# 15.1. Integration as the limit of a sum. Introduction. Prerequisites. Learning Outcomes. Learning Style

Save this PDF as:

Size: px
Start display at page:

Download "15.1. Integration as the limit of a sum. Introduction. Prerequisites. Learning Outcomes. Learning Style"

## Transcription

1 Integration as the limit of a sum 15.1 Introduction In Chapter 14, integration was introduced as the reverse of differentiation. A more rigorous treatment would show that integration is a process of adding or summation. Byviewing integration from this perspective it is possible to applythe techniques of integration to finding areas, volumes, centres of gravityand manyother important quantities. The content of this block is important because it is here that integration is defined properly. A thorough understanding of the process involved is essential if you need to apply integration techniques to practical problems. Prerequisites Before starting this Block you should... Learning Outcomes After completing this Block you should be able to... explain integration as the limit of a sum evaluate the limit of a sum in simple cases 1 be able to calculate definite integrals Learning Style To achieve what is expected of you... allocate sufficient studytime brieflyrevise the prerequisite material attempt every guided exercise and most of the other exercises

2 1. The limit of a sum y area required y( x) a b x Figure 1. The area under a curve Consider the graph of the positive function y(x) shown in Figure 1. Suppose we are interested in finding the area under the graph between x = a and x = b. One wayin which this area can be approximated is to divide it into a number of rectangles, find the area of each rectangle, and then add up all these individual rectangular areas. This is illustrated in Figure 2a, which shows the area divided into n rectangles, and Figure 2b which shows the dimensions of a typical rectangle which is located at x = x k. y y n rectangles y( x) y(x k ) δx y(x) a (a) b x (b) x k x Figure 2. a) The area approximated by n rectangles. b) A typical rectangle. Try each part of this exercise Part (a) Firstly, refer to Figure 2a and state the distance from a to b: Part (b) In Figure 2a) the area has been divided into n rectangles. If n rectangles span the distance from a to b state the width of each rectangle: Part (c) It is conventional to label the width of each rectangle as δx, i.e. δx = b a. Suppose n we label the x coordinates at the left hand side of the rectangles as x 1, x 2 up to x n (here x 1 = a and x n+1 = b). A typical rectangle, the kth rectangle, is shown in Figure 2b). Note that its height is y(x k ). Calculate its area: Engineering Mathematics: Open Learning Unit Level 1 2

3 The sum of the areas of all n rectangles is then y(x 1 )δx + y(x 2 )δx + y(x 3 )δx + + y(x n )δx which we write conciselyusing sigma notation as n y(x k )δx This quantitygives us an estimate of the area under the curve but it is not exact. To improve the estimate we must take a large number of verythin rectangles. So, what we want to find is the value of this sum when n tends to infinityand δx tends to zero. We write this value as lim n n y(x k )δx The lower and upper limits on the sum correspond to the first and last rectangle where x = a and x = b respectivelyand so we can write this limit in the equivalent form x=b lim δx 0 x=a y(x)δx (1) Here, as the number of rectangles increase without bound we drop the subscript k from x k and write y(x) which is the value of y at a typical value of x. If this sum can actuallybe found, it is called the definite integral of y(x), from x = a to x = b and it is written b y(x)dx. You a are alreadyfamiliar with the technique for evaluating definite integrals which was studied in Chapter 14, Block 2. Therefore we have the following definition: The definite integral b a Key Point x=b y(x)dx is defined as lim y(x)δx δx 0 x=a Note that the quantity δx represents the thickness of a small but finite rectangle. When we have taken the limit as δx tends to zero to obtain the integral, we write dx. This process of dividing an area into verysmall regions, performing a calculation on each region, and then adding the results bymeans of an integral is veryimportant. This will become apparent when finding volumes, centres of gravity, moments of inertia etc in the following blocks where similar procedures are followed. Example The area under the graph of y = x 2 between x = 0 and x = 1 is to be found using the technique just described. If the required area is approximated bya large number of thin rectangles, the limit of the sum of their areas is given from Equation 1 as x=1 lim δx 0 x=0 y(x) δx Write down the integral which this sum defines and evaluate it to obtain the area under the curve. 3 Engineering Mathematics: Open Learning Unit Level 1

