Standards and progression point examples


 Kathryn Copeland
 1 years ago
 Views:
Transcription
1 Mathematics Progressing towards Foundation Progression Point 0.5 At 0.5, a student progressing towards the standard at Foundation may, for example: connect number names and numerals with sets of up to 10 elements, use counting strategies to solve problems that involve comparing, combining and separating these sets. match individual objects with counting sequences up to and back from 10. order the first, second and third elements of a set. Mathematics Foundation Level Achievement Standard Students connect number names and numerals with sets of up to 20 elements, estimate the size of these sets, and use counting strategies to solve problems that involve comparing, combining and separating these sets. They match individual objects with counting sequences up to and back from 20. Students order the first 10 elements of a set. identify measurement attributes of length and mass in practical situations compare lengths and masses of familiar objects. order events in a day and name the days of the week, in order. identify simple shapes in their environment and use simple location words. Students identify measurement attributes in practical situations and compare lengths, masses and capacities of familiar objects. They order events, explain their duration, and match days of the week to familiar events. Students identify simple shapes in their environment and sort shapes by their common and distinctive features. They use simple statements and gestures to describe location. answer simple yes/no questions about given categorical data that are sorted. Students sort familiar categorical data into sets and use these to answer yes/no questions and make simple true/false statements about the data. VCAA 2012 Page 1 of 17
2 Mathematics Progressing towards Level 1 Mathematics Foundation Level Achievement Standard Progression Point F.5 At F.5, a student progressing towards the standard at Level 1 may, for example: Mathematics Level 1 Achievement Standard Students connect number names and numerals with sets of up to 20 elements, estimate the size of these sets, and use counting strategies to solve problems that involve comparing, combining and separating these sets. They match individual objects with counting sequences up to and back from 20. Students order the first 10 elements of a set. Students identify measurement attributes in practical situations and compare lengths, masses and capacities of familiar objects. They order events, explain their duration, and match days of the week to familiar events. Students identify simple shapes in their environment and sort shapes by their common and distinctive features. They use simple statements and gestures to describe location. connect number names and numerals with sets of more than 20 elements, and order the first 20 elements of a set subitise small collections of objects and represent and solve simple addition and subtraction problems, using materials investigate simple patterns of objects and their images use direct and indirect comparisons to decide which of two objects is longer, heavier or holds more, and explain their reasoning. place familiar events in time order. identify, sort and name familiar threedimensional objects in their environment. describe movement, and follow and give simple directions. Students count to and from 100 and locate these numbers on a number line. They partition numbers using place value and carry out simple additions and subtractions, using counting strategies. Students recognise Australian coins according to their value. They identify representations of one half. Students describe number sequences resulting from skip counting by 2s, 5s and 10s. They continue simple patterns involving numbers and objects with and without the use of digital technology. Students use informal units of measurement to order objects based on length and capacity. They tell time to the halfhour and explain time durations. Students describe twodimensional shapes and threedimensional objects. They use the language of distance and direction to move from place to place. Students sort familiar categorical data into sets and use these to answer yes/no questions and make simple true/false statements about the data. sort objects into designated categories on diagrams and create their own visual records by sorting objects or their images. describe outcomes of simple familiar events using 'will happen', 'won't happen' or 'might happen'. Students describe data displays. They ask questions to collect and draw simple data displays. Students classify outcomes of simple familiar events. VCAA 2012 Page 2 of 17
3 Mathematics Progressing towards Level 2 Mathematics Level 1 Achievement Standard Progression Point 1.5 At 1.5, a student progressing towards the standard at Level 2 may, for example: Mathematics Level 2 Achievement Standard Students count to and from 100 and locate these numbers on a number line. They partition numbers using place value and carry out simple additions and subtractions, using counting strategies. Students recognise Australian coins according to their value. They identify representations of one half. Students describe number sequences resulting from skip counting by 2s, 5s and 10s. They continue simple patterns involving numbers and objects with and without the use of digital technology. Students use informal units of measurement to order objects based on length and capacity. They tell time to the halfhour and explain time durations. Students describe twodimensional shapes and threedimensional objects. They use the language of distance and direction to move from place to place. count to and from, and order numbers up to hundreds. recognise different ways of writing the same number. group collections of objects in units, tens and hundreds, and write and solve number sentences involving addition or subtraction. recognise and interpret common uses of halves and quarters. describe patterns with numbers and recognise simple digit patterns in number sequences. compare and order familiar objects by their length and relative mass describe the duration of familiar events in terms of hours, days and weeks recognise and classify familiar shapes and objects, using their features give and follow directions to and from a place using everyday language for orientation, relative position, direction and distance. Students count to and from, and order numbers up to They perform simple addition and subtraction calculations, using a range of strategies. They find the total value of simple collections of Australian notes and coins. Students represent multiplication and division by grouping into sets and divide collections and shapes into halves, quarters and eighths. They recognise increasing and decreasing number sequences involving 2s, 3s, 5s and 10s, identify the missing element in a number sequence, and use digital technology to produce sequences by constant addition. Students order shapes and objects, using informal units for a range of measures. They tell time to the quarter hour and use a calendar to identify the date, days, weeks and months included in seasons and other events. Students draw twodimensional shapes, specify their features and explain the effects of onestep transformations. They recognise the features of threedimensional objects. They interpret simple maps of familiar locations. Students describe data displays. They ask questions to collect and draw simple data displays. Students classify outcomes of simple familiar events. use tallies and tables to record answers to questions and summarise the answers by counting explain why they think an event is 'certain' or 'impossible'. Students collect data from relevant questions to create lists, tables and picture graphs with and without the use of digital technology. They interpret data in context. Students describe outcomes of familiar events using everyday language. VCAA 2012 Page 3 of 17
4 Mathematics Progressing towards Level 3 Mathematics Level 2 Achievement Standard Progression Point 2.5 At 2.5, a student progressing towards the standard at Level 3 may, for example: Mathematics Level 3 Achievement Standard Students count to and from, and order numbers up to They perform simple addition and subtraction calculations, using a range of strategies. They find the total value of simple collections of Australian notes and coins. Students represent multiplication and division by grouping into sets and divide collections and shapes into halves, quarters and eighths. They recognise increasing and decreasing number sequences involving 2s, 3s, 5s and 10s, identify the missing element in a number sequence, and use digital technology to produce sequences by constant addition. Students order shapes and objects, using informal units for a range of measures. They tell time to the quarter hour and use a calendar to identify the date, days, weeks and months included in seasons and other events. Students draw twodimensional shapes, specify their features and explain the effects of onestep transformations. They recognise the features of threedimensional objects. They interpret simple maps of familiar locations. count and order numbers to and from thousands apply place value to partition, rearrange and regroup numbers to help with calculations and solve problems recall multiplication facts for 2, 5 and 10 model and represent the unit fractions of halves, thirds, quarters, fifths and eighths, and explore language differences associated with fractions. describe, continue and create number patterns formed by repeated addition or subtraction. recognise angles in terms of turns in everyday situations and compare the masses of objects, using balance scales interpret digital and analogue representations of minutes, hours, days, weeks and years explore the properties of prisms interpret grid maps of their local environment. Students count and order numbers to and from They recognise the connection between addition and subtraction, and solve problems using efficient strategies for multiplication with and without the use of digital technology. Students recall addition and multiplication facts for singledigit numbers. They represent money values in various ways and correctly count out change from financial transactions. Students model and represent unit fractions for halves, thirds, quarters, fifths and eighths, and multiples of these up to one. They classify numbers as either odd or even, continue number patterns involving addition or subtraction, and explore simple number sequences based on multiples. Students use metric units for length, mass and capacity. They tell time to the nearest minute. Students identify symmetry in natural and constructed environments. They use angle size as a measure of turn in real situations and make models of threedimensional objects. Students match positions on maps with given information and create simple maps. Students collect data from relevant questions to create lists, tables and picture graphs with and without the use of digital technology. They interpret data in context. Students describe outcomes of familiar events using everyday language. make tallies and convert them into onetoone picture graphs (pictographs) and bar chart recognise variation in measurements and other data. place events from familiar contexts in order of how likely they are to happen. Students carry out simple data investigations for categorical variables. They interpret and compare data displays. Students conduct chance experiments, list possible outcomes and recognise variations in results. VCAA 2012 Page 4 of 17
