# Solid-State Physics: The Theory of Semiconductors (Ch ) SteveSekula, 30 March 2010 (created 29 March 2010)

Save this PDF as:

Size: px
Start display at page:

Download "Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)"

## Transcription

1 Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch ) SteveSekula, 30 March 2010 (created 29 March 2010) Review no tags We applied our model of the solid (using N square wells in a 1-D lattice) to understand several phenomena at a quantum level: We learned that a solid contains bands with N levels, spaced by gaps where there are no allowed energies The gaps occur when you reach an energy level, where the corresponding wavelength of the wave function satisfies k = nù=a, where a is the spacing of the ions in the lattice. The allowed k are determined by the nature of the lattice, but when k reaches nù=a then a gap starts. Conduction and insulation can then be explained by how bands are filled if the conduction electrons fill all energy levels up to a gap, then it is very hard to apply a reasonable electric field to move electrons across the gap. This is an insulator. if the conduction electrons fill only part of the available levels in a band, then they can easily be moved to higher levels (higher k, and thus higher momentum) by a reasonable electric field, this is a conductor. Insulators, Conductors, and Semi-Conductors (see slides) Which is a better conductor? Lithium or Beryllium? Lithium has three electrons. The first two are down in the 1S state, while the third is up in the 2S state. If there are N Lithium atoms, there are N states per band. The 1S band has 2N electrons in it, and the 2S band has N electrons in it, it's half-filled. Lithium should be a good conductor. 1 of 7 03/30/ :19 PM

2 Beryllium has 4 electrons. For N atoms, there are 2N electrons in the 1S state and 2N electrons in the 2S state. Beryllium should be a bad conductor, but this in reality is not true. That's because the 2P state in Beryllium is close enough to the 2S state that when bands form, they overlap. So the 2S+2P state is only partially filled in Beryllium, and it's actually quite a good conductor. Solids are complicated. Our simple square well is a bad model at some point, and Beryllium is a good example. To really understand solids, you need to apply the full correct model of the atom with all of its quantum numbers and energy level solutions. A semi-conductor is a material that is an insulator at zero temperature, but has a small band gap so that at T>0 some electrons migrate across the gap and can conduct in the next highest band. an insulator with a band gap below 2 ev is a semi-conductor. typical semi-conductors are silicon (1.1 ev) and germanium (0.7 ev). Semiconductor Theory A critical component in electronics is amplification, without which a large number of applications would not be possible. Electronic switching is related to amplification (think of switching as "all on" or "all off" - a two state amplifier). Being able to change state is critical to switching, and at the heart of that ability lie semiconductors. Semiconductors, as applied to electronic switching and amplification, are indispensible. The DIODE is the simplest example of a semiconductor application. It differs from other components (resistors, capacitors, transformers) in a key way: Current can only flow one way through a diode The key to this remarkable property is that the diode controls the flow of both negative and positive charge carriers. While it is true that the ions in a semiconductor lattice do not move, the net response to an electric field can be precisely the same as freely moving positive charges. These effective positive charge carriers are called HOLES. 2 of 7 03/30/ :19 PM

3 Holes In normal circuits, we learn about "conventional current" - where the negative charges moving against the electric field are the same as positive charges moving in the opposite direction. For most purposes, these two views are indistinguishable. However, this is not the same as "holes" in semiconductor theory. In conventional current, you can tell the difference between negative and positive charge carriers using the Hall Effect (application of a magnetic field to the conductor). However, in semiconductors, the holes behave the same whether the field applied is electric or magnetic. The origin of holes is easily understood from our picture of bands and gaps. Consider an electron at the top of the valence band in a semiconductor (see slides). At temperatures above zero, there may be enough thermal energy to promote the electron across the gap, into the conduction band. This leaves a vacancy in a state behind in the valence band - a "hole". The newly promoted electron is free to move around in the conduction band, but the HOLE is also mobile in the conduction band. Holes "float". Seeking the lowest possible total energy at a given temperature, if a hole appears lower down in the valence band, electrons will "fall down" into the vacancy, which has the effect of moving the hole up the band to the top. (see slides) While valence electrons are not free, the hole - the unoccupied state - is free to move in the valence band just as an electron is free to move in the conduction band. Differences between holes and electrons: Holes seek higher energy states, electrons seek lower energy states. Holes are free to move in the valence band, while electrons are free to move in the conduction band. In moving around the band, the holes motion is in the opposite direction of an electron's motion Holes have an "effective mass" that differs from the electron mass. At the top of the band, a hole has a positive effective mass. This allows it to participate in conduction along with the electrons, as it can respond to an external force (an electric field, for instance). Holes in this position will 3 of 7 03/30/ :19 PM