4 Solution The limit of the sum defines the integral 1 y(x)dx. Here y = 0 x2 and so 1 [ ] x x dx = = To show that the process of taking the limit of a sum actuallyworks we discuss the problem in detail. Example Use the idea of the limit of a sum to find the area under the graph of y = x 2 between x = 0 and x =1. Solution y 1 y =x 2 n rectangles 0 1 x Figure 3. The area under y = x 2 is approximated bya number of thin rectangles. Try each part of this exercise Refer to the graph in Figure 3 to help you answer the questions. Part (a) If the interval between x = 0 and x = 1 is divided into n rectangles what is the width of each rectangle? Part (b) What is the x coordinate at the left-hand side of the first rectangle? Part (c) What is the x coordinate at the left-hand side of the second rectangle? Part (d) What is the x coordinate at the left-hand side of the third rectangle? Engineering Mathematics: Open Learning Unit Level 1 4

5 Part (e) What is the x coordinate at the left-hand side of the kth rectangle? Part (f) Given that y = x 2, what is the y coordinate at the left-hand side of the kth rectangle? Part (g) The area of the kth rectangle is its height its width. Write down the area of the kth rectangle: To find the total area A n of the n rectangles we must add up all these individual rectangular areas: n (k 1) 2 A n = This sum can be simplified and then calculated as follows. You will need to make use of the formulas for the sum of the first k integers, and the sum of the squares of the first k integers: n 3 n 1=n, n k = 1 n n(n +1), 2 k 2 = 1 n(n + 1)(2n +1) 6 Then, the total area of the rectangles is given by A n = n (k 1) 2 n 3 = 1 n 3 n (k 1) 2 = 1 n (k 2 2k +1) n 3 = 1 n 3 ( n k 2 2 n k + ) n 1 = 1 n 3 ( n 6 (n + 1)(2n +1) 2n 2 (n +1)+n ) = 1 ( (n + 1)(2n +1) n 2 6 = 1 ( (n + 1)(2n +1) n 2 6 = 1 ( (n + 1)(2n +1) n 2 6 = 1 ( 2n 2 3n +1 ) 6n 2 = n + 1 6n 2 ) (n +1)+1 ) Note that this is a formula for the total area of the n rectangles. It is an estimate of the area under the graph of y = x 2.Now,asn gets larger, the terms 1 and 1 become small and will 2n 6n 2 eventuallytend to zero. n 6n 6 ) 5 Engineering Mathematics: Open Learning Unit Level 1

6 Part (h) Let n tend to infinityto obtain the exact answer: The required area is 1. 3 The area has been found as the limit of a sum and of course agrees with that calculated by integration. In the calculations which follow in subsequent blocks the need to evaluate complicated limits like this is avoided byperforming the integration using the techniques of Chapter 14. Nevertheless it will still be necessaryto go through the process of dividing a region into small sections, performing a calculation on each section and then adding the results, in order to formulate the integral required. More exercises for you to try There are deliberatelyfew exercises in this Block because in practice integrals are evaluated using the techniques of Chapter 14 and not bytaking explicit limits of sums. What is important though is an understanding of how the appropriate sum is formed. 1. Find the area under y = x + 1 from x =0tox = 10 using the limit of a sum. 2. Find the area under y =3x 2 from x =0tox = 2 using the limit of a sum. 3. Write down, but do not evaluate, the integral defined bythe limit as δx 0, or δt 0 of the following sums: (a) x=1 x 3 δx, x=0 (b) x=4 4πx 2 δx, x=0 (c) t=1 t 3 δt, t=0 (d) x=1 6mx 2 δx. x=0 Engineering Mathematics: Open Learning Unit Level 1 6

7 End of Block Engineering Mathematics: Open Learning Unit Level 1

8 b a Engineering Mathematics: Open Learning Unit Level 1 8

9 b a n 9 Engineering Mathematics: Open Learning Unit Level 1

10 y(x k ) δx Engineering Mathematics: Open Learning Unit Level 1 10

11 1 n 11 Engineering Mathematics: Open Learning Unit Level 1

12 0 Engineering Mathematics: Open Learning Unit Level 1 12

13 1 n 13 Engineering Mathematics: Open Learning Unit Level 1

14 2 n Engineering Mathematics: Open Learning Unit Level 1 14

15 k 1 n 15 Engineering Mathematics: Open Learning Unit Level 1

16 ( k 1 ) 2 n Engineering Mathematics: Open Learning Unit Level 1 16

17 ( k 1 ) 2 n 1 = (k 1)2 n n 3 17 Engineering Mathematics: Open Learning Unit Level 1