5 Mathematics Progressing towards Level 4 Mathematics Level 3 Achievement Standard Progression Point 3.5 At 3.5, a student progressing towards the standard at Level 4 may, for example: Mathematics Level 4 Achievement Standard Students count and order numbers to and from They recognise the connection between addition and subtraction, and solve problems using efficient strategies for multiplication with and without the use of digital technology. Students recall addition and multiplication facts for singledigit numbers. They represent money values in various ways and correctly count out change from financial transactions. Students model and represent unit fractions for halves, thirds, quarters, fifths and eighths, and multiples of these up to one. They classify numbers as either odd or even, continue number patterns involving addition or subtraction, and explore simple number sequences based on multiples. Students use metric units for length, mass and capacity. They tell time to the nearest minute. Students identify symmetry in natural and constructed environments. They use angle size as a measure of turn in real situations and make models of threedimensional objects. Students match positions on maps with given information and create simple maps. count and order numbers to and from tens of thousands, and use addition and subtraction facts to develop efficient mental strategies for computation calculate change and round to the nearest five cents make connections between fractions and decimal notation solve word problems by using number sentences involving multiplication or division, and use equivalent number sentences involving addition and subtraction to find unknown quantities investigate number sequences involving multiples of 3, 4, 6, 7, 8 and 9 count by quarters, halves and thirds, including with mixed numbers. use scaled instruments to measure length, angle, area and mass use am and pm notation and identify time between two events identify and describe symmetry, asymmetry and pattern in natural and made objects. Students recall multiplication facts to 10 x 10 and related division facts. They choose appropriate strategies for calculations involving multiplication and division, with and without the use of digital technology, and estimate answers accurately enough for the context. Students solve simple purchasing problems with and without the use of digital technology. They locate familiar fractions on a number line, recognise common equivalent fractions in familiar contexts and make connections between fractions and decimal notations up to two decimal places. Students identify unknown quantities in number sentences. They use the properties of odd and even numbers and describe number patterns resulting from multiplication. Students continue number sequences involving multiples of singledigit numbers and unit fractions, and locate them on a number line. Students compare areas of regular and irregular shapes, using informal units. They solve problems involving time duration. Students use scaled instruments to measure length, angle, area, mass, capacity and temperature of shapes and objects. They convert between units of time. Students create symmetrical simple and composite shapes and patterns, with and without the use of digital technology. They classify angles in relation to a right angle. Students interpret information contained in maps. Students carry out simple data investigations for categorical variables. They interpret and compare data displays. Students conduct chance experiments, list possible outcomes and recognise variations in results. identify questions or issues involving categorical variables, define data sources, and plan and trial methods of data collection and recording use a variety of methods of data presentation compare one event to the other as being less, equally or more likely to happen, and justify their reasoning identify everyday events where if one event occurs, the other event cannot occur. Students describe different methods for data collection and representation, and evaluate their effectiveness. They construct data displays from given or collected data, with and without the use of digital technology. Students list the probabilities of everyday events. They identify dependent and independent events. VCAA 2012 Page 5 of 17
6 Mathematics Progressing towards Level 5 Mathematics Level 4 Achievement Standard Progression Point 4.5 At 4.5, a student progressing towards the standard at Level 5 may, for example: Mathematics Level 5 Achievement Standard Students recall multiplication facts to 10 x 10 and related division facts. They choose appropriate strategies for calculations involving multiplication and division, with and without the use of digital technology, and estimate answers accurately enough for the context. Students solve simple purchasing problems with and without the use of digital technology. They locate familiar fractions on a number line, recognise common equivalent fractions in familiar contexts and make connections between fractions and decimal notations up to two decimal places. Students identify unknown quantities in number sentences. They use the properties of odd and even numbers and describe number patterns resulting from multiplication. Students continue number sequences involving multiples of singledigit numbers and unit fractions, and locate them on a number line. use number properties for efficient mental calculation. represent and order decimals and extend their fluency with the number system to beyond tens of thousandths. create a simple financial plan solve problems involving multiplication of large numbers by one or twodigit numbers, using efficient mental and written methods and digital technology use equivalent number sentences involving multiplication and division to find unknown quantities. Students solve simple problems involving the four operations using a range of strategies including digital technology. They estimate to check the reasonableness of answers and approximate answers by rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students order decimals and unit fractions and locate them on a number line. Students add and subtract fractions with the same denominator. They find unknown quantities in number sentences and continue patterns by adding or subtracting fractions and decimals. Students compare areas of regular and irregular shapes, using informal units. They solve problems involving time duration. Students use scaled instruments to measure length, angle, area, mass, capacity and temperature of shapes and objects. They convert between units of time. Students create symmetrical simple and composite shapes and patterns, with and without the use of digital technology. They classify angles in relation to a right angle. Students interpret information contained in maps. Students describe different methods for data collection and representation, and evaluate their effectiveness. They construct data displays from given or collected data, with and without the use of digital technology. Students list the probabilities of everyday events. They identify dependent and independent events. investigate units of measurement from historical and cultural contexts and convert between units of metric and other standard nonmetric systems of measurement use square centimetres, square metres, square kilometres and hectares as units of area and estimate areas by counting squares estimate angles between 0 and 360 degrees in both clockwise and anticlockwise directions describe routes using landmarks and compare maps with aerial photographs or representations created by digital technology. construct column graphs and picture graphs where one picture can represent many data values from given or collected data, with and without the use of digital technology recognise that probabilities range from 0 to 1 and place events in order on a number line from 0 to 1 based on their probability. Students use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24hour time. Students use a grid reference system to locate landmarks. They estimate angles, and use protractors and digital technology to construct and measure angles. Students connect threedimensional objects with their twodimensional representations. They describe transformations of twodimensional shapes and identify line and rotational symmetry. Students pose questions to gather data and construct various displays appropriate for the data, with and without the use of digital technology. They compare and interpret different data sets. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities as a number from 0 to 1. VCAA 2012 Page 6 of 17