4 move with the electric field, while conduction electrons will flow again the electric field. Holes and electrons BOTH contribute their own current. Intrinsic vs. Extrinsic Semiconductors These are intrinsic semiconductors that we have been describing - those with pure atomic structure which behave as semiconductors. Extrinsic semiconductors are created by "doping" the crystal - that is, adding impurities to the crystal whose net effect is to increase the number of charge carriers. The doping material either has a large majority of conduction electrons or valence holes, and gives MANY MORE charge carriers to the semiconductor than is available in the pure crystal. n-type extrinsic semiconductors typically dope an intrinsic semiconductor with phosphorous or arsenic, which are "pentavalent" - that is, they have 5 valence electrons. 5 typical doping: 1 in every 10 atoms is a dopant. the valence band in the intrinsic semiconductor is totally full Each impurity atom adds 1 additional electron, but not into the conduction band of the intrinsic semiconductor; each dopant adds new positive charge to the lattice, as well as negative charge. The net effect is to create a set of states just below the conduction band, called the DONOR STATES. These are NOT a new band, just a new set of states each containing one electron from one of the dopant atoms. At T=0, the additional elections sit in the donor states, about 0.05 ev below the conduction band At T>0, those electrons jump the gap and are now free to conduct in the conduction band. N-type gets it's name not just from the fact that additional electrons are added to the system, but also because the majority participants in conduction are electrons, not holes. p-type extrinsic semiconductors complimentary to the n-type. Add a trivalent atom to the intrinsic semiconductor, such as gallium or aluminum. the missing electrons, combined with the added positive charge of the dopant ions, alters the band structure of the intrinsic semiconductor slightly again. 4 of 7 03/30/ :19 PM

5 the result is that the unfilled states from the dopant are slightly ABOVE the valence band. They are ACCEPTOR STATES. Thermal excitation readily bumps electrons from the valence band to the acceptor states, leaving behind holes in the valence band which can conduct. p-type extrinsic semiconductors are characterized by the fact that VACANCIES in energy levels (holes) are the majority participants in conduction. Vacated donor states do NOT become holes (there is nothing to easily move into them - the lower gap is still large). There is, in both n-type and p-type extrinsic semiconductors, always some thermal excitation across the gap separating the valence and conduction bands. These create in each the "minority carriers" - in n-type, holes in the valence band that conduct and in p-type electrons in the conduction band that conduct. However, the donor and acceptor states create far more of those specific carriers, and are the "majority carriers." What makes doped semiconductors so useful is the control that we can exercise over their exact electrical properties via impurity type and concentration. Example: the Diode In a diode, the distribution of charge carriers brings about a physical asymmetry in the material that allows current to flow in one direction but NOT in the other. The diode is a sandwich of p-type and n-type extrinsic semiconductor - a "p-n junction" is the area of contact between them. Behaviors: when the diode is FORWARD BIASED, electrons are injected into the n-type semiconductor, while its existing electrons conduct out the other side into the p-type semiconductor, filling the holes there. On the p-type side, holes are added into one side and combine with electrons at the junction. The net flow of electrons into n-type and the net flow of holes into p-type causes a sustained current through the circuit. when the voltage is inverted and the diode is REVERSE-BIASED, now holes are draw away from the junction and electrons are drawn away from the junction. The junction becomes a region depleted of charge carriers, and no current can flow through the system. 5 of 7 03/30/ :19 PM

6 At the boundary between the two (the junction), the bands don't line up. When the semiconductors are brought together, it's like joining two columns of water of different height by opening a valve between them. They seek a common equilibrium level, and settle there. Likewise, at the junction electrons in the n-type and holes in the p-type semiconductor intermingle until they reach equilibrium - in this case, until the Fermi energy on each side of the junction is the same. This corresponds to the lining up of thje donor and acceptor energy levels, and now there will be no net flow of electrons and holes. When a voltage is applied (see slides), this causes the bands to move further apart at the region in-between is depleted of charge carriers even further (reverse bias) or to match up so that the bands on either side of the junction coincide (forward-bias). Minority carriers are always present, and even reversed biased the p-n junction has a tiny current due to this; but it's essentially zero for the purposes of most electronic applications. When electron-hole recombination occurs in the forward-biased case, energy is released as the electron leaves the conduction band for a hole in the valence band. This energy can result in heat, or if the design is tuned, in light (LED). QUESTION: what is the band gap in a red LED? ANSWER: red light has a wavelength of about 700 nm. E = h c=õ = 2:8 Â 10 À19 J = 1:8eV. Example: The Transistor A double sandwich of n-p-n doped semiconductor. The p-type is the base, the n-types are the emitter and the collection (they typically have different doping). The sandwich causes the emitter-base junction to be forward biased while the base-collector junction is reverse-biased. While the electrons entering the base are minority carriers there, and a small current leaves the bias output, the majority of electrons slide down into the conduction band of the collector, resulting in a huge current out the collector. emitter-collector current can be 100 times larger than the emitter-base current. This is the amplification, then. A small input signal (emitter-base) can be amplified into a large emitter-collector signal. (see slides) For their 1948 discovery of the transistory, John Bardeen, Walter Brattain, 6 of 7 03/30/ :19 PM

