Implicit Differentiation
|
|
|
- Iris French
- 9 years ago
- Views:
Transcription
1 Revision Notes 2 Calculus 1270 Fall 2007 INSTRUCTOR: Peter Roper OFFICE: LCB 313 [ [email protected]] Standard Disclaimer These notes are not a complete review of the course thus far, and some subjects have been omitted here. These notes are meant solel as a guide and a summar of the harder and more important subjects in the course. The midterm will be drawn from the whole course, and ma include questions drawn from subjects not discussed in these notes. Implicit Differentiation [section 2.7 of book] Compare the two equations that describe familiar curves = (parabola) = 3 (circle) The first defines as an eplicit function of, because ever value of gives rise to a single value of. The second however defines as an implicit function of because each value of does not give a unique value for. How do we differentiate such implicit functions? For some we can re-arrange to find an implicit function, but this is not alwas possible and it is easier to use the chain rule. For eample, for the circle above and so d d (2 + 2 ) = d d 3 d d = 0 to find d/d( 2 ) use the chain rule, so that d d 2 = 2 d putting this back into the original equation we obtain 2 d + 2 = 0
2 and we can rearrange to give d = which gives us an epression for /d as we require. Infinitessimals/differentials and linear approimations [section 2.9 of book] Sometimes we need a quick and simple estimate of the change in a function f() that results when we change slightl. If we change b + then the resulting change in = f() is just = f( + ) f(). As shown in the figure tangent line + + =f() =f() However if the change is ver small then we can use the tangent line as an approimation to the curve and instead find as an approimation to. Therefore, if the slope of the tangent line is m = f (), and using the equation ( = m + c) for a straight line, we can write and in terms of infinitessimals, f () = f ()d
3 Optimization: finding maima, minima and critical points We ve introduced the idea of the differential of a curve at a point 0 as being the slope of the tangent line at that point. We now use this idea to eamine properties of curves. We note first that if a function, f() has a maima or a minima at some point, then the slope of the curve is zero AT THAT POINT because the tangent is flat. We call such a point an etrema of the function. However if there is an asmptote, the slope of the curve is infinite because it s pointing verticall up (or down) AT THAT POINT. So, to eamine the properties of the curve over some interval I, we compute it s differential, f () and determine whether or not the differential vanishes or goes to infinit at an point in the interval. However once we have found a point where the function has a tangent with a slope of zero, how do we tell if it s a maimum or a minimum? Two possible was are: The first derivative test Compute the slope of the function on either side of the etrema. If the function is increasing on the left side (/d > 0), and decreasing on the right (/d < 0) then we have a maima, if it is decreasing on the left and increasing on the right then we have a minima. The second derivative test If the second derivative of the function f () < 0, then we have a local maima. If f () > 0 then we have a local minima. Finding roots of equations numericall Often we need to find the roots, or zeros, of a function, b which I mean that we are tring to find where the function crosses the -ais. For some functions, such as quadratic and cubics, there eist eplicit formulae for computing their roots, but for most functions there is no general wa of finding them. Instead we turn to approimate, or numerical, techniques. We will talk about two similar techniques, one that alwas converges but can be ver slow, and one that is fast but doesn t alwas converge.
