Prelab 3: Bipolar Junction Transistor Characterization

Size: px
Start display at page:

Download "Prelab 3: Bipolar Junction Transistor Characterization"

Transcription

1 Prelab 3: Bipolar Junction Transistor Characterization Name: Lab Section: 1. For the NPN device shown in Figure 1, label I C, I B, and I E next to their respective current arrows. Figure 1: A simple NPN device 2. What is β in terms of I C and I B? What is α in terms of I C and I E? Express α in terms of β. β (I C, I B ) = α (I C, I E ) = α (β) = 3. Given that you are a circuit designer working with an NPN device and you want the device to have a g m of 1 ms, what V BE value would you need to properly bias the NPN? Assume I S is A. 4. SPICE Write a SPICE netlist for the BJT test circuit shown in Figure 2. Refer to the HSPICE Tutorial if you have trouble with SPICE. Use the 2N4401 SPICE model provided on the course website. 1

2 2 I CC V BB + V CC + Figure 2: Circuit to simulate in SPICE Using the.dc command, sweep V CC from 0 V to 5 V in 0.01 V increments and step V BB from 0.6 V to 0.7 V in V increments. Run the simulation and check the output file for any errors. If there are no errors, plot I CC versus V CC and print out a copy of the plot. Note: If your I CC is negative, use Awaves to plot the absolute value of I CC. I CC appears to be negative because SPICE defines I CC to be going out of the BJT. 5. The configuration shown below in Figure 3 is known as the Darlington pair. Assume Q 1 has a DC current gain of β 1 and Q 2 has a DC current gain of β 2. Derive the overall current gain, β tot = I C2 /I B1, as a function of β 1 and β 2. Do not neglect any currents. I B1 Q 1 I C2 Q 2 Figure 3: Darlington configuration β tot = c University of California, Berkeley 2008 Reproduced with Permission Courtesy of the University of California, Berkeley and of Agilent Technologies, Inc. This experiment has been submitted by the Contributor for posting on Agilents Educators Corner. Agilent has not tested it. All who offer or perform this experiment do so solely at their own risk. The Contributor and Agilent are providing this experiment solely as an informational facility and without review. NEITHER AGILENT NOR CONTRIBUTOR MAKES ANY WARRANTY OF ANY KIND WITH REGARD TO THIS EXPERIMENT, AND NEITHER SHALL BE LIABLE FOR ANY DIRECT, INDI- RECT, GENERAL, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE USE OF THIS EXPERIMENT.

3 1 Objective Experiment 3: Bipolar Junction Transistor Characterization The BJT was invented in 1948 by William Shockley at Bell Labs, and became the first mass-produced transistor. Having a good grasp of the physics of the BJT is key to understanding its operation and applications. In this lab, we will explore the BJT s four regions of operation and also determine its characteristic values, such as DC current gain β and Early voltage V A. The transistor used in this lab is the 2N4401, an NPN device. It is strongly recommended that you read and understand the section on BJT physics before beginning this experiment. 2 Materials You will need the components listed in Table 1. Note: Be sure to answer the questions on the report as you proceed through this lab. The report questions are labeled according to the sections in the experiment. CAU- TION: FOR THIS EXPERIMENT, THE TRANSISTORS CAN BECOME EXTREMELY HOT!!! Component Quantity 1 MΩ resistor kω resistor Ω resistor 4 2N4401 NPN BJT 2 Table 1: Components used in this lab 3 Procedure 3.1 Determining the Region of Operation 1. Set up the circuit shown in Figure 1, with R B = 1 MΩ, R C = 5.1 kω, R E = 100 Ω, and V CC = 5 V. If you need help identifying the terminals of the discrete BJT, please refer to Figure 2 2. Now gradually ramp up the value of V BB until I C = 0.5 ma. Measure V BE and V BC. The transistor is in which region of operation? Warning: Never set V BE higher than 5 V for any of the transistors used in the labs. Doing so will permanently damage the transistor and may cause personal injury. 3. Now measure I B. What is the value of β? 1