7 and William Shockley were awarded the 1956 Nobel prize in physics. 7 of 7 03/30/ :19 PM

### Semiconductors, diodes, transistors

Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

### Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

### The Diode. Diode Operation

The Diode The diode is a two terminal semiconductor device that allows current to flow in only one direction. It is constructed of a P and an N junction connected together. Diode Operation No current flows

### Theory of Transistors and Other Semiconductor Devices

Theory of Transistors and Other Semiconductor Devices 1. SEMICONDUCTORS 1.1. Metals and insulators 1.1.1. Conduction in metals Metals are filled with electrons. Many of these, typically one or two per

### Chapter No: 14 Chapter: Semiconductor Electronics: Materials, Devices And Simple Circuits (ONE MARK QUESTIONS)

Chapter No: 14 Chapter: Semiconductor Electronics: Materials, Devices And Simple Circuits (ONE MARK QUESTIONS) 1. What is an electronic device? It is a device in which controlled flow of electrons takes

### 05 Bipolar Junction Transistors (BJTs) basics

The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN

### 3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1

3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current

### Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW

Understanding the p-n Junction by Dr. Alistair Sproul Senior Lecturer in Photovoltaics The Key Centre for Photovoltaic Engineering, UNSW The p-n junction is the fundamental building block of the electronic

### Yrd. Doç. Dr. Aytaç Gören

H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

### Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

### Diodes and Transistors

Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

### The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

### Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations

ENEE 33, Spr. 09 Supplement I Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations Zeynep Dilli, Oct. 2008, rev. Mar 2009 This is a supplement

### Electrical Properties

Electrical Properties Outline of this Topic 1. Basic laws and electrical properties of metals 2. Band theory of solids: metals, semiconductors and insulators 3. Electrical properties of semiconductors

### BASIC ELECTRONICS TRANSISTOR THEORY. December 2011

AM 5-204 BASIC ELECTRONICS TRANSISTOR THEORY December 2011 DISTRIBUTION RESTRICTION: Approved for Public Release. Distribution is unlimited. DEPARTMENT OF THE ARMY MILITARY AUXILIARY RADIO SYSTEM FORT

### AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between

### Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

### David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas. The PN Junction

David L. Senasack June, 2006 Dale Jackson Career Center, Lewisville Texas The PN Junction Objectives: Upon the completion of this unit, the student will be able to; name the two categories of integrated

### Semiconductor Detectors Calorimetry and Tracking with High Precision

Semiconductor Detectors Calorimetry and Tracking with High Precision Applications 1. Photon spectroscopy with high energy resolution. Vertex detection with high spatial resolution 3. Energy measurement

### Amplifier Teaching Aid

Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar

### Introduction to CMOS VLSI Design

Introduction to CMOS VLSI esign Slides adapted from: N. Weste,. Harris, CMOS VLSI esign, Addison-Wesley, 3/e, 24 Introduction Integrated Circuits: many transistors on one chip Very Large Scale Integration

### CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

### Lecture 2 Semiconductor Physics (I)

Lecture 2 Semiconductor Physics (I) Outline Intrinsic bond model : electrons and holes Generation and recombination Intrinsic semiconductor Doping: Extrinsic semiconductor Charge Neutrality Reading Assignment:

### Lecture 2 - Semiconductor Physics (I) September 13, 2005

6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

### HIGHER PHYSICS. Electricity. GWC Revised Higher Physics 12/13.

HIGHER PHYSICS Electricity http://blog.enn.com/?p=481 1 GWC Revised Higher Physics 12/13 HIGHER PHYSICS a) MONITORING and MEASURING A.C. Can you talk about: a.c. as a current which changes direction and

### Characteristic curves of a solar cell

Related Topics Semi-conductor, p-n junction, energy-band diagram, Fermi characteristic energy level, diffusion potential, internal resistance, efficiency, photo-conductive effect, acceptors, donors, valence

### Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Simple example, but still complicated... Photosynthesis is

### Semiconductor I. Semiconductors. germanium. silicon

Basic Electronics Semiconductor I Materials that permit flow of electrons are called conductors (e.g., gold, silver, copper, etc.). Materials that block flow of electrons are called insulators (e.g., rubber,