7 Mathematics Progressing towards Level 6 Mathematics Level 5 Achievement Standard Progression Point 5.5 At 5.5, a student progressing towards the standard at Level 6 may, for example: Mathematics Level 6 Achievement Standard Students solve simple problems involving the four operations using a range of strategies including digital technology. They estimate to check the reasonableness of answers and approximate answers by rounding. Students identify and describe factors and multiples. They explain plans for simple budgets. Students order decimals and unit fractions and locate them on a number line. Students add and subtract fractions with the same denominator. They find unknown quantities in number sentences and continue patterns by adding or subtracting fractions and decimals. Students use appropriate units of measurement for length, area, volume, capacity and mass, and calculate perimeter and area of rectangles. They convert between 12 and 24hour time. Students use a grid reference system to locate landmarks. They estimate angles, and use protractors and digital technology to construct and measure angles. Students connect threedimensional objects with their twodimensional representations. They describe transformations of twodimensional shapes and identify line and rotational symmetry. represent composite numbers as a product of their prime factors identify the highest common factor (greatest common divisor) and lowest common multiple of two whole numbers. explore the use of brackets and order of operations to write and evaluate number sentences continue and create sequences involving whole numbers, fractions and decimals, according to a given rule use ordered pairs of whole numbers to represent coordinates of points and locate these points on simple grids and in the first quadrant on the Cartesian plane. recognise metric prefixes and convert between common metric units access print and digital timetables, answer simple questions using a timetable and create simple personal timetables describe acute, obtuse and reflex angles in terms of their relationship to multiples of a right angle investigate compass points, angles on a straight line, angles at a point, and vertically opposite angles. Students recognise the properties of prime, composite, square and triangular numbers and determine sets of these numbers. They solve problems that involve all four operations with whole numbers and describe the use of integers in everyday contexts. Students locate fractions and integers on a number line and connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students calculate a simple fraction of a quantity and calculate common percentage discounts on sale items, with and without the use of digital technology. They make connections between the powers of 10 and the multiplication and division of decimals. Students add, subtract and multiply decimals and divide decimals where the result is rational. Students write number sentences using brackets and order of operations, and specify rules used to generate sequences involving whole numbers, fractions and decimals. They use ordered pairs of integers to represent coordinates of points and locate a point in any one of the four quadrants on the Cartesian plane. Students relate decimals to the metric system and choose appropriate units of measurement to perform a calculation. They solve problems involving length and area, and make connections between capacity and volume. Students interpret a variety of everyday timetables. They solve problems using the properties of angles and investigate simple combinations of transformations in the plane, with and without the use of digital technology. Students construct simple prisms and pyramids. Students pose questions to gather data and construct various displays appropriate for the data, with and without the use of digital technology. They compare and interpret different data sets. Students list outcomes of chance experiments with equally likely outcomes and assign probabilities as a number from 0 to 1. evaluate the effectiveness of different displays in illustrating data features, including variability pose questions and collect categorical or numerical data by observation or survey, and distinguish between a sample and a population recognise that probability can be interpreted as an Students interpret and compare a variety of data displays, including displays for two categorical variables. They analyse and evaluate data from secondary sources. Students compare observed and expected frequencies of events, including those where outcomes of trials are generated with the use of digital technology. They specify, list and communicate probabilities VCAA 2012 Page 7 of 17
8 expected frequency represent probabilities as simple ratios and fractions conduct chance experiments with both small and large numbers of trials, using digital technology. of events using simple ratios, fractions, decimals and percentages. VCAA 2012 Page 8 of 17
9 Mathematics Progressing towards Level 7 Mathematics Level 6 Achievement Standard Progression Point 6.5 At 6.5, a student progressing towards the standard at Level 7 may, for example: Mathematics Level 7 Achievement Standard Students recognise the properties of prime, composite, square and triangular numbers and determine sets of these numbers. They solve problems that involve all four operations with whole numbers and describe the use of integers in everyday contexts. Students locate fractions and integers on a number line and connect fractions, decimals and percentages as different representations of the same number. They solve problems involving the addition and subtraction of related fractions. Students calculate a simple fraction of a quantity and calculate common percentage discounts on sale items, with and without the use of digital technology. They make connections between the powers of 10 and the multiplication and division of decimals. Students add, subtract and multiply decimals and divide decimals where the result is rational. Students write number sentences using brackets and order of operations, and specify rules used to generate sequences involving whole numbers, fractions and decimals. They use ordered pairs of integers to represent coordinates of points and locate a point in any one of the four quadrants on the Cartesian plane. investigate index notation and represent whole numbers as products of powers of prime numbers find equivalent fractions and use them to order fractions. locate fractions and mixed numbers on a number line investigate and calculate 'best buys' and solve problems involving simple ratios, with and without the use of digital technology solve problems involving addition and subtraction of fractions, including those with unrelated denominators. use a variety of methods to solve linear equations with whole number solutions use substitution to check solutions. Students solve problems involving the order, addition and subtraction of integers. They make the connections between whole numbers and index notation and the relationship between perfect squares and square roots. They solve problems involving all four operations with fractions, decimals, percentages and their equivalences, and express fractions in their simplest form. Students compare the cost of items to make financial decisions, with and without the use of digital technology. They make simple estimates to judge the reasonableness of results. Students use variables to represent arbitrary numbers, connect the laws and properties of number to algebra and substitute numbers into algebraic expressions. They assign ordered pairs to given points on the Cartesian plane and interpret and analyse graphs of relations from real data. Students develop simple linear models for situations, make predictions based on these models, solve related equations and check their solutions. Students relate decimals to the metric system and choose appropriate units of measurement to perform a calculation. They solve problems involving length and area, and make connections between capacity and volume. Students interpret a variety of everyday timetables. They solve problems using the properties of angles and investigate simple combinations of transformations in the plane, with and without the use of digital technology. Students construct simple prisms and pyramids. use formulas for the area and perimeter of a square and calculate the surface area and volume of a cube construct parallel and perpendicular lines and identify squares, rectangles, rhombuses, parallelograms, kites and trapeziums based on their properties demonstrate that the angle sum in a triangle is 180 degrees draw different views of prisms, and solids formed from combinations of prisms. Students use formulas for the area and perimeter of rectangles. They classify triangles and quadrilaterals and represent transformations of these shapes on the Cartesian plane, with and without the use of digital technology. Students name the types of angles formed by a transversal crossing parallel line and solve simple numerical problems involving these lines and angles. They describe different views of threedimensional objects, and use models, sketches and digital technology to represent these views. Students calculate volumes of rectangular prisms. VCAA 2012 Page 9 of 17
10 Students interpret and compare a variety of data displays, including displays for two categorical variables. They analyse and evaluate data from secondary sources. Students compare observed and expected frequencies of events, including those where outcomes of trials are generated with the use of digital technology. They specify, list and communicate probabilities of events using simple ratios, fractions, decimals and percentages. create sidebyside column graphs interpret secondary data presented in digital media and elsewhere, including consideration of sampling, misleading displays, bias and purpose recognise that summarising data by calculating measures of centre and spread can help make sense of the data determine the median for different data sets determine probabilities by symmetry and counting. Students identify issues involving the collection of discrete and continuous data from primary and secondary sources. They construct stemandleaf plots and dotplots. Students identify or calculate mean, mode, median and range for data sets, using digital technology for larger data sets. They describe the relationship between the median and mean in data displays. Students determine the sample space for simple experiments with equally likely outcomes, and assign probabilities outcomes. VCAA 2012 Page 10 of 17