4 3 PROCEDURE 2 R C I C I B R B V CC + V BB + R E I E Figure 1: BJT measurement setup for this lab. Figure 2: For your reference, this is an illustration of the mapping between the terminals of a discrete NPN BJT and those of its circuit symbol counterpart. 4. From the value found above, calculate α and use it to calculate I E. Afterwards, measure I E and check if the calculated and measured values agree. 5. Now take a look at the 2N4401 datasheet. Does your calculated β value agree with the value given in the datasheet? Hint: β is called h FE in the datasheet, and there is a plot of h FE versus I C under Typical Characteristics. If the values do not agree, explain why there is a discrepancy. 6. On another note, let us examine the temperature dependence of the collector and base currents: Put two fingers around Q 1 to heat it up, and then, measure I B and I C (have your partner heat the BJT while you measure the currents if you are having trouble doing both at the same time). How do the values of I C and I B compare to the values you measured before you heated the transistor (i.e. do I C and I B increase or decrease)? 7. Explain, using the equation for the collector current, how you would expect I C to vary with temperature. Does this agree with your experimental results? If not, explain why this might be the case. (Hint: I S depends on the intrinsic carrier concentration n i and the diffusion coefficients D n and D p. Intuitively, how would n i, D n, and D p change with temperature? How would I S change with temperature as a result? Note: You do not need to explicitly answer the questions in the hint but do think about them.) 8. Let us now explore the different operation regions of a BJT. Set V BB to 4 V and V CC to 2 V. Measure I B, I C, V BE, and V BC. What is the region of operation for the BJT? 9. Set V BB to 3 V and V CC to 5 V. Measure I B, I C, V BE, and V BC. What is the region of operation for the BJT?

5 3 PROCEDURE Now swap the emitter and the collector connections of the BJT in the circuit (you can do this by physically rearranging the BJT to face the opposite direction). Set V BB to 4 V and keep V CC at 5 V. Measure I B, I C, V BE, and V BC. What is the region of operation? 3.2 Determining the Early Voltage Using the Parameter Analyzer Increasing the collector-base bias widens the depletion region at the collector-base interface. As a result, recombination decreases because the base is more depleted of available mobile holes, which are the main recombination source for electrons injected from the emitter. The widened depletion region also provides a greater electric field to sweep the injected electrons to the collector. Both of these effects result in an additional dependence of I C on V CE. The Early voltage is used to model this dependence. 1. Connect a BJT to the parameter analyzer s test fixture (without any resistors). Use ICS, the software accompanying the parameter analyzer, to bias the emitter at 0 V and the base at 0.6 V. Sweep the collector from 0 V to 5 V using 101 datapoints. Measure the current through the collector terminal. 2. Next, plot I C versus V C, the collector voltage. What two regions of operation are shown, and where is the boundary? 3. Use this plot to determine the Early voltage, V A. Hint: The parameter analyzer tutorial has instructions on the trend line tool found in Excel and thus, can help you calculate the Early voltage. 4. Repeat your calculation of V A for base voltages of V, V, V, V, and V (you can step the base voltage in ICS to get this data). Does V A depend on the base voltage V B? Why? 3.3 The BJT as a Diode 1. Connect a diode-connected BJT (i.e. the base and collector are shorted together) to the parameter analyzer s test fixture. Use ICS to ground the emitter and sweep the base/collector from 0 V to 0.7 V. Measure the current through the base/collector. (Teh base/collector acts as the P side of a diode). 2. Run the measurement and plot the base/collector current, I C versus V BE. Which other semiconductor device has this kind of I-V curve? 3.4 The Darlington Pair (Super High β) V CC = 3 V 100 Ω 100 Ω V BB Ω 1.2 V Q Ω Q 2 Figure 3: Darlington configuration for measurement 1. Construct the Darlington pair as shown in Figure Measure I B1, I C1, I B2, and I C2. Calculate β 1 = I C1 /I B1 and β 2 = I C2 /I B2.