4 The bisection method Consider tring to find the roots of = f() The point of this technique is to find two points a and b, one that is above and one that is below the root 1, and then progressivel move each point, a and b, so that we narrow down the interval between them while keeping them on either side of the root. =f() a 1 m 1 b 1 We choose our first values for a and b, call them a 1 and b 1 b guessing at some numbers and then testing to see whether f(a 1 ) has the opposite sign to f(b 1 ) which means that the are on either side of the root. Note that if, sa, f(a 1 ) is positive, and f(b 1 ) is negative then their product is negative too. And so to test whether the both lie on either side of the root all we need to do is calculate f(a 1 ) f(b 1 ) and show that it is negative. Once we have found a suitable initial choice for a 1 and b 1 we can start to zoom in on the root. We first find the midpoint between a 1 and b 1 m 1 = a 1 + b 1 2 and we test whether f(a 1 ) f(m 1 ) or whether f(m 1 ) f(b 1 ) is negative, to determine whether the root lies between a 1 and m 1 or between m 1 and b 1. 1 Use the mean value theorem to show that the root lies between them
5 If f(a 1 ) f(m 1 ) < 0 then the root lies between a 1 and m 1 and so we make a new interval b setting a 2 = a 1 and b 2 = m 1 and find a new midpoint m 2 = a 2 + b 2 2 Similarl if f(m 1 ) f(b 1 ) is negative then we set a 2 = m 1 and b 2 = b 1 and again find the new midpoint. We then test m 2 to find which of f(a 2 ) f(m 2 ) or f(m 2 ) f(b 2 ) is negative. We then continue b setting a 3 and b 3 equal to the resulting boundaries, and so on until we have reached a desired degree of accurac. So, the net question is how do we decide how accurate our answer is at each iteration? This is actuall prett straightforward: at the n th iteration we ve shown that the root lies between a n and b n. This means the midpoint m n is within half of the distance between a n and b n of the true root. Therefore, the quantit h n = b n a n 2 tells us how close m n is to the correct answer. This bisection method alwas converges to the correct answer, although it can be etremel slow. Newton s method Newton s method rests upon the idea that when ou are close to a curve, the tangent line is a good approimation to the curve. This time we start with a single guess at the root, call it a 1. We find the net approimation, a 2 to the root b finding the intersection with the ais of the tangent line to f() at the point a 1, as shown in the figure. Therefore if the slope of the tangent line is f () then the new guess is a 2 = a 1 f(a 1) f (a 1 ) We can then continue the iteration b finding a 3 from the tangent line at a 2 until we have reached the desired degree of accurac. Newton s method does not alwas converge to the correct answer, but it can be significantl faster than the bisection method.
6 tangent line a 2 a 1 =f() Differential Equations We frequentl encounter problems of the form d = f() where we have a differentiated quantit on the LHS and some function of on the right. Such problems are called differential equations. The problem then becomes: how do we invert the differentiation to find as a function of? Simple, first order, ordinar differential equations (ODE s) can be solved b integration, eg: ds dt = 10 is an ODE for the speed of a vehicle travelling at 10 mph, where s is the distance. Integrate to find the total distance gone from time t = 0 to t = 1 hour 1 0 ds = 10 dt ds = dt = 10t] 1 0 = 10 miles
7 Eponential growth and deca ODE s that have the form dn dt = kn describe eponential growth (if k > 0) or deca (k < 0). Again solve b simple integration 1 dn = k dt N 1 N dn = k dt ln(n) = kt + C N(t) = ep(kt + C) = ep(kt) ep(c) = K ep(kt) where, since C is a constant, K = ep(c) is also a constant. What actuall is K? Think about setting t = 0, ie when the sstem first starts off. Then we have: N(t = 0) N(0) = K ep(k 0) = K and so K = N(0) is the initial value for the problem. [In fact we can use the initial value of an ODE to find the constants of integration.] Separable differential equations An ODE that can be manipulated into the form where all s and d s are one one side of the equation, while all s and s are on the other is called a separable differential equation, and can be integrated directl. Eamples d = 1 2 ( + 1) + 1 = 2 d d = ( + 1) 1 = d + 1 d = 2 sin() 1 = sin() d 2 and in the same wa as for eponential growth, use the initial values (if given) to find numerical values for the constant of integration.