11 Mathematics Progressing towards Level 8 Mathematics Level 7 Achievement Standard Progression Point 7.5 At 7.5, a student progressing towards the standard at Level 8 may, for example: Mathematics Level 8 Achievement Standard Students solve problems involving the order, addition and subtraction of integers. They make the connections between whole numbers and index notation and the relationship between perfect squares and square roots. They solve problems involving all four operations with fractions, decimals, percentages and their equivalences, and express fractions in their simplest form. Students compare the cost of items to make financial decisions, with and without the use of digital technology. They make simple estimates to judge the reasonableness of results. Students use variables to represent arbitrary numbers, connect the laws and properties of number to algebra and substitute numbers into algebraic expressions. They assign ordered pairs to given points on the Cartesian plane and interpret and analyse graphs of relations from real data. Students develop simple linear models for situations, make predictions based on these models, solve related equations and check their solutions. Students use formulas for the area and perimeter of rectangles. They classify triangles and quadrilaterals and represent transformations of these shapes on the Cartesian plane, with and without the use of digital technology. Students name the types of angles formed by a transversal crossing parallel line and solve simple numerical problems involving these lines and angles. They describe different views of threedimensional objects, and use models, sketches and digital technology to represent these views. Students calculate volumes of rectangular prisms. Students identify issues involving the collection of discrete and continuous data from primary and secondary sources. They construct stemandleaf plots and dotplots. Students identify or calculate mean, mode, median and range for data sets, using digital technology for larger data sets. They describe the relationship between the median and mean in data displays. Students determine the sample space for simple experiments with equally likely outcomes, and assign solve problems involving multiplication of integers by singledigit whole numbers and use the sequence of square numbers to form estimates for square roots use equivalent decimals and percentages to order rational expressions classify rational numbers as having either terminating or infinite recurring decimals. calculate sale price when a percentage discount is applied. represent linear relationships as a table of ordered pairs, classify relationships as linear or nonlinear determine gradient and axis intercepts of linear graphs. interpret gradient both as a ratio and as a constant rate of change. choose appropriate units of measurement for area and volume explore the use of parallelograms, rhombuses and kites in a variety of contexts investigate time zones and the approximate relation between distances between countries, and differences in time demonstrate facility in using digital technology to experiment with, create and recreate patterns involving combinations of flips, slides, turns and enlargements or reductions explain congruence of plane shapes in terms of transformations. calculate the mean for grouped data and for data summarised in a display interpret mean and median as central measures in a given context determine when a piece of data should be considered an outlier model situations with Venn diagrams and twoway tables, Students use efficient mental and written strategies to make estimates and carry out the four operations with integers, and apply the index laws to whole numbers. They identify and describe rational and irrational numbers in context. Students estimate answers and solve everyday problems involving profit and loss rates, ratios and percentages, with and without the use of digital technology. They simplify a variety of algebraic expressions and connect expansion and factorisation of linear expressions. Students solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and for volume. They find the perimeter and area of parallelograms, rhombuses and kites. Students name the features of circles, calculate circumference and area, and solve problems relating to the volume of prisms. They make sense of time duration in real applications, including the use of 24hour time. Students identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. They use tools, including digital technology, to construct congruent shapes. Students explain issues related to the collection of sample data and discuss the effect of outliers on means and medians of the data. They use various approaches, including the use of digital technology, to generate simple random samples from a population. Students model situations with Venn diagrams and twoway tables and explain the use of 'not', 'and' and 'or'. Students choose appropriate language to describe events and experiments. They determine complementary events and VCAA 2012 Page 11 of 17
12 probabilities outcomes. and illustrate the relationship between the two representations. calculate the sum of probabilities. VCAA 2012 Page 12 of 17
13 Mathematics Progressing towards Level 9 Mathematics Level 8 Achievement Standard Progression Point 8.5 At 8.5, a student progressing towards the standard at Level 9 may, for example: Mathematics Level 9 Achievement Standard Students use efficient mental and written strategies to make estimates and carry out the four operations with integers, and apply the index laws to whole numbers. They identify and describe rational and irrational numbers in context. Students estimate answers and solve everyday problems involving profit and loss rates, ratios and percentages, with and without the use of digital technology. They simplify a variety of algebraic expressions and connect expansion and factorisation of linear expressions. Students solve linear equations and graph linear relationships on the Cartesian plane. Students convert between units of measurement for area and for volume. They find the perimeter and area of parallelograms, rhombuses and kites. Students name the features of circles, calculate circumference and area, and solve problems relating to the volume of prisms. They make sense of time duration in real applications, including the use of 24hour time. Students identify conditions for the congruence of triangles and deduce the properties of quadrilaterals. They use tools, including digital technology, to construct congruent shapes. Students explain issues related to the collection of sample data and discuss the effect of outliers on means and medians of the data. They use various approaches, including the use of digital technology, to generate simple random samples from a population. Students model situations with Venn diagrams and twoway tables and explain the use of 'not', 'and' and 'or'. Students choose appropriate language to describe events and experiments. They determine complementary events and calculate the sum of probabilities. extend and apply the index laws to variables, using positive integer indices and the zero index simplify algebraic expressions by collecting like terms where appropriate sketch linear graphs using the coordinates of two points, determine linear rules from diagrams, tables of values and graphs, and specify these rules using words and algebra. solve problems involving direct proportion explore the relationship between graphs and equations corresponding to simple rate problems explain how changing the value of parameters in the rule of a linear function affects the shape and location of the graph of the function determine whether given data is most suitably represented by a linear or nonlinear relation. investigate direct and inverse relations between features of circles such as circumference, area, radius and diameter investigate very small and very large timescales and intervals, and express these in scientific notation use enlargements to explain similarity and solve problems in similar figures with ratios and scale factors establish geometric properties of quadrilaterals using congruent triangles, parallel line and angle properties. use samples to make informal predictions about characteristics of a population, and recognise the associated uncertainty record continuous data and describe a data display as skewed, symmetric or bimodal use intersection, union and complement of sets to solve probability problems. Students apply the index laws using integer indices to variables and numbers, express numbers in scientific notation, solve problems involving very small and very large numbers, and check the order of magnitude of calculations. They solve problems involving simple interest. Students use the distributive law to expand algebraic expressions, including binomial expressions, and simplify a range of algebraic expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment using a range of strategies including the use of digital technology. Students sketch and draw linear and nonlinear relations, solve simple related equations and explain the relationship between the graphical and symbolic forms, with and without the use of digital technology. Students solve measurement problems involving perimeter and area of composite shapes, surface area and volume of rectangular prisms and cylinders, with and without the use of digital technology. They relate threedimensional objects to twodimensional representations. Students explain similarity of triangles, interpret ratios and scale factors in similar figures, and apply Pythagoras's theorem and trigonometry to solve problems involving angles and lengths in rightangled triangles. Students compare techniques for collecting data from primary and secondary sources, and identify questions and issues involving different data types. They construct histograms and backtoback stemandleaf plots with and without the use of digital technology. Students identify mean and median in skewed, symmetric and bimodal displays and use these to describe and interpret the distribution of the data. They calculate relative frequencies to estimate probabilities. VCAA 2012 Page 13 of 17
14 Students list outcomes for twostep experiments and assign probabilities for those outcomes and related events. VCAA 2012 Page 14 of 17
15 Mathematics Progressing towards Level 10 Mathematics Level 9 Achievement Standard Progression Point 9.5 At 9.5, a student progressing towards the standard at Level 10 may, for example: Mathematics Level 10 Achievement Standard Students apply the index laws using integer indices to variables and numbers, express numbers in scientific notation, solve problems involving very small and very large numbers, and check the order of magnitude of calculations. They solve problems involving simple interest. Students use the distributive law to expand algebraic expressions, including binomial expressions, and simplify a range of algebraic expressions. They find the distance between two points on the Cartesian plane and the gradient and midpoint of a line segment using a range of strategies including the use of digital technology. Students sketch and draw linear and nonlinear relations, solve simple related equations and explain the relationship between the graphical and symbolic forms, with and without the use of digital technology. Students solve measurement problems involving perimeter and area of composite shapes, surface area and volume of rectangular prisms and cylinders, with and without the use of digital technology. They relate threedimensional objects to twodimensional representations. Students explain similarity of triangles, interpret ratios and scale factors in similar figures, and apply Pythagoras's theorem and trigonometry to solve problems involving angles and lengths in rightangled triangles. Students compare techniques for collecting data from primary and secondary sources, and identify questions and issues involving different data types. They construct histograms and backtoback stemandleaf