes Section. Section. The Rectangular Coordinate Sstem Plot each ordered pair on a Rectangular Coordinate Sstem and name
More informationChapter 1 Measurement
Chapter 1 Measurement Math 1201 1 Chapter 1 Measurement Sections 1.11.3: Goals: Converting between imperial units by unit analysis Converting between SI units Converting between SI and imperial units
More information8. Bilateral symmetry
. Bilateral smmetr Our purpose here is to investigate the notion of bilateral smmetr both geometricall and algebraicall. Actuall there's another absolutel huge idea that makes an appearance here and that's
More informationGraphing Quadratic Functions
A. THE STANDARD PARABOLA Graphing Quadratic Functions The graph of a quadratic function is called a parabola. The most basic graph is of the function =, as shown in Figure, and it is to this graph which
More informationExponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More information1) (3) + (6) = 2) (2) + (5) = 3) (7) + (1) = 4) (3)  (6) = 5) (+2)  (+5) = 6) (7)  (4) = 7) (5)(4) = 8) (3)(6) = 9) (1)(2) =
Extra Practice for Lesson Add or subtract. ) (3) + (6) = 2) (2) + (5) = 3) (7) + () = 4) (3)  (6) = 5) (+2)  (+5) = 6) (7)  (4) = Multiply. 7) (5)(4) = 8) (3)(6) = 9) ()(2) = Division is
More informationReview Exercise Set 3
Review Eercise Set 3 Eercise 1: The larger of two positive numbers is greater than the smaller. Find the two numbers if their product is 63. Eercise : The length of a rectangle is 4 inches less than twice
More informationREVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011
REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working
More information1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered
Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,
More information16 Circles and Cylinders
16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two
More informationMotion: Velocity and Net Change
math 3, applications motion: velocity net change Motion: Velocity Net Change In Calculus I you interpreted the first second derivatives as velocity acceleration in the context of motion So let s apply
More information7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
More informationIn addition to looking for applications that can be profitably examined algebraically,
The mathematics of stopping your car Eric Wood National Institute of Education, Singapore In addition to looking for applications that can be profitably examined algebraically, numerically
More informationColegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radioactive substance at time t hours is given by. m = 4e 0.2t.
REPASO. The mass m kg of a radioactive substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()
More informationZero and Negative Exponents and Scientific Notation. a a n a m n. Now, suppose that we allow m to equal n. We then have. a am m a 0 (1) a m
0. E a m p l e 666SECTION 0. OBJECTIVES. Define the zero eponent. Simplif epressions with negative eponents. Write a number in scientific notation. Solve an application of scientific notation We must have
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationQuadratic Functions. MathsStart. Topic 3
MathsStart (NOTE Feb 2013: This is the old version of MathsStart. New books will be created during 2013 and 2014) Topic 3 Quadratic Functions 8 = 3 2 6 8 ( 2)( 4) ( 3) 2 1 2 4 0 (3, 1) MATHS LEARNING CENTRE
More informationFoundation. Scheme of Work. Year 10 September 2016July 2017
Foundation Scheme of Work Year 10 September 016July 017 Foundation Tier Students will be assessed by completing two tests (topic) each Half Term. PERCENTAGES Use percentages in reallife situations VAT
More informationTo Be or Not To Be a Linear Equation: That Is the Question
To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not
More informationTHE PARABOLA section. Developing the Equation
80 (0) Chapter Nonlinear Sstems and the Conic Sections. THE PARABOLA In this section Developing the Equation Identifing the Verte from Standard Form Smmetr and Intercepts Graphing a Parabola Maimum or
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationChapter 1 Notes: Quadratic Functions
1 Chapter 1 Notes: Quadratic Functions (Textbook Lessons 1.1 1.2) Graphing Quadratic Function A function defined by an equation of the form, The graph is a Ushape called a. Standard Form Vertex Form axis
More informationMAT Elementary Algebra Departmental Final  Part One  Multiple Choice Section
MAT 0028  Elementar Algebra Departmental Final  Part One  Multiple Choice Section PRACTICE EXAM 114 
More informationContents. How You May Use This Resource Guide
Contents How You Ma Use This Resource Guide ii 9 Fractional and Quadratic Equations 1 Worksheet 9.1: Similar Figures.......................... 5 Worksheet 9.: Stretch of a Spring........................