### Semiconductor Physics

10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

### Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

### Lecture-6 Bipolar Junction Transistors (BJT) Part-I Continued

1 Lecture-6 Bipolar Junction Transistors (BJT) Part-I Continued 1. Modes of Operation: Each junction in the BJT can be forward biased, or reverse-biased independently. Thus we have four modes of operation

### ENEE 313, Spr 09 Midterm II Solution

ENEE 313, Spr 09 Midterm II Solution PART I DRIFT AND DIFFUSION, 30 pts 1. We have a silicon sample with non-uniform doping. The sample is 200 µm long: In the figure, L = 200 µm= 0.02 cm. At the x = 0

### CMOS Digital Circuits

CMOS Digital Circuits Types of Digital Circuits Combinational The value of the outputs at any time t depends only on the combination of the values applied at the inputs at time t (the system has no memory)

### Lecture 17. Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11.

Lecture 17 Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11.1 Looks sort of like two diodes back to back pnp mnemonic: Pouring N Pot

### Chapter 18 魏 茂 國. Materials Science and Engineering

Chapter 18 Introduction Ohm s law Electrical conductivity Electronic and ionic conduction Energy band structures in solids Conduction in terms of band and atomic bonding models Electronic mobility Electrical

### Lecture 9: Limiting and Clamping Diode Circuits. Voltage Doubler. Special Diode Types.

Whites, EE 320 Lecture 9 Page 1 of 8 Lecture 9: Limiting and Clamping Diode Circuits. Voltage Doubler. Special Diode Types. We ll finish up our discussion of diodes in this lecture by consider a few more

### Special-Purpose Diodes

7 Special-Purpose Diodes 7.1 Zener Diode 7.2 Light-Emitting Diode (LED) 7.3 LED Voltage and Current 7.4 Advantages of LED 7.5 Multicolour LEDs 7.6 Applications of LEDs 7.7 Photo-diode 7.8 Photo-diode operation

### ELECTRICAL CONDUCTION

Chapter 12: Electrical Properties Learning Objectives... How are electrical conductance and resistance characterized? What are the physical phenomena that distinguish conductors, semiconductors, and insulators?

### INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11

INSTITUTE FOR APPIED PHYSICS Physical Practice for earners of Engineering sciences Hamburg University, Jungiusstraße 11 Hall effect 1 Goal Characteristic data of a test semiconductor (Germanium) should

### Introduction to Transistors

Introduction to Transistors Course No: E04-010 Credit: 4 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

### Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

### CHAPTER - 45 SEMICONDUCTOR AND SEMICONDUCTOR DEVICES

1. f = 101 kg/m, V = 1 m CHAPTER - 45 SEMCONDUCTOR AND SEMCONDUCTOR DEVCES m = fv = 101 1 = 101 kg No.of atoms = 101 10 6 10 = 64.6 10 6. a) Total no.of states = N = 64.6 10 6 = 58.5 = 5. 10 8 10 6 b)

### COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

### VIII.4. Field Effect Transistors

Field Effect Transistors (FETs) utilize a conductive channel whose resistance is controlled by an applied potential. 1. Junction Field Effect Transistor (JFET) In JFETs a conducting channel is formed of

### Chapter 1. Semiconductors

THE ELECTRON IN ELECTRIC FIELDS Semiconductors If we were to take two parallel plates and connect a voltage source across them as shown in Figure 1, an electric field would be set up between the plates.

### Analog Electronics. Module 1: Semiconductor Diodes

Analog Electronics s PREPARED BY Academic Services Unit August 2011 Applied Technology High Schools, 2011 s Module Objectives Upon successful completion of this module, students should be able to: 1. Identify

### Figure 1. Diode circuit model

Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

### Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor

### BJT Characteristics and Amplifiers

BJT Characteristics and Amplifiers Matthew Beckler beck0778@umn.edu EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor

### Nanoparticle Enhanced Thin Film Solar Cells

Nanoparticle Enhanced Thin Film Solar Cells Solar Cells Solar cells convert visible light to electricity. It is one of the clean sources of energy. In theory a 100 square mile area covered with solar panels

### Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

### Bipolar and Field Effect Transistors

Bipolar and Field Effect Transistors Learning Outcomes This chapter deals with the construction and operating characteristics of transistors, depending upon how they are connected into a circuit. The basics

### 3.003 Lab 4 Simulation of Solar Cells

Mar. 9, 2010 Due Mar. 29, 2010 3.003 Lab 4 Simulation of Solar Cells Objective: To design a silicon solar cell by simulation. The design parameters to be varied in this lab