plots with and without the use of digital technology. Students identify mean and median in skewed, symmetric and bimodal displays and use these to describe and interpret the distribution of the data. They calculate relative frequencies to estimate probabilities. simplify algebraic products using index laws and fluently apply negative indices represent linear relations in equivalent algebraic forms, manipulate linear algebraic fractions solve simultaneous linear equations and verify solutions with and without the use of digital technology explore the effect of varying the parameters in the rules of linear and quadratic functions on the graphs of these functions. calculate absolute percentage difference between measured and actual values apply similarity and congruence to solve practical problems and establish general geometric results about plane shapes explore the effect of a change in scale of linear dimensions on area and volume of regular shapes and objects apply Pythagoras's theorem and trigonometry to problems in surveying and design. determine quartiles and construct box plots for discrete and continuous data use histograms and cumulative frequency graphs to represent data from a continuous scale list all outcomes for the sample space of twostep chance experiments using tables, Venn diagrams, tree diagrams and arrays assign probabilities to outcomes and determine probabilities for events. Students recognise the connection between simple and compound interest. They solve problems involving linear equations and inequalities, quadratic equations and pairs of simultaneous linear equations and related graphs, with and without the use of digital technology. Students find unknown values after substitution into formulas, manipulate linear algebraic expressions, expand binomial expressions and factorise monic and simple nonmonic quadratic expressions, with and without the use of digital technology. They represent linear, quadratic and exponential functions numerically, graphically and algebraically, and use them to model situations and solve practical problems. Students solve and explain surface area and volume problems relating to composite solids. They use parallel and perpendicular line, angle and triangle properties, similarity, trigonometry and congruence to solve practical problems and develop proofs involving lengths, angles and areas in plane shapes. They use digital technology to construct and manipulate geometric shapes and objects, and explore symmetry and pattern in two dimensions. Students compare univariate data sets by referring to summary statistics and the shape of their displays. They describe bivariate data where the independent variable is time and use scatterplots generated by digital technology to investigate relationships between two continuous variables. Students evaluate the use of statistics in the media. They list outcomes for multistep chance experiments involving independent and dependent events, and assign probabilities VCAA 2012 Page 15 of 17
16 Students list outcomes for twostep experiments and assign probabilities for those outcomes and related events. for these experiments. VCAA 2012 Page 16 of 17
17 Mathematics Progressing beyond Level 10 Mathematics Level 10 Achievement Standard Progression Point 10.5 At 10.5, a student progressing beyond the standard at Level 10 may, for example: Progression Point 11 At 11, a student progressing beyond the standard at Level 10.5 may, for example: Students recognise the connection between simple and compound interest. They solve problems involving linear equations and inequalities, quadratic equations and pairs of simultaneous linear equations and related graphs, with and without the use of digital technology. Students find unknown values after substitution into formulas, manipulate linear algebraic expressions, expand binomial expressions and factorise monic and simple nonmonic quadratic expressions, with and without the use of digital technology. They represent linear, quadratic and exponential functions numerically, graphically and algebraically, and use them to model situations and solve practical problems work fluently with rational numbers, and exact and approximate forms of real numbers use tables of values, graphs and algebra to model, investigate and solve problems that involve the reciprocal function, logarithmic functions, circles and circular functions in a variety of context solve simultaneous equations that involve a line and a parabola or circle numerically, graphically or algebraically, with and without the use of digital technology. specify exact or approximate intervals over which an inequality defined using a quadratic, reciprocal, exponential, logarithm or circular function is true, with and without the use of digital technology investigate a range of mathematical structures, explore their properties and apply them to model situations and solve related problems. Students solve and explain surface area and volume problems relating to composite solids. They use parallel and perpendicular line, angle and triangle properties, similarity, trigonometry and congruence to solve practical problems and develop proofs involving lengths, angles and areas in plane shapes. They use digital technology to construct and manipulate geometric shapes and objects, and explore symmetry and pattern in two dimensions. use digital technology to transform geometric shapes and objects, and identify invariance or change of properties and measures under transformations investigate different geometric representations and properties of curves and paths in the plan solve simple threedimensional problems involving geometry and trigonometry. recognise the effect of rounding and measurement errors in contexts where formulas are used, and obtain simple error bounds for related calculations use drawing tools, physical models and digital technology to create and extend patterns in two and three dimensions, including those based on selfsimilarity. Students compare univariate data sets by referring to summary statistics and the shape of their displays. They describe bivariate data where the independent variable is time and use scatterplots generated by digital technology to investigate relationships between two continuous variables. Students evaluate the use of statistics in the media. They list outcomes for multistep chance experiments involving independent and dependent events, and assign probabilities for these experiments. construct and use simulations, with and without the use of digital technology, to obtain data and solve probability problems, including analysis of the conditional nature of events investigate the distribution of proportions and means in samples from a population and discuss how these relate to the corresponding population parameters. use digital technology to access categorical and/or numerical data from online sources, display and analyse large univariate and bivariate data sets, and describe distribution, location (centre), spread and association as applicable comment critically on the use of statistics to support or contest points of view in the media. VCAA 2012 Page 17 of 17
The Australian Curriculum Mathematics
The Australian Curriculum Mathematics Mathematics ACARA The Australian Curriculum Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year
More informationMATHEMATICS Scope and sequence P 6
Number and algebra Number and place value Establish understanding of the language and processes of counting by naming numbers in sequences, initially to and from 20, moving from any starting point Develop
More informationMathematics Scope and Sequence: Foundation to Year 6
Number Algebra Number place value Fractions decimals Real numbers Foundation Year Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Establish understing of the language processes of counting by naming numbers
More informationMathematics: Sequence of content F6 Strand: Number and algebra
Mathematics: Sequence of content F6 Strand: Number and algebra Number and place value Establish understanding of the language and processes of counting by naming numbers in sequences, initially to and
More informationAustralian Curriculum: Mathematics
Scope and Sequence by Strands (F10) This document presents scope and sequence documents arranged by the Strands of Number and Algebra, Measurement and geometry, Statistics and probability This document
More informationMapping grid showing how the Australian Maths curriculum is covered by Boardworks Maths for Australia
Year 7 Maths Section Unit Objectives Boardworks presentation title Investigate index notation and represent whole numbers as products of powers of prime numbers Index notation/prime factor decomposition
More informationWhole Numbers and Integers (44 topics, no due date)
Course Name: PreAlgebra into Algebra Summer Hwk Course Code: GHMKUKPMR9 ALEKS Course: PreAlgebra Instructor: Ms. Rhame Course Dates: Begin: 05/30/2015 End: 12/31/2015 Course Content: 302 topics Whole
More informationProbability and Statistics
s and Levels Probability and Statistics F F Can sort and classify objects using criteria given Can sort objects using more than one criteria Can record information collected in a simple list or table Extract
More informationMATHEMATICS Number Expected Y1 Expected Y2 Expected Y3 Expected Y4 Expected Y5 Expected Y6
MATHEMATICS Number Expected Y1 Expected Y2 Expected Y3 Expected Y4 Expected Y5 Expected Y6 Count to and across 100 forwards and backwards from any number Recognise odd and even numbers to 100, and to
More informationMathematics K 6 continuum of key ideas
Mathematics K 6 continuum of key ideas Number and Algebra Count forwards to 30 from a given number Count backwards from a given number in the range 0 to 20 Compare, order, read and represent to at least
More informationMATHS LEVEL DESCRIPTORS
MATHS LEVEL DESCRIPTORS Number Level 3 Understand the place value of numbers up to thousands. Order numbers up to 9999. Round numbers to the nearest 10 or 100. Understand the number line below zero, and
More informationNEW MEXICO Grade 6 MATHEMATICS STANDARDS
PROCESS STANDARDS To help New Mexico students achieve the Content Standards enumerated below, teachers are encouraged to base instruction on the following Process Standards: Problem Solving Build new mathematical
More informationPreAlgebra  MA1100. Topic Lesson Objectives. Variables and Expressions
Variables and Expressions Problem Solving: Using a ProblemSolving Plan Use a fourstep plan to solve problems. Choose an appropriate method of computation. Numbers and Expressions Use the order of operations
More informationExceeding minimum expected standard at end of KS2. Below minimum expected standard at end of KS2. At minimum expected standard at end of KS2.