More informationC1: Coordinate geometry of straight lines
B_Chap0_0805.qd 5/6/04 0:4 am Page 8 CHAPTER C: Coordinate geometr of straight lines Learning objectives After studing this chapter, ou should be able to: use the language of coordinate geometr find the
More informationSkill Builders. (Extra Practice) Volume I
Skill Builders (Etra Practice) Volume I 1. Factoring Out Monomial Terms. Laws of Eponents 3. Function Notation 4. Properties of Lines 5. Multiplying Binomials 6. Special Triangles 7. Simplifying and Combining
More informationProcedure In each case, draw and extend the given series to the fifth generation, then complete the following tasks:
Math IV Nonlinear Algebra 1.2 Growth & Decay Investigation 1.2 B: Nonlinear Growth Introduction The previous investigation introduced you to a pattern of nonlinear growth, as found in the areas of a series
More information21 Position, Displacement, and Distance
21 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:
More informationGRAPHS OF RATIONAL FUNCTIONS
0 (0) Chapter 0 Polnomial and Rational Functions. f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0). f() ( 0) ( 0) 0. GRAPHS OF RATIONAL FUNCTIONS In this section Domain Horizontal and Vertical Asmptotes Oblique
More informationUNIVERSITY OF WISCONSIN SYSTEM
Name UNIVERSITY OF WISCONSIN SYSTEM MATHEMATICS PRACTICE EXAM Check us out at our website: http://www.testing.wisc.edu/center.html GENERAL INSTRUCTIONS: You will have 90 minutes to complete the mathematics
More informationMathematics Placement Packet Colorado College Department of Mathematics and Computer Science
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More information6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:
Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions  4, use the graph at the right.. Eplain wh the graph
More informationSection 14.5 Directional derivatives and gradient vectors
Section 4.5 Directional derivatives and gradient vectors (3/3/08) Overview: The partial derivatives f ( 0, 0 ) and f ( 0, 0 ) are the rates of change of z = f(,) at ( 0, 0 ) in the positive  and directions.
More informationCHAPTER 54 SOME APPLICATIONS OF DIFFERENTIATION
CHAPTER 5 SOME APPLICATIONS OF DIFFERENTIATION EXERCISE 0 Page 65. An alternating current, i amperes, is given b i = 0 sin πft, where f is the frequenc in hertz and t the time in seconds. Determine the
More informationQUADRATIC FUNCTIONS AND COMPLEX NUMBERS
CHAPTER 86 5 CHAPTER TABLE F CNTENTS 5 Real Roots of a Quadratic Equation 52 The Quadratic Formula 53 The Discriminant 54 The Comple Numbers 55 perations with Comple Numbers 56 Comple Roots of a
More informationBiggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress
Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation
More informationSupporting your child with maths
Granby Primary School Year 5 & 6 Supporting your child with maths A handbook for year 5 & 6 parents H M Hopps 2016 G r a n b y P r i m a r y S c h o o l 1 P a g e Many parents want to help their children
More informationSTRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Axis Combining Transformations of Graphs
6 CHAPTER Analsis of Graphs of Functions. STRETCHING, SHRINKING, AND REFLECTING GRAPHS Vertical Stretching Vertical Shrinking Reflecting Across an Ais Combining Transformations of Graphs In the previous
More informationTEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. 1. Factor x 25x + 6. 2. Factor x 24x  5.
TEST A CHAPTER 6, EQUATIONS, INEQUALITIES, PROBLEM SOLVING. Factor x 25x + 6. 2. Factor x 24x  5. 3. Solve: (x + 2)(x  3) = 0 x(x  3)(x + 4) = 0 4. Solve by factoring: x 2 + x + 2 = 0. 5. Solve by
More information2.7 Mathematical Models: Constructing Functions
CHAPTER Functions and Their Graphs.7 Mathematical Models: Constructing Functions OBJECTIVE Construct and Analyze Functions Construct and Analyze Functions Realworld problems often result in mathematical
More informationSTRAND F: ALGEBRA. UNIT F4 Solving Quadratic Equations: Text * * * Contents. Section. F4.1 Factorisation. F4.2 Using the Formula
UNIT F4 Solving Quadratic Equations: Tet STRAND F: ALGEBRA Unit F4 Solving Quadratic Equations Tet Contents * * * Section F4. Factorisation F4. Using the Formula F4. Completing the Square UNIT F4 Solving
More informationDownloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x
Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its
More informationQuadratic Functions and Parabolas
MATH 11 Quadratic Functions and Parabolas A quadratic function has the form Dr. Neal, Fall 2008 f () = a 2 + b + c where a 0. The graph of the function is a parabola that opens upward if a > 0, and opens
More informationQuestion: What is the quadratic formula? Question: What is the discriminant? Answer: Answer:
Question: What is the quadratic fmula? Question: What is the discriminant? Question: How do you determine if a quadratic equation has no real roots? The discriminant is negative ie Question: How do you
More informationWeek #15  Word Problems & Differential Equations Section 8.1
Week #15  Word Problems & Differential Equations Section 8.1 From Calculus, Single Variable by HughesHallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons, Inc. This material is used by
More informationGrade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area. Determine the area of various shapes Circumference
1 P a g e Grade 9 Mathematics Unit 3: Shape and Space Sub Unit #1: Surface Area Lesson Topic I Can 1 Area, Perimeter, and Determine the area of various shapes Circumference Determine the perimeter of various
More information