18 1 3 Engineering Mathematics: Open Learning Unit Level 1 18

19 (a) 1 0 x3 dx. (b) 4π 4 0 x2 dx, (c) 1 0 t3 dt, (d) 1 0 6mx2 dx. 19 Engineering Mathematics: Open Learning Unit Level 1

### 15.5. Lengths of curves and surfaces of revolution. Introduction. Prerequisites. Learning Outcomes. Learning Style

Lengths of curves and surfaces of revolution 15.5 Introduction Integration can be used to find the length of a curve and the area of the surface generated when a curve is rotated around an axis. In this

### 15.3. Calculating centres of mass. Introduction. Prerequisites. Learning Outcomes. Learning Style

Calculating centres of mass 15.3 Introduction In this block we show how the idea of integration as the limit of a sum can be used to find the centre of mass of an object such as a thin plate, like a sheet

### Estimating the Average Value of a Function

Estimating the Average Value of a Function Problem: Determine the average value of the function f(x) over the interval [a, b]. Strategy: Choose sample points a = x 0 < x 1 < x 2 < < x n 1 < x n = b and

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

### 10.2 Series and Convergence

10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

### Use finite approximations to estimate the area under the graph of the function. f(x) = x 3

5.1: 6 Use finite approximations to estimate the area under the graph of the function f(x) = x 3 between x = 0 and x = 1 using (a) a lower sum with two rectangles of equal width (b) a lower sum with four

### 14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style

Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of

### APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS

APPLICATIONS AND MODELING WITH QUADRATIC EQUATIONS Now that we are starting to feel comfortable with the factoring process, the question becomes what do we use factoring to do? There are a variety of classic

### Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Jitendra Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 28 Fourier Series (Contd.) Welcome back to the lecture on Fourier

### MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 1 BASIC INTEGRATION

MATHEMATICS FOR ENGINEERING INTEGRATION TUTORIAL 1 ASIC INTEGRATION This tutorial is essential pre-requisite material for anyone studying mechanical engineering. This tutorial uses the principle of learning

### 16.1. Sequences and Series. Introduction. Prerequisites. Learning Outcomes. Learning Style

Sequences and Series 16.1 Introduction In this block we develop the ground work for later blocks on infinite series and on power series. We begin with simple sequences of numbers and with finite series

### (b)using the left hand end points of the subintervals ( lower sums ) we get the aprroximation

(1) Consider the function y = f(x) =e x on the interval [, 1]. (a) Find the area under the graph of this function over this interval using the Fundamental Theorem of Calculus. (b) Subdivide the interval

### = δx x + δy y. df ds = dx. ds y + xdy ds. Now multiply by ds to get the form of the equation in terms of differentials: df = y dx + x dy.

ERROR PROPAGATION For sums, differences, products, and quotients, propagation of errors is done as follows. (These formulas can easily be calculated using calculus, using the differential as the associated

### Calculus II MAT 146 Integration Applications: Area Between Curves

Calculus II MAT 46 Integration Applications: Area Between Curves A fundamental application of integration involves determining the area under a curve for some interval on the x- or y-axis. In a previous

### a) x 2 8x = 25 x 2 8x + 16 = (x 4) 2 = 41 x = 4 ± 41 x + 1 = ± 6 e) x 2 = 5 c) 2x 2 + 2x 7 = 0 2x 2 + 2x = 7 x 2 + x = 7 2

Solving Quadratic Equations By Square Root Method Solving Quadratic Equations By Completing The Square Consider the equation x = a, which we now solve: x = a x a = 0 (x a)(x + a) = 0 x a = 0 x + a = 0

### Worksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation

Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other

### Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur

Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce

### MITES Physics III Summer Introduction 1. 3 Π = Product 2. 4 Proofs by Induction 3. 5 Problems 5

MITES Physics III Summer 010 Sums Products and Proofs Contents 1 Introduction 1 Sum 1 3 Π Product 4 Proofs by Induction 3 5 Problems 5 1 Introduction These notes will introduce two topics: A notation which

### FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

### Absolute Maxima and Minima

Absolute Maxima and Minima Definition. A function f is said to have an absolute maximum on an interval I at the point x 0 if it is the largest value of f on that interval; that is if f( x ) f() x for all

### Arithmetic Series. or The sum of any finite, or limited, number of terms is called a partial sum. are shorthand ways of writing n 1