Pupils will be following stages according to their prior attainment at primary school. A maximum of 13 mastery indicators each year are chosen to represent the most important skills that students need
More informationNUMBER  LEVEL 3. Understand place value in numbers up to Round numbers up to Know where to put a decimal point
NUMBER  LEVEL 3 Understand place value in numbers up to 1000 Round numbers up to 1000 Know where to put a decimal point Add numbers with two digits mentally Add numbers with three digits on paper Subtract
More informationSCOPE AND SEQUENCE. Grade Level: 7 th Curriculum: Saxon Math 8/7 Publisher: 2004 by Saxon Publishers, Inc.
Grade Level: 7 th Curriculum: Saxon Math 8/7 Publisher: 2004 by Saxon Publishers, Inc. SCOPE AND SEQUENCE NUMBERS AND OPERATIONS Numeration Digits Reading and writing numbers Ordinal numbers Denominate
More information2012 TEKS Texas Lesson Alignment
BUI TEX for LT AS Gra 2014 2015 SCHOOL YEAR 2012 TEKS Texas Lesson Alignment d e s 3 A lg e b r a I P 34 Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Regrouping
More informationCAMI Education linked to CAPS: Mathematics
 1  TOPIC 1.1 Whole numbers _CAPS Curriculum TERM 1 CONTENT Properties of numbers Describe the real number system by recognizing, defining and distinguishing properties of: Natural numbers Whole numbers
More informationCAMI Education linked to CAPS: Mathematics
 1  TOPIC 1.1 Whole numbers _CAPS curriculum TERM 1 CONTENT Mental calculations Revise: Multiplication of whole numbers to at least 12 12 Ordering and comparing whole numbers Revise prime numbers to
More informationMaths Targets Year 1 Addition and Subtraction Measures. N / A in year 1.
Number and place value Maths Targets Year 1 Addition and Subtraction Count to and across 100, forwards and backwards beginning with 0 or 1 or from any given number. Count, read and write numbers to 100
More informationLesson List
20162017 Lesson List Table of Contents Operations and Algebraic Thinking... 3 Number and Operations in Base Ten... 6 Measurement and Data... 9 Number and Operations  Fractions...10 Financial Literacy...14
More informationPre Algebra. Curriculum (602 topics additional topics)
Pre Algebra This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular needs.
More informationCourse: Math 7. engage in problem solving, communicating, reasoning, connecting, and representing
Course: Math 7 Decimals and Integers 11 Estimation Strategies. Estimate by rounding, frontend estimation, and compatible numbers. Prentice Hall Textbook  Course 2 7.M.0 ~ Measurement Strand ~ Students
More informationMaths Skills taught in Year 5
Maths Skills taught in Year 5 NUMBER, PLACE VALUE AND ROUNDING Read, write, order and compare numbers to at least 1 000 000 and determine the value of each digit. Count forwards or backwards in steps of
More informationMilestone 2 End of Year 4
Milestone 1 End of Year 2 Milestone 2 End of Year 4 Milestone 3 End of Year 6 To know and use numbers Counting Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given
More informationKey Stage Two Maths Overview
Crick Primary School The lists of objectives shown are the core objectives in Mathematics for each year group and will be taught at some stage over the academic year at an appropriate level. Your child
More informationNumber: Solve problems using standard form Solve problems including calculating with powers and roots Use upper and lower bounds in calculations
Curriculum Tier with Key Questions and action verbs. Excellence Creating working towards grade A* [ new 8/9 ] Can the pupils create a new product or point of view based on internal evidence or external
More information6 th Grade New Mexico Math Standards
Strand 1: NUMBER AND OPERATIONS Standard: Students will understand numerical concepts and mathematical operations. 58 Benchmark 1: Understand numbers, ways of representing numbers, relationships among
More informationMaths scheme of work for the new National Curriculum September 2014
Maths Domain Year 3 Number and place value Autumn Spring Summer Placing 2digit numbers on an empty number line. Begin to compare and order numbers up to 1000. Identify, represent and estimate numbers
More informationScope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
More information4. Curriculum content
Candidates may follow either the Core Curriculum or the Extended Curriculum. 1 Number Core curriculum Notes Link within 1.1 Vocabulary and notation for different sets of numbers: natural numbers k, primes,
More informationRead and write numbers to at least 1000 in numerals and in words.
Year 1 Year 2 Year 3 Number, place value, rounding, approximation and estimation Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. Count, read and write
More informationGCSE MATHEMATICS GRADE DESCRIPTORS 2016 ONWARDS. GRADE Content Area Video #
GRADE Content Area Video # 8 / 9 7 Fractional Upper and Lower Bounds Surds  Introduction to Surds Surds  Surd Expressions Surds  nalising the Denominator Perpendicular Lines Completing the Square 
More informationIn mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
More informationKS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number
KS4 Curriculum Plan Maths FOUNDATION TIER Year 9 Autumn Term 1 Unit 1: Number 1.1 Calculations 1.2 Decimal Numbers 1.3 Place Value Use priority of operations with positive and negative numbers. Simplify
More informationCharlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
More informationMaths from the National Curriculum
Maths from the National Curriculum MATHS: NUMBER AND PLACE VALUE KS1 Y1 Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number Count, read and write numbers to
More informationIllinois State Standards Alignments Grades Three through Eleven
Illinois State Standards Alignments Grades Three through Eleven Trademark of Renaissance Learning, Inc., and its subsidiaries, registered, common law, or pending registration in the United States and other
More informationYear 1 Maths Expectations
Times Tables I can count in 2 s, 5 s and 10 s from zero. Year 1 Maths Expectations Addition I know my number facts to 20. I can add in tens and ones using a structured number line. Subtraction I know all
More informationEveryday Mathematics CCSS EDITION CCSS EDITION. Content Strand: Number and Numeration
CCSS EDITION Overview of 6 GradeLevel Goals CCSS EDITION Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
More informationMathematics Steps to Success. Number. Problem solving with these skills increases the step depending on the complexity of the question.