6 3 PROCEDURE 4 3. What is the overall current gain, β tot = I C2 /I B1, based on your measured values of I C2 and I B1? Now, use the formula you derived in the prelab to calculate the overall current gain from β 1 and β 2. Compare this calculated β tot value to your measured β tot value. c University of California, Berkeley 2008 Reproduced with Permission Courtesy of the University of California, Berkeley and of Agilent Technologies, Inc. This experiment has been submitted by the Contributor for posting on Agilents Educators Corner. Agilent has not tested it. All who offer or perform this experiment do so solely at their own risk. The Contributor and Agilent are providing this experiment solely as an informational facility and without review. NEITHER AGILENT NOR CONTRIBUTOR MAKES ANY WARRANTY OF ANY KIND WITH REGARD TO THIS EXPERIMENT, AND NEITHER SHALL BE LIABLE FOR ANY DIRECT, INDI- RECT, GENERAL, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE USE OF THIS EXPERIMENT.

7 Report 3: Bipolar Junction Transistor Characterization Name: Lab Section: For this lab, please record the values of current and voltage in the designated boxes. 3.1 Use this table to record and summarize relevant results as you proceed through the lab experiment: for each region of operation, fill in the appropriate entries in Table 1 and compute the resulting β and α values. Parameters Forward Active Saturation Cutoff Reverse Active V BE V BC I B I C β N/A N/A α N/A N/A Table 1: Regions of operations and measurements Measure V BE and V BC. What is the region of operation? V BE = V BC = Measure I B and compute β. I B = β = 1

8 Calculate α and use the result to calculate I E. What is the measured value of I E. Do the two values for I E agree? α = (Calculated) I E = (Measured) I E = Does your calculated β value agree with the value listed in the datasheet? If not, explain why there is a discrepancy Heat up the BJT with you fingers and record the respective values of I C and I B. How do the values of I C and I B change as you heat up the BJT? I B = I C = Explain, using the equation for the collector current, how you would expect I C to vary with temperature. Does this agree with your experimental results? If not, explain why this might be the case. (Hint: I S depends on the intrinsic carrier concentration n i and the diffusion coefficients D n and D p. Intuitively, how would n i, D n, and D p change with temperature? Also, how would I S change with temperature as a result? Note: You do not need to explicitly answer the questions in the hint but do think about them.)

9 Set V BB to 4 V and V CC to 2 V. Measure I B, I C, V BE, and V BC. What is the region of operation? I B = I C = V BE = V BC = Set V BB to 3 V and V CC to 5 V. Measure I B, I C, V BE, and V BC. What is the region of operation? I B = I C = V BE = V BC = Swap the emitter and collector connections of the BJT. Set V BB to 4 V and keep V CC at 5 V. Measure I B, I C, V BE, and V BC. What is the region of operation? I B = I C = V BE = V BC = Remember to fill out Table 1 using all the data you have collected thus far Attach the plot of the I-V curve to this worksheet. Label the two regions of operation and draw the boundary between them Use the I-V curve to determine V A. V A = Repeat your calculation of V A for base voltages of V, V, V, V, and V (you can step the base voltage in ICS to get this data). Does V A depend on V B? Why?

10 4 V B V V V V V V A Table 2: Early voltage calculations Attach the plot of the I-V curve to this worksheet. Which other semiconductor device has this kind of I-V curve? Measure I B1, I C1, I B2, and I C2. Calculate β 1 and β 2. I B1 = I C1 = I B2 = I C2 = β 1 = β 2 = What is the overall current gain, β tot = I C2 /I B1, based on your measured values of I C2 and I B1? Now, use the formula you derived in the prelab to calculate the overall current gain from β 1 and β 2. Compare this calculated β tot value to your measured β tot value. (Measured) β tot = (Calculated) β tot =

11 5 c University of California, Berkeley 2008 Reproduced with Permission Courtesy of the University of California, Berkeley and of Agilent Technologies, Inc. This experiment has been submitted by the Contributor for posting on Agilents Educators Corner. Agilent has not tested it. All who offer or perform this experiment do so solely at their own risk. The Contributor and Agilent are providing this experiment solely as an informational facility and without review. NEITHER AGILENT NOR CONTRIBUTOR MAKES ANY WARRANTY OF ANY KIND WITH REGARD TO THIS EXPERIMENT, AND NEITHER SHALL BE LIABLE FOR ANY DIRECT, INDI- RECT, GENERAL, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE USE OF THIS EXPERIMENT.