CONDENSED LESSON 9.1 Arithmetic Series In this lesson you will learn the terminology and notation associated with series discover a formula for the partial sum of an arithmetic series A series is the indicated

### AP CALCULUS AB 2008 SCORING GUIDELINES

AP CALCULUS AB 2008 SCORING GUIDELINES Question 1 Let R be the region bounded by the graphs of y = sin( π x) and y = x 4 x, as shown in the figure above. (a) Find the area of R. (b) The horizontal line

### 7. The Definite Integral

Section 7: The Definite Integral 7. The Definite Integral The Definite Integral has wide ranging applications in mathematics, the physical sciences and engineering. The theory and application of statistics,

### Math 1206 Calculus Sec. 4.4: Estimating with Finite Sums

Math 1206 Calculus Sec. 4.4: Estimating with Finite Sums I. Consider the problem of finding the area under the curve on the fn y=-x 2 +5 over the domain [0, 2]. We can approximate this area by using a

### Investigating Area Under a Curve

Mathematics Investigating Area Under a Curve About this Lesson This lesson is an introduction to areas bounded by functions and the x-axis on a given interval. Since the functions in the beginning of the

### Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

### Overview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series

Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them

### Math 41: Calculus Final Exam December 7, 2009

Math 41: Calculus Final Exam December 7, 2009 Name: SUID#: Select your section: Atoshi Chowdhury Yuncheng Lin Ian Petrow Ha Pham Yu-jong Tzeng 02 (11-11:50am) 08 (10-10:50am) 04 (1:15-2:05pm) 03 (11-11:50am)

### Sequences and Series

Contents 6 Sequences and Series 6. Sequences and Series 6. Infinite Series 3 6.3 The Binomial Series 6 6.4 Power Series 3 6.5 Maclaurin and Taylor Series 40 Learning outcomes In this Workbook you will

### 8.7 Mathematical Induction

8.7. MATHEMATICAL INDUCTION 8-135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

### 3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

Contents 1 Limits 2 2 Derivatives 3 2.1 Difference Quotients......................................... 3 2.2 Average Rate of Change...................................... 4 2.3 Derivative Rules...........................................

### CHAPTER 13. Definite Integrals. Since integration can be used in a practical sense in many applications it is often

7 CHAPTER Definite Integrals Since integration can be used in a practical sense in many applications it is often useful to have integrals evaluated for different values of the variable of integration.

### MATH Area Between Curves

MATH - Area Between Curves Philippe Laval September, 8 Abstract This handout discusses techniques used to nd the area of regions which lie between two curves. Area Between Curves. Theor Given two functions

### MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA. Define and calculate 1st. moments of areas. Define and calculate 2nd moments of areas.

MECHANICAL PRINCIPLES HNC/D MOMENTS OF AREA The concepts of first and second moments of area fundamental to several areas of engineering including solid mechanics and fluid mechanics. Students who are

### Procedure In each case, draw and extend the given series to the fifth generation, then complete the following tasks:

Math IV Nonlinear Algebra 1.2 Growth & Decay Investigation 1.2 B: Nonlinear Growth Introduction The previous investigation introduced you to a pattern of nonlinear growth, as found in the areas of a series

### a b c d e You have two hours to do this exam. Please write your name on this page, and at the top of page three. GOOD LUCK! 3. a b c d e 12.

MA123 Elem. Calculus Fall 2015 Exam 3 2015-11-19 Name: Sec.: Do not remove this answer page you will turn in the entire exam. No books or notes may be used. You may use an ACT-approved calculator during

### x = y + 2, and the line

WS 8.: Areas between Curves Name Date Period Worksheet 8. Areas between Curves Show all work on a separate sheet of paper. No calculator unless stated. Multiple Choice. Let R be the region in the first

### Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =

Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a

### Mathematical Notation and Symbols

Mathematical Notation and Symbols 1.1 Introduction This introductory block reminds you of important notations and conventions used throughout engineering mathematics. We discuss the arithmetic of numbers,

### 9.2 Summation Notation

9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

### Recap on Fourier series

Civil Engineering Mathematics Autumn 11 J. Mestel, M. Ottobre, A. Walton Recap on Fourier series A function f(x is called -periodic if f(x = f(x + for all x. A continuous periodic function can be represented

### Week #15 - Word Problems & Differential Equations Section 8.1

Week #15 - Word Problems & Differential Equations Section 8.1 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 25 by John Wiley & Sons, Inc. This material is used by