Problem solving with these skills increases the step depending on the complexity of the question Mathematics Steps to Success Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Number I can
More informationMATH GLOSSARY Grades 68 ENGLISH (JAPANESE)
A absolute value accurately label work adapt additive inverse adjacent adjacent side of a triangle algebra algebraic equation algebraic expression algebraic inequalities algebraic pattern algebraic solution
More informationYear 3 End of year expectations
Number and Place Value Count in 4s, 8s, 50s and 100s from any number Read and write numbers up to 1000 in numbers and words Compare and order numbers up to 1000 Recognise the place value of each digit
More informationBRAINtastic! Math. Mathematics. Correlation with the NCTM Principles and Standards. Page 1 of 24
BRAINtastic! Math Correlation with the NCTM Principles and Standards Mathematics Page 1 of 24 Table of Contents NCTM Level Correlation with BRAINtastic! Math 3 Number and Operations Standard 4 Algebra
More informationHigher Level. Unit 1a: Angles
Higher Level Unit 1a: Angles distinguish between acute, obtuse, reflex and right angles use one lowercase letter or three uppercase letters to represent an angle, for example x or ABC understand and
More informationCurrent Standard: Mathematical Concepts and Applications Shape, Space, and Measurement Primary
Shape, Space, and Measurement Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two and threedimensional shapes by demonstrating an understanding of:
More informationMATHS YEAR 1 CHILD SPEAK TARGETS NUMBER Number and Place Value I can count to 100 and above, forwards and backwards, starting at any number.
MATHS YEAR 1 CHILD SPEAK TARGETS Number and Place Value I can count to 100 and above, forwards and backwards, starting at any number. I can count in 2 s, 5 s and 10 s. I can count, read and write numbers
More informationEveryday Mathematics GOALS
Copyright Wright Group/McGrawHill GOALS The following tables list the GradeLevel Goals organized by Content Strand and Program Goal. Content Strand: NUMBER AND NUMERATION Program Goal: Understand the
More informationMATHEMATICS Key Stage 3 Mastery Curriculum  Year 7. Number. Algebra. Fractions, Proportion and rates of change
MATHEMATICS Key Stage 3 Mastery Curriculum  Year 7 Number Addition and Mental strategies Place value Add/subtract decimals subtraction Number bonds Different number systems Add/subtract whole numbers
More informationYear 1 Objective Map  New Curriculum
Year 1 Objective Map  New Curriculum count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number count, read and write numbers to 100 in numerals; count in multiples
More informationMATHEMATICS SCHEME OF WORK KS13 MATHS CURRICULUM SCHEME OF WORK Incorporating the new maths curriculum Georgina Pryke.
MATHEMATICS SCHEME OF WORK KS13 Incorporating the new maths curriculum 2014 Georgina Pryke Page 1 of 18 Pre National Curriculum level Learning Objectives. Number Shape, Space and Measure  Children to
More informationCurriculum overview for Year 1 Mathematics
Curriculum overview for Year 1 Counting forward and back from any number to 100 in ones, twos, fives and tens identifying one more and less using objects and pictures (inc number lines) using the language
More informationHigher Scheme of Work Year
Higher Scheme of Work Year 9 2016 2017 Assumed knowledge Understand and use positive numbers and negative integers, both as positions and translations on a number line answers to a division sum using multiplication
More informationIntroduction. The Aims & Objectives of the Mathematical Portion of the IBA Entry Test
Introduction The career world is competitive. The competition and the opportunities in the career world become a serious problem for students if they do not do well in Mathematics, because then they are
More informationMath Content
20132014 Math Content PATHWAY TO ALGEBRA I Hundreds and Tens Tens and Ones Comparing Whole Numbers Adding and Subtracting 10 and 100 Ten More, Ten Less Adding with Tens and Ones Subtracting with Tens
More informationCommon Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity 8G18G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
More informationUnit 1, Review Transitioning from Previous Mathematics Instructional Resources: McDougal Littell: Course 1
Unit 1, Review Transitioning from Previous Mathematics Transitioning from previous mathematics to Sixth Grade Mathematics Understand the relationship between decimals, fractions and percents and demonstrate
More informationThe Everyday Mathematics Goals
The Everyday Mathematics Goals The Everyday Mathematics program builds understanding over a period of time, first through informal exposure and later through more formal and directed instruction. The following
More informationYear 1 Maths Objectives
Year 1 Maths Objectives Emerging Number: Number and Place Value Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number Count, read and write numbers to 100 in
More informationYear 8. Student Booklet. Name...
Year 8 Student Booklet Name... Rainbow Number  Colours Add and subtract using the number line Add and subtract and whole numbers Add and subtract decimals Recall basic time facts Read and write times
More informationCalifornia Mathematics Standards grades 47
California Mathematics Standards grades 47 notes Fourth Grade By the end of fourth grade, students understand large numbers and addition, subtraction, multiplication and division of whole numbers. They
More informationMath in Focus Table of Contents Course 2 (Grade 7) Objectives Chapter 1 Real Number System Recall Prior
Math in Focus Table of Contents Course 2 (Grade 7) Objectives Chapter 1 Real Number System Plot positive and negative numbers on a number line Lesson 1.1 Rational numbers and long division Find squares,
More informationMaths Year 1 Programme of Study. Fractions Measurement Geometry properties of shape. Number Place Value and Rounding. Statistics
Maths Year 1 Programme of Study Value count to across 100, forwards backwards, beginning with 0 or 1, or from any given count, read write s to 100 in numerals; count in multiples of 2s, 5s 10s given a,
More informationMIDDLE GRADES 68. Revised Mathematics
MIDDLE GRADES 68 Number and Operations Students in the middle grades represent real numbers using manipulatives, pictures, number lines, and symbols in a variety of contexts. Relationships among rational
More informationProgression in Maths Skills. Years 1 
Progression in Maths Skills Years 16 Loose Primary School Mathematics Progression of Skills Programme of study Number number and place value Key Stage 1 Year 1 Skills count to and across 100 forwards
More informationGillamoor C of E Primary School Maths National Curriculum September 2014
Gillamoor C of E Primary School Maths National Curriculum September 2014 Number  number and place value  Year 1 count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given
More information1.6 Powers of 10 and standard form Write a number in standard form. Calculate with numbers in standard form.
Unit/section title 1 Number Unit objectives (Edexcel Scheme of Work Unit 1: Powers, decimals, HCF and LCM, positive and negative, roots, rounding, reciprocals, standard form, indices and surds) 1.1 Number
More informationPupils should identify the place value in large whole numbers.