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

More information

Bipolar Junction Transistor Basics

Bipolar Junction Transistor Basics by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

More information

05 Bipolar Junction Transistors (BJTs) basics

05 Bipolar Junction Transistors (BJTs) basics The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN

More information

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical

More information

BIPOLAR JUNCTION TRANSISTORS

BIPOLAR JUNCTION TRANSISTORS CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back

More information

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS

LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

More information

Transistors. NPN Bipolar Junction Transistor

Transistors. NPN Bipolar Junction Transistor Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction

More information

Transistor Models. ampel

Transistor Models. ampel Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other

More information

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits

University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits LTSpice LTSpice is a free circuit simulator based on Berkeley

More information

Bipolar Junction Transistors

Bipolar Junction Transistors Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base

More information

DATA SHEET. BC875; BC879 NPN Darlington transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 May 28.

DATA SHEET. BC875; BC879 NPN Darlington transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 May 28. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1999 May 28 2004 Nov 05 FEATURES High DC current gain (min. 1000) High current (max. 1 A) Low voltage (max. 80 V) Integrated

More information

Transistor Amplifiers

Transistor Amplifiers Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input

More information

Fundamentals of Microelectronics

Fundamentals of Microelectronics Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS

More information

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

More information

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER

LABORATORY 2 THE DIFFERENTIAL AMPLIFIER LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common

More information

DISCRETE SEMICONDUCTORS DATA SHEET. BFQ34 NPN 4 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14

DISCRETE SEMICONDUCTORS DATA SHEET. BFQ34 NPN 4 GHz wideband transistor. Product specification File under Discrete Semiconductors, SC14 DISCRETE SEMICONDUCTORS DATA SHEET File under Discrete Semiconductors, SC4 September 995 DESCRIPTION PINNING NPN transistor encapsulated in a 4 lead SOTA envelope with a ceramic cap. All leads are isolated

More information

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997

Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

DATA SHEET. BST50; BST51; BST52 NPN Darlington transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2001 Feb 20.

DATA SHEET. BST50; BST51; BST52 NPN Darlington transistors DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 2001 Feb 20. DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D109 Supersedes data of 2001 Feb 20 2004 Dec 09 FEATURES High current (max. 0.5 A) Low voltage (max. 80 V) Integrated diode and resistor. APPLICATIONS

More information

I-V Characteristics of BJT Common-Emitter Output Characteristics

I-V Characteristics of BJT Common-Emitter Output Characteristics I-V Characteristics of BJT Common-Emitter Output Characteristics C i C C i C B v CE B v EC i B E i B E Lecture 26 26-1 To illustrate the I C -V CE characteristics, we use an enlarged β R Collector Current

More information

DISCRETE SEMICONDUCTORS DATA SHEET

DISCRETE SEMICONDUCTORS DATA SHEET DISCRETE SEMICONDUCTORS DATA SHEET book, halfpage M3D186 Supersedes data of 1999 Apr 23 2001 Oct 10 FEATURES High current (max. 1 A) Low voltage (max. 80 V). APPLICATIONS Audio and video amplifiers. PINNING

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006

Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain

More information

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low

CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the

More information

BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

More information

Amplifier Teaching Aid

Amplifier Teaching Aid Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

More information

Bipolar Transistor Amplifiers

Bipolar Transistor Amplifiers Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must

More information

BDX33/A/B/C. Symbol Parameter Value Units V CBO Collector-Base Voltage : BDX33 : BDX33A : BDX33B : BDX33C

BDX33/A/B/C. Symbol Parameter Value Units V CBO Collector-Base Voltage : BDX33 : BDX33A : BDX33B : BDX33C Power Linear and Switching Applications High Gain General Purpose Power Darlington TR Complement to BDX34/34A/34B/34C respectively 1 TO-220 1.Base 2.Collector 3.Emitter NPN Epitaxial Silicon Transistor

More information

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

More information

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued

Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued 1 Lecture-7 ipolar Junction Transistors (JT) Part-I ontinued 1. ommon-emitter (E) onfiguration: Most JT circuits employ the common-emitter configuration shown in Fig.1. This is due mainly to the fact that

More information

Lecture 17. Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11.