### Numerical methods for American options

Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### Math 2015 Lesson 21. We discuss the mean and the median, two important statistics about a distribution. p(x)dx = 0.5

ean and edian We discuss the mean and the median, two important statistics about a distribution. The edian The median is the halfway point of a distribution. It is the point where half the population has

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

### Individual Round Arithmetic

Individual Round Arithmetic (1) A stack of 100 nickels is 6.25 inches high. To the nearest \$.01, how much would a stack of nickels 8 feet high be worth? 8 feet = 8 12 inches. Dividing 96 inches by 6.25

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Techniques of Differentiation Selected Problems. Matthew Staley

Techniques of Differentiation Selected Problems Matthew Staley September 10, 011 Techniques of Differentiation: Selected Problems 1. Find /dx: (a) y =4x 7 dx = d dx (4x7 ) = (7)4x 6 = 8x 6 (b) y = 1 (x4

### t hours This is the distance in miles travelled in 2 hours when the speed is 70mph. = 22 yards per second. = 110 yards.

The area under a graph often gives useful information. Velocit-time graphs Constant velocit The sketch shows the velocit-time graph for a car that is travelling along a motorwa at a stead 7 mph. 7 The

### To find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y, say) in terms of one other variable (x).

Maxima and minima In this activity you will learn how to use differentiation to find maximum and minimum values of functions. You will then put this into practice on functions that model practical contexts.

### Precalculus idea: A picture is worth a thousand

Six Pillars of Calculus by Lorenzo Sadun Calculus is generally viewed as a difficult subject, with hundreds of formulas to memorize and many applications to the real world. However, almost all of calculus

### Differential Equations

Differential Equations A differential equation is an equation that contains an unknown function and one or more of its derivatives. Here are some examples: y = 1, y = x, y = xy y + 2y + y = 0 d 3 y dx

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

### AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

### row row row 4

13 Matrices The following notes came from Foundation mathematics (MATH 123) Although matrices are not part of what would normally be considered foundation mathematics, they are one of the first topics

### 0-3 Quadratic Functions and Equations

Graph each equation by making a table of values. 1. f (x) = x 2 + 5x + 6 Sample table: x f (x) = x 2 + 5x + 6 f (x) (x, f (x)) 6 f ( 6) = ( 6) 2 + 5( 6) + 6 12 ( 6, 12) 4 f ( 4) = ( 4) 2 + 5( 4) + 6 2

### Section 4.7. More on Area

Difference Equations to Differential Equations Section 4.7 More on Area In Section 4. we motivated the definition of the definite integral with the idea of finding the area of a region in the plane. However,

### Freely Falling Bodies & Uniformly Accelerated Motion

Physics Trinity Valley School Page 1 Lesson 24 Galileo, Freely Falling Bodies & Uniformly Accelerated Motion Galileo argued that a freely falling body is undergoing uniform acceleration. Its speed is increasing

### Learning Objectives for Math 165

Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given

### vector calculus 2 Learning outcomes

29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

### Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

### Work as the Area Under a Graph of Force vs. Displacement

Work as the Area Under a Graph of vs. Displacement Situation A. Consider a situation where an object of mass, m, is lifted at constant velocity in a uniform gravitational field, g. The applied force is

MA 134 Lecture Notes August 20, 2012 Introduction The purpose of this lecture is to... Introduction The purpose of this lecture is to... Learn about different types of equations Introduction The purpose

### Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Algebra and coordinate geometry: Module 11. Sequences and series

1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 10 11 1 A guide for teachers Years 11 and 1 Algebra and coordinate geometry: Module 11 Sequences and series Sequences and series A guide for teachers

### Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3a, MM2A3b, MM2A3c Time allotted for this Lesson: 5 hours

Acquisition Lesson Planning Form Key Standards addressed in this Lesson: MM2A3a, MM2A3b, MM2A3c Time allotted for this Lesson: 5 hours Essential Question: LESSON 1 QUADRATIC FUNCTIONS How do you analyze

### Project: The Harmonic Series, the Integral Test

. Let s start with the sequence a n = n. Does this sequence converge or diverge? Explain. To determine if a sequence converges, we just take a limit: lim n n sequence converges to 0. = 0. The. Now consider

### MATH 132: CALCULUS II SYLLABUS

MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early

### Section 16: Neutral Axis and Parallel Axis Theorem 16-1

Section 16: Neutral Axis and Parallel Axis Theorem 16-1 Geometry of deformation We will consider the deformation of an ideal, isotropic prismatic beam the cross section is symmetric about y-axis All parts

### Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding

### Calculus for Middle School Teachers. Problems and Notes for MTHT 466

Calculus for Middle School Teachers Problems and Notes for MTHT 466 Bonnie Saunders Fall 2010 1 I Infinity Week 1 How big is Infinity? Problem of the Week: The Chess Board Problem There once was a humble

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Infinite series, improper integrals, and Taylor series

Chapter Infinite series, improper integrals, and Taylor series. Introduction This chapter has several important and challenging goals. The first of these is to understand how concepts that were discussed

### Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 28

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 28 In the earlier lectures, we have seen formulation for 3 node linear triangular

### Frogs, Fleas and Painted Cubes: Homework Examples from ACE

Frogs, Fleas and Painted Cubes: Homework Examples from ACE Investigation 1: Introduction to Quadratic Functions, ACE #7, 14 Investigation 2: Quadratic Expressions, ACE #17, 24, 26, 36, 51 Investigation

### Measurement of Regular Shapes

Measurement of Regular Shapes Workbook Junior Certificate School Programme Support Service Contents Chapter 1 Perimeter and Area of Squares Page 3 Chapter 2 Perimeter and Area of Rectangles Page 6 Chapter

### Chapter V.G The Definite Integral and Area: Two Views

Chapter V.G The Definite Integral and Area: Two Views In is section we will look at e application of e definite integral to e problem of finding e area of a region in e plane. In particular e regions in

SECTION.3 Quadratic Equations Section.3: Quadratic Equations Solving by Factoring Solving by Completing the Square Solving by the Quadratic Formula The Discriminant Solving by Factoring MATH 1310 College

### MATH Fundamental Mathematics II.

MATH 10032 Fundamental Mathematics II http://www.math.kent.edu/ebooks/10032/fun-math-2.pdf Department of Mathematical Sciences Kent State University December 29, 2008 2 Contents 1 Fundamental Mathematics

### Numerical integration of a function known only through data points

Numerical integration of a function known only through data points Suppose you are working on a project to determine the total amount of some quantity based on measurements of a rate. For example, you

### Engineering Mathematics II

PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...

### Characteristics of the Four Main Geometrical Figures

Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.

### The small increase in x is. and the corresponding increase in y is. Therefore

Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

### 27.3. Introduction. Prerequisites. Learning Outcomes

olume Integrals 27. Introduction In the previous two sections, surface integrals (or double integrals) were introduced i.e. functions were integrated with respect to one variable and then with respect

### 2-1 Position, Displacement, and Distance

2-1 Position, Displacement, and Distance In describing an object s motion, we should first talk about position where is the object? A position is a vector because it has both a magnitude and a direction:

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### Sequences and Mathematical Induction. CSE 215, Foundations of Computer Science Stony Brook University

Sequences and Mathematical Induction CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Sequences A sequence is a function whose domain is all the integers

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Review Sheet for Third Midterm Mathematics 1300, Calculus 1

Review Sheet for Third Midterm Mathematics 1300, Calculus 1 1. For f(x) = x 3 3x 2 on 1 x 3, find the critical points of f, the inflection points, the values of f at all these points and the endpoints,

### Work the following on notebook paper. Find the area bounded by the given graphs. Show all work. Do not use your calculator.

CALCULUS WORKSHEET ON 7. Work the following on notebook paper. Find the area bounded by the given graphs. Show all work. Do not use your calculator.. f x x and g x x on x Find the area bounded by the given

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

### Chapter 4 One Dimensional Kinematics

Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity

### MATH 2300 review problems for Exam 3 ANSWERS

MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

### Student Performance Q&A:

Student Performance Q&A: AP Calculus AB and Calculus BC Free-Response Questions The following comments on the free-response questions for AP Calculus AB and Calculus BC were written by the Chief Reader,

### Course: Grade 10 Applied Mathematics (MFM2P) Quadratic Relations of the Form y=ax 2 + bx + c

Course: Grade 10 Applied Mathematics (MFMP) Unit 6: Quadratic Relations of the Form y=ax + bx + c Unit 6 Quadratic Relations of the Form y=ax + bx + c Section Activity Page 6.1. Graphing Quadratic Relations