Year 5 Year 5 programme of study (statutory requirements) Number, place value, approximation and estimation Number, place value, approximation and estimation Pupils should identify the place value in large
More informationFCAT MATHEMATICS CONTENT MATRIX GRADE 6 Benchmarks Grade Level Expectation Clarification Statement Content Limits
MA.A.1.3.1: The student associates verbal names, written word names, and standard numerals with integers, fractions, decimals; numbers expressed as percents; numbers with exponents; numbers in scientific
More informationMATHEMATICS GRADE LEVEL VOCABULARY DRAWN FROM SBAC ITEM SPECIFICATIONS VERSION 1.1 JUNE 18, 2014
VERSION 1.1 JUNE 18, 2014 MATHEMATICS GRADE LEVEL VOCABULARY DRAWN FROM SBAC ITEM SPECIFICATIONS PRESENTED BY: WASHINGTON STATE REGIONAL MATH COORDINATORS Smarter Balanced Vocabulary  From SBAC test/item
More informationLearning Targets for Mathematics Milwaukee Public Schools
Learning Targets for Mathematics Milwaukee Public Schools Grades K 4 Mathematics Learning Targets Milwaukee Public Schools 2003 2004 Number Operations & Relationships Geometry Kindergarten (1) Use strategies
More informationMinnesota Academic Standards
Minnesota Academic Standards Mathematics K12 May 19, 2003 Minnesota Department of Education May 19, 2003 ORGANIZATION OF THIS DOCUMENT The Minnesota Academic Standards in Mathematics are organized by
More informationFlorida Standards /Excel Math Correlation 6 th Grade Excel Math Lesson Numbers Strand A: Number Sense, Concepts, and Operations
Florida Standards / Correlation Strand A: Number Sense, Concepts, and Operations Standard 1: The student understands the different ways numbers are represented and used in the real world. Benchmark MA.A.1.3.1:
More informationSixth Grade Math Pacing Guide Page County Public Schools MATH 6/7 1st Nine Weeks: Days Unit: Decimals B
Sixth Grade Math Pacing Guide MATH 6/7 1 st Nine Weeks: Unit: Decimals 6.4 Compare and order whole numbers and decimals using concrete materials, drawings, pictures and mathematical symbols. 6.6B Find
More informationCheck boxes of Edited Copy of Sp Topics (was 259 topics in pilot)
Check boxes of Edited Copy of 10022 Sp 11 258 Topics (was 259 topics in pilot) Beginning Algebra, 3rd Ed. [open all close all] Course Readiness and Additional Topics Appendix Course Readiness Multiplication
More informationMath Content
20122013 Math Content PATHWAY TO ALGEBRA I Unit Lesson Section Number and Operations in Base Ten Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Regrouping Concepts
More informationMathematics Scope and Sequence, K8
Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count
More informationYear 8  Maths Autumn Term
Year 8  Maths Autumn Term Whole Numbers and Decimals Order, add and subtract negative numbers. Recognise and use multiples and factors. Use divisibility tests. Recognise prime numbers. Find square numbers
More informationStandard 1: Number, Number Sense and Operations
Standard 1: Number, Number Sense and Operations Students demonstrate number sense including an understanding of number systems and operations, and how they relate to one another. Students compute fluently
More informationPrentice Hall Mathematics: PreAlgebra 2004 Correlated to: Kentucky Core Content for Mathematics Assessment (Grades 68)
Kentucky Core Content for Mathematics Assessment (Grades 68) NUMBER/COMPUTATION Concepts Students will describe properties of, define, give examples of, and/or apply to both realworld and mathematical
More informationMath Literacy Standards and Benchmarks May 29, 2007 Demonstrates understanding and use of numbers and their operations.
Math Literacy Standards and Benchmarks May 29, 2007 Demonstrates understanding and use of numbers and their operations. Demonstrates understanding and use of data collections, statistics, basic probabilities,
More informationOverview of PreK6 GradeLevel Goals. Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting
Overview of 6 GradeLevel Goals Content Strand: Number and Numeration Program Goal: Understand the Meanings, Uses, and Representations of Numbers Content Thread: Rote Counting Goal 1: Verbally count in
More informationPrep for LA Geometry EOC Assessment
Prep for LA Geometry EOC Assessment This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence
More informationYEAR 8 SCHEME OF WORK  SECURE
YEAR 8 SCHEME OF WORK  SECURE Autumn Term 1 Number Spring Term 1 Reallife graphs Summer Term 1 Calculating with fractions Area and volume Decimals and ratio Straightline graphs Half Term: Assessment
More informationUnit 1, Review Transitioning from Previous Mathematics Instructional Resources: Grade 6: Scott Foresman
Unit 1, Review Transitioning from Previous Mathematics Transitioning from previous mathematics to Sixth Grade Mathematics Understand the relationship between decimals, fractions and percents and demonstrate
More informationKEY OBJECTIVES IN MATHS FOR KEY STAGE 1 AND KEY STAGE 2
KEY OBJECTIVES IN MATHS FOR KEY STAGE 1 AND KEY STAGE 2 YEAR 1 MATHS  KEY OBJECTIVES 1 Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number. 2 Count, read and
More informationMathematics Curriculum Review Worksheets
Mathematics Curriculum Review Worksheets Table 1. ACT for Score Range 1315 N 201 N 202 N 203 AF 201 A 201 A 202 F 201 G 201 G 202 G 203 S 201 S 202 Perform oneoperation computation with whole numbers
More information2007 Minnesota K12 Academic Standards in Mathematics by Progressions with Benchmarkitem Difficulty
2007 Minnesota K12 Academic Standards in Mathematics by Progressions with Benchmarkitem Difficulty The 2007 Minnesota K12 Academic Standards in Mathematics by Progressions with Benchmarkitem Difficulty
More informationMaths curriculum information
Maths curriculum information Year 7 Learning outcomes Place value, add and subtract Multiply and divide Geometry Fractions Algebra Percentages & pie charts Topics taught Place value (inc decimals) Add
More informationMastery of SAT Math. Curriculum (396 topics + 99 additional topics)
Mastery of SAT Math This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular
More informationCLASS 2 MATHS CURRICULUM:
CLASS 2 MATHS CURRICULUM: Activities/opportunities: MATHS Count and calculate in increasingly complex contexts, including those that cannot be experienced first hand. Rigorously apply mathematical knowledge
More informationBUILT TEXAS. for. Texas Pathways
BUILT for TEXAS Grades 3 Algebra I 2013 2014 Texas Pathways Grade 3 Number and Operations  Fractions Place Value with Whole Numbers Place Value and Rounding Addition and Subtraction Concepts Estimate
More informationEdexcel GCSE Maths Linear Exam Topic List  FOUNDATION NUMBER. Add, subtract, multiply, divide
Edexcel GCSE Maths Linear Exam Topic List  FOUNDATION NUMBER Add, subtract, multiply, divide Add, subtract, multiply, divide whole numbers, integers, negatives, fractions, and decimals and numbers in
More informationAdd and subtract 1digit and 2digit numbers to 20, including zero. Measure and begin to record length, mass, volume and time
Year 1 Maths  Key Objectives Count to and across 100 from any number Count, read and write numbers to 100 in numerals Read and write mathematical symbols: +,  and = Identify "one more" and "one less"
More informationPrimary Curriculum 2014
Primary Curriculum 2014 Suggested Key Objectives for Mathematics at Key Stages 1 and 2 Year 1 Maths Key Objectives Taken from the National Curriculum 1 Count to and across 100, forwards and backwards,
More informationCommon Core Mathematics Vocabulary Terms
Count Ones Tens Forward Zero Greater than Less than Equal Addition Subtraction Length Weight More Less Taller Shorter Longer Larger Smaller Kindergarten First Grade Second Grade Sort Above Below Beside
More informationSupporting your Child with Maths At home
Supporting your Child with Maths At home MATHEMATICS TARGETS  A YEAR 1 MATHEMATICIAN Number and place value I can count to and across 100, forward and backwards,beginning with 0 or 1 from any number.
More informationScope and Sequence for Grades 7 and 8 Series Singapore Math Inc.
CCS: Common Core Standards DMC: Dimensions Math, Common Core Series NEM: New Elementary Mathematics Scope and Sequence for Grades 7 and 8 Series Singapore Math Inc. www.singaporemath.com CCS DMC NEM Numbers
More informationWithin each area, these outcomes are broken down into more detailed stepbystep learning stages for each of the three terms.
MATHEMATICS PROGRAMME OF STUDY COVERAGE all topics are revisited several times during each academic year. Existing learning is consolidated and then built upon and extended. Listed below are the end of
More informationKS3 Maths Learning Objectives (excludes Year 9 extension objectives)
KS3 Maths Learning Objectives (excludes Year 9 extension objectives) blue Year 7 black Year 8 green Year 9 NUMBER N1 Place value and standard form N1.1 Place value N1.2 Powers of ten Framework Objectives
More information