Lecture 17. Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11. Lecture 17 Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11.1 Looks sort of like two diodes back to back pnp mnemonic: Pouring N Pot

More information

NPN wideband silicon RF transistor

NPN wideband silicon RF transistor Rev. 1 13 January 2014 Product data sheet 1. Product profile 1.1 General description NPN silicon RF transistor for high speed, low noise applications in a plastic, 3-pin SOT23 package. The is part of the

More information

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor Low voltage PNP power transistor Features Low saturation voltage PNP transistor Applications Audio, power linear and switching applications Description The device is manufactured in planar technology with

More information

Measuring Silicon and Germanium Band Gaps using Diode Thermometers

Measuring Silicon and Germanium Band Gaps using Diode Thermometers Measuring Silicon and Germanium Band Gaps using Diode Thermometers Haris Amin Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: April 11, 2007) This paper reports the band gaps of

More information

LAB IV. SILICON DIODE CHARACTERISTICS

LAB IV. SILICON DIODE CHARACTERISTICS LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize

More information

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS

2N6056. NPN Darlington Silicon Power Transistor DARLINGTON 8 AMPERE SILICON POWER TRANSISTOR 80 VOLTS, 100 WATTS NPN Darlington Silicon Power Transistor The NPN Darlington silicon power transistor is designed for general purpose amplifier and low frequency switching applications. High DC Current Gain h FE = 3000

More information

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA1020

TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA1020 2SA12 TOSHIBA Transistor Silicon PNP Epitaxial Type (PCT Process) 2SA12 Power Amplifier Applications Power Switching Applications Unit: mm Low Collector saturation voltage: V CE (sat) =.5 V (max) (I C

More information

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process) 2SC2383

TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process) 2SC2383 TOSHIBA Transistor Silicon NPN Epitaxial Type (PCT Process) SC8 Color TV Vertical Deflection Output Applications Color TV Class-B Sound Output Applications Unit: mm High breakdown voltage: V CEO = 6 V

More information

ULN2801A, ULN2802A, ULN2803A, ULN2804A

ULN2801A, ULN2802A, ULN2803A, ULN2804A ULN2801A, ULN2802A, ULN2803A, ULN2804A Eight Darlington array Datasheet production data Features Eight Darlington transistors with common emitters Output current to 500 ma Output voltage to 50 V Integral

More information

45 V, 100 ma NPN/PNP general-purpose transistor

45 V, 100 ma NPN/PNP general-purpose transistor Rev. 4 18 February 29 Product data sheet 1. Product profile 1.1 General description NPN/PNP general-purpose transistor pair in a very small SOT363 (SC-88) Surface-Mounted Device (SMD) plastic package.

More information

Common-Emitter Amplifier

Common-Emitter Amplifier Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,

More information

40 V, 200 ma NPN switching transistor

40 V, 200 ma NPN switching transistor Rev. 01 21 July 2009 Product data sheet BOTTOM VIEW 1. Product profile 1.1 General description NPN single switching transistor in a SOT883 (SC-101) leadless ultra small Surface-Mounted Device (SMD) plastic

More information

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS

2N6387, 2N6388. Plastic Medium-Power Silicon Transistors DARLINGTON NPN SILICON POWER TRANSISTORS 8 AND 10 AMPERES 65 WATTS, 60-80 VOLTS 2N6388 is a Preferred Device Plastic MediumPower Silicon Transistors These devices are designed for generalpurpose amplifier and lowspeed switching applications. Features High DC Current Gain h FE = 2500

More information

A Comparison of Various Bipolar Transistor Biasing Circuits Application Note 1293

A Comparison of Various Bipolar Transistor Biasing Circuits Application Note 1293 A omparison of Various Bipolar Transistor Biasing ircuits Application Note 1293 Introduction The bipolar junction transistor (BJT) is quite often used as a low noise amplifier in cellular, PS, and pager

More information

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57] Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel

More information

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics

Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics 192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing

More information

Voltage Divider Bias

Voltage Divider Bias Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine

More information

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.

The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above. Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination

More information

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).

Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors). 1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;

More information

BJT Ebers-Moll Model and SPICE MOSFET model

BJT Ebers-Moll Model and SPICE MOSFET model Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll

More information

Basic DC Motor Circuits. Living with the Lab Gerald Recktenwald Portland State University gerry@pdx.edu

Basic DC Motor Circuits. Living with the Lab Gerald Recktenwald Portland State University gerry@pdx.edu Basic DC Motor Circuits Living with the Lab Gerald Recktenwald Portland State University gerry@pdx.edu DC Motor Learning Objectives Explain the role of a snubber diode Describe how PWM controls DC motor

More information

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C

Vdc. Vdc. Adc. W W/ C T J, T stg 65 to + 200 C 2N6284 (NPN); 2N6286, Preferred Device Darlington Complementary Silicon Power Transistors These packages are designed for general purpose amplifier and low frequency switching applications. Features High

More information

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b

DIODE CIRCUITS LABORATORY. Fig. 8.1a Fig 8.1b DIODE CIRCUITS LABORATORY A solid state diode consists of a junction of either dissimilar semiconductors (pn junction diode) or a metal and a semiconductor (Schottky barrier diode). Regardless of the type,

More information

Basic DC Motor Circuits

Basic DC Motor Circuits Basic DC Motor Circuits Living with the Lab Gerald Recktenwald Portland State University gerry@pdx.edu DC Motor Learning Objectives Explain the role of a snubber diode Describe how PWM controls DC motor

More information

45 V, 100 ma NPN general-purpose transistors

45 V, 100 ma NPN general-purpose transistors Rev. 9 2 September 214 Product data sheet 1. Product profile 1.1 General description NPN general-purpose transistors in Surface-Mounted Device (SMD) plastic packages. Table 1. Product overview Type number

More information

DISCRETE SEMICONDUCTORS DATA SHEET BC856; BC857; BC858

DISCRETE SEMICONDUCTORS DATA SHEET BC856; BC857; BC858 DISCRETE SEMICONDUCTORS DATA SHEET Supersedes data of 23 Apr 9 24 Jan 16 FEATURES Low current (max. 1 ma) Low voltage (max. 65 V). APPLICATIONS General purpose switching and amplification. PINNING PIN

More information

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors BD241A BD241C NPN power transistors Features. NPN transistors Applications Audio, general purpose switching and amplifier transistors Description The devices are manufactured in Planar technology with

More information

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

More information

DATA SHEET. PBSS5540Z 40 V low V CEsat PNP transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2001 Jan 26. 2001 Sep 21.

DATA SHEET. PBSS5540Z 40 V low V CEsat PNP transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2001 Jan 26. 2001 Sep 21. DISCRETE SEMICONDUCTORS DATA SHEET fpage M3D87 PBSS554Z 4 V low V CEsat PNP transistor Supersedes data of 21 Jan 26 21 Sep 21 FEATURES Low collector-emitter saturation voltage High current capability Improved

More information

PHOTOTRANSISTOR OPTOCOUPLERS

PHOTOTRANSISTOR OPTOCOUPLERS MCT2 MCT2E MCT20 MCT27 WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX) DESCRIPTION The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor

More information

NPN wideband transistor in a SOT89 plastic package.

NPN wideband transistor in a SOT89 plastic package. SOT89 Rev. 05 21 March 2013 Product data sheet 1. Product profile 1.1 General description in a SOT89 plastic package. 1.2 Features and benefits High gain Gold metallization ensures excellent reliability

More information

BJT Circuit Configurations

BJT Circuit Configurations BJT Circuit Configurations V be ~ ~ ~ v s R L v s R L V Vcc R s cc R s v s R s R L V cc Common base Common emitter Common collector Common emitter current gain BJT Current-Voltage Characteristics V CE,

More information

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors

TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors TIP140, TIP141, TIP142, (); TIP145, TIP146, TIP147, () Darlington Complementary Silicon Power Transistors Designed for generalpurpose amplifier and low frequency switching applications. Features High DC

More information

Bob York. Transistor Basics - MOSFETs

Bob York. Transistor Basics - MOSFETs Bob York Transistor Basics - MOSFETs Transistors, Conceptually So far we have considered two-terminal devices that are described by a current-voltage relationship I=f(V Resistors: Capacitors: Inductors:

More information

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO

POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,

More information

Theory of Transistors and Other Semiconductor Devices

Theory of Transistors and Other Semiconductor Devices Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per

More information

How To Use A Kodak Kodacom 2.5D (Kodak) With A Power Supply (Power Supply) And Power Supply

How To Use A Kodak Kodacom 2.5D (Kodak) With A Power Supply (Power Supply) And Power Supply Reflective Optical Sensor with Transistor Output Description The CNY7 has a compact construction where the emitting light source and the detector are arranged in the same direction to sense the presence

More information

10 ma LED driver in SOT457

10 ma LED driver in SOT457 SOT457 in SOT457 Rev. 1 20 February 2014 Product data sheet 1. Product profile 1.1 General description LED driver consisting of resistor-equipped PNP transistor with two diodes on one chip in an SOT457

More information

The 2N3393 Bipolar Junction Transistor

The 2N3393 Bipolar Junction Transistor The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.

More information

DATA SHEET. MMBT3904 NPN switching transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2002 Oct 04. 2004 Feb 03.

DATA SHEET. MMBT3904 NPN switching transistor DISCRETE SEMICONDUCTORS. Product data sheet Supersedes data of 2002 Oct 04. 2004 Feb 03. DISCRETE SEMICONDUCTORS DATA SHEET dbook, halfpage M3D088 Supersedes data of 2002 Oct 04 2004 Feb 03 FEATURES Collector current capability I C = 200 ma Collector-emitter voltage V CEO = 40 V. APPLICATIONS

More information

ST13005. High voltage fast-switching NPN power transistor. Features. Applications. Description

ST13005. High voltage fast-switching NPN power transistor. Features. Applications. Description High voltage fast-switching NPN power transistor Datasheet production data Features Low spread of dynamic parameters Minimum lot-to-lot spread for reliable operation Very high switching speed Applications

More information

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

More information

School of Engineering Department of Electrical and Computer Engineering

School of Engineering Department of Electrical and Computer Engineering 1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

65 V, 100 ma PNP/PNP general-purpose transistor

65 V, 100 ma PNP/PNP general-purpose transistor Rev. 02 19 February 2009 Product data sheet 1. Product profile 1.1 General description PNP/PNP general-purpose transistor pair in a very small SOT363 (SC-88) Surface-Mounted Device (SMD) plastic package.

More information

Optocoupler, Phototransistor Output, with Base Connection

Optocoupler, Phototransistor Output, with Base Connection CNY7 Optocoupler, Phototransistor FEATURES Isolation test voltage 5 V RMS A 6 B Long term stability i79 C NC 5 C E Industry standard dual-in-line package Lead (Pb-free component Component in accordance

More information

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

More information

2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV. http://onsemi.com.

2N2222A. Small Signal Switching Transistor. NPN Silicon. MIL PRF 19500/255 Qualified Available as JAN, JANTX, and JANTXV. http://onsemi.com. Small Signal Switching Transistor NPN Silicon Features MILPRF19/ Qualified Available as JAN, JANTX, and JANTXV COLLECTOR MAXIMUM RATINGS (T A = unless otherwise noted) Characteristic Symbol Value Unit

More information

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at www.hest ore.hu.

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at www.hest ore.hu. EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at www.hest ore.hu. 2N3055, MJ2955 Complementary power transistors Features Datasheet - production

More information

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1

Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1 Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-ET1-1 analysis of electronic A. Fractions and decimals B. Powers of 10 and engineering notation C. Formula based problem solutions D. Powers and roots E. Linear equations

More information

BD239, BD239A, BD239B, BD239C NPN SILICON POWER TRANSISTORS

BD239, BD239A, BD239B, BD239C NPN SILICON POWER TRANSISTORS Copyright 1997, Power Innovations Limited, UK Designed for Complementary Use with the BD240 Series 30 W at 25 C Case Temperature TO-220 PACKAGE (TOP VIEW) 2 A Continuous Collector Current B 1 4 A Peak

More information

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL

3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL 3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement

More information

Lab 7: Operational Amplifiers Part I

Lab 7: Operational Amplifiers Part I Lab 7: Operational Amplifiers Part I Objectives The objective of this lab is to study operational amplifier (op amp) and its applications. We will be simulating and building some basic op amp circuits,

More information

Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide

Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide GB55-7 Peak Atlas DCA Semiconductor Component Analyser Model DCA55 User Guide Peak Electronic Design Limited 2000/2007 In the interests of development, information in this guide is subject to change without

More information

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description Low voltage NPN power Darlington transistor Features Good h FE linearity High f T frequency Monolithic Darlington configuration with integrated antiparallel collector-emitter diode TAB Application Linear

More information

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)

Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode) Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive

More information

Current vs. Voltage Feedback Amplifiers

Current vs. Voltage Feedback Amplifiers Current vs. ltage Feedback Amplifiers One question continuously troubles the analog design engineer: Which amplifier topology is better for my application, current feedback or voltage feedback? In most

More information

BC107/ BC108/ BC109 Low Power Bipolar Transistors

BC107/ BC108/ BC109 Low Power Bipolar Transistors TO-18 Features: NPN Silicon Planar Epitaxial Transistors. Suitable for applications requiring low noise and good h FE linearity, eg. audio pre-amplifiers, and instrumentation. TO-18 Metal Can Package Dimension

More information

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012

Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012 1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper

More information

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Package is Available* Features. http://onsemi.com MAXIMUM RATINGS

BC546B, BC547A, B, C, BC548B, C. Amplifier Transistors. NPN Silicon. Pb Free Package is Available* Features. http://onsemi.com MAXIMUM RATINGS B, A, B, C, B, C Amplifier Transistors NPN Silicon Features PbFree Package is Available* COLLECTOR 1 2 BASE MAXIMUM RATINGS Collector-Emitter oltage Collector-Base oltage Rating Symbol alue Unit CEO 65

More information

Planar PIN diode in a SOD323 very small plastic SMD package.

Planar PIN diode in a SOD323 very small plastic SMD package. Rev. 8 12 May 2015 Product data sheet 1. Product profile 1.1 General description Planar PIN diode in a SOD323 very small plastic SMD package. 1.2 Features and benefits High voltage, current controlled

More information

Preamplifier Circuit for IR Remote Control

Preamplifier Circuit for IR Remote Control Preamplifier Circuit for IR Remote Control 22906 FEATURES Carrier-out-function: carrier frequency and burst length accurately correspond to the input signal AC coupled response from 20 khz to 60 khz; all

More information

2PD601ARL; 2PD601ASL

2PD601ARL; 2PD601ASL Rev. 01 6 November 2008 Product data sheet 1. Product profile 1.1 General description NPN general-purpose transistors in a small SOT23 (TO-236AB) Surface-Mounted Device (SMD) plastic package. Table 1.

More information

DESIGN considerations for a microwave amplifier include

DESIGN considerations for a microwave amplifier include IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 9, SEPTEMBER 1998 1993 Three-Dimensional Base Distributed Effects of Long Stripe BJT s: AC Effects on Input Characteristics Ming-Yeh Chuang, Mark E.

More information

Unit 7: Electrical devices LO2: Understand electrical sensors and actuators Sensors temperature the thermistor

Unit 7: Electrical devices LO2: Understand electrical sensors and actuators Sensors temperature the thermistor Unit 7: Electrical devices LO2: Understand electrical sensors and actuators Sensors temperature the thermistor Instructions and answers for teachers These instructions should accompany the OCR resource

More information

Low Noise, Matched Dual PNP Transistor MAT03

Low Noise, Matched Dual PNP Transistor MAT03 a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic

More information

Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

More information

BC846/BC546 series. 65 V, 100 ma NPN general-purpose transistors. NPN general-purpose transistors in Surface Mounted Device (SMD) plastic packages.

BC846/BC546 series. 65 V, 100 ma NPN general-purpose transistors. NPN general-purpose transistors in Surface Mounted Device (SMD) plastic packages. 65 V, 00 ma NPN general-purpose transistors Rev. 07 7 November 009 Product data sheet. Product profile. General description NPN general-purpose transistors in Surface Mounted Device (SMD) plastic packages.

More information