8 Integration For the midterm I m going to assume that ou understand that integration is the inverse of differentiation, and I m more concerned with our being able to practicall solve integrals. With this in mind, some common errors... for which ou would be penalized for... are: Forgetting infinitessimals If one side of an equation is multiplied b an infinitessimal, then the other side must also be multiplied b an infinitessimal too, for eample: = 7 sin() d and so the integral becomes and so = 7 sin() d = 7 cos() + C Constants of integration When indefinite integrals (i.e. those that do not have limits) are evaluated, the solution must include a constant of integration: f()d = F () + C but definite integrals (i.e. those that have limits) do not have a constant of integration b Integrating f(3), f(4), etc a f()d = F (b) F (a) This is a special case of integration b substitution. To integrate (e.g.) sin(5) make the substitution u = 5, so: du = 5 d or d = 1 5 du
9 and therefore sin(5) d = sin(u) 1 5 du = = 1 5 cos(u) = 1 5 cos(5) Integration b substitution Some integrals ma be transformed to a simpler integral b substitution. transforming an integral When Step 1 transform the variable, e.g. u = sin() Step 2 transform the infinitessimal, e.g. du = cos()d Step 3 (for definite integrals) transform the limits, e.g. u 1 = sin( 1 ), u 2 = sin( 2 )
Roots of equation fx are the values of x which satisfy the above expression. Also referred to as the zeros of an equation
LECTURE 20 SOLVING FOR ROOTS OF NONLINEAR EQUATIONS Consider the equation f = 0 Roots of equation f are the values of which satisfy the above epression. Also referred to as the zeros of an equation f()
Higher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
Exponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
Roots of Equations (Chapters 5 and 6)
Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
Section 7.2 Linear Programming: The Graphical Method
Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function
INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1
Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.
C3: Functions. Learning objectives
CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
LESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS
PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers
SECTION 2.2. Distance and Midpoint Formulas; Circles
SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation
y intercept Gradient Facts Lines that have the same gradient are PARALLEL
CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
When I was 3.1 POLYNOMIAL FUNCTIONS
146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we
Graphing Quadratic Equations
.4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012
Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to
Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal
Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second
15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
D.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
Section 1-4 Functions: Graphs and Properties
44 1 FUNCTIONS AND GRAPHS I(r). 2.7r where r represents R & D ependitures. (A) Complete the following table. Round values of I(r) to one decimal place. r (R & D) Net income I(r).66 1.2.7 1..8 1.8.99 2.1
135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.
13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science
Mathematics Placement Packet Colorado College Department of Mathematics and Computer Science Colorado College has two all college requirements (QR and SI) which can be satisfied in full, or part, b taking
In this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
5.2 Inverse Functions
78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,
Mathematical goals. Starting points. Materials required. Time needed
Level A7 of challenge: C A7 Interpreting functions, graphs and tables tables Mathematical goals Starting points Materials required Time needed To enable learners to understand: the relationship between
9.5 CALCULUS AND POLAR COORDINATES
smi9885_ch09b.qd 5/7/0 :5 PM Page 760 760 Chapter 9 Parametric Equations and Polar Coordinates 9.5 CALCULUS AND POLAR COORDINATES Now that we have introduced ou to polar coordinates and looked at a variet
Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.
REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()
Section 3-3 Approximating Real Zeros of Polynomials
- Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros
1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
AP Calculus AB 2004 Scoring Guidelines
AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from
Double Integrals in Polar Coordinates
Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter
Roots, Linear Factors, and Sign Charts review of background material for Math 163A (Barsamian)
Roots, Linear Factors, and Sign Charts review of background material for Math 16A (Barsamian) Contents 1. Introduction 1. Roots 1. Linear Factors 4. Sign Charts 5 5. Eercises 8 1. Introduction The sign
FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -
3 e) x f) 2. Precalculus Worksheet P.1. 1. Complete the following questions from your textbook: p11: #5 10. 2. Why would you never write 5 < x > 7?
Precalculus Worksheet P.1 1. Complete the following questions from your tetbook: p11: #5 10. Why would you never write 5 < > 7? 3. Why would you never write 3 > > 8? 4. Describe the graphs below using
Mathematics 31 Pre-calculus and Limits
Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
6. The given function is only drawn for x > 0. Complete the function for x < 0 with the following conditions:
Precalculus Worksheet 1. Da 1 1. The relation described b the set of points {(-, 5 ),( 0, 5 ),(,8 ),(, 9) } is NOT a function. Eplain wh. For questions - 4, use the graph at the right.. Eplain wh the graph
88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a
88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small
Chapter 6 Quadratic Functions
Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where
Pre Calculus Math 40S: Explained!
Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph
ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude
ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height
1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered
Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
DIFFERENTIAL EQUATIONS
DIFFERENTIAL EQUATIONS 379 Chapter 9 DIFFERENTIAL EQUATIONS He who seeks f methods without having a definite problem in mind seeks f the most part in vain. D. HILBERT 9. Introduction In Class XI and in
SECTION 5-1 Exponential Functions
354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational
AP Calculus AB 2001 Scoring Guidelines
P Calculus Scing Guidelines The materials included in these files are intended f non-commercial use by P teachers f course and eam preparation; permission f any other use must be sought from the dvanced
AP Calculus AB 2005 Scoring Guidelines Form B
AP Calculus AB 5 coring Guidelines Form B The College Board: Connecting tudents to College uccess The College Board is a not-for-profit membership association whose mission is to connect students to college
AP Calculus BC 2008 Scoring Guidelines
AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates
Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c
Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1
Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical
Trigonometry Review Workshop 1
Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions
Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x
Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Functions and Graphs CHAPTER INTRODUCTION. The function concept is one of the most important ideas in mathematics. The study
Functions and Graphs CHAPTER 2 INTRODUCTION The function concept is one of the most important ideas in mathematics. The stud 2-1 Functions 2-2 Elementar Functions: Graphs and Transformations 2-3 Quadratic
Exponential Functions
Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means
Autonomous Equations / Stability of Equilibrium Solutions. y = f (y).
Autonomous Equations / Stabilit of Equilibrium Solutions First order autonomous equations, Equilibrium solutions, Stabilit, Longterm behavior of solutions, direction fields, Population dnamics and logistic
QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS. Alexander Panfilov
QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS Aleander Panfilov QUALITATIVE ANALYSIS OF DIFFERENTIAL EQUATIONS Aleander Panfilov Theoretical Biolog, Utrecht Universit, Utrecht c 010 Februar 3, 010 Tentative
Identifying second degree equations
Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +
LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
Exponential Functions: Differentiation and Integration. The Natural Exponential Function
46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential
Section 3-7. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative
202 Chapter 3 The Derivative Section 3-7 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
Click here for answers.
CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.
_.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
Section V.2: Magnitudes, Directions, and Components of Vectors
Section V.: Magnitudes, Directions, and Components of Vectors Vectors in the plane If we graph a vector in the coordinate plane instead of just a grid, there are a few things to note. Firstl, directions
10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:
MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
A Quick Algebra Review
1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals
SAMPLE. Polynomial functions
Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through
Slope-Intercept Form and Point-Slope Form
Slope-Intercept Form and Point-Slope Form In this section we will be discussing Slope-Intercept Form and the Point-Slope Form of a line. We will also discuss how to graph using the Slope-Intercept Form.
2.6. The Circle. Introduction. Prerequisites. Learning Outcomes
The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular
To Be or Not To Be a Linear Equation: That Is the Question
To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not
Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013
Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in
Section 6-3 Double-Angle and Half-Angle Identities
6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities
y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx
Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.
Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X
Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
2013 MBA Jump Start Program
2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of
2.1 Three Dimensional Curves and Surfaces
. Three Dimensional Curves and Surfaces.. Parametric Equation of a Line An line in two- or three-dimensional space can be uniquel specified b a point on the line and a vector parallel to the line. The
t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.
The area under a graph often gives useful information. Velocit-time graphs Constant velocit The sketch shows the velocit-time graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The
D.2. The Cartesian Plane. The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles. D10 APPENDIX D Precalculus Review
D0 APPENDIX D Precalculus Review SECTION D. The Cartesian Plane The Cartesian Plane The Distance and Midpoint Formulas Equations of Circles The Cartesian Plane An ordered pair, of real numbers has as its
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
1 Maximizing pro ts when marginal costs are increasing
BEE12 Basic Mathematical Economics Week 1, Lecture Tuesda 12.1. Pro t maimization 1 Maimizing pro ts when marginal costs are increasing We consider in this section a rm in a perfectl competitive market
7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
AP Calculus AB 2007 Scoring Guidelines Form B
AP Calculus AB 7 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
G.A. Pavliotis. Department of Mathematics. Imperial College London
EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.
correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:
Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that
5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED
CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given
More Equations and Inequalities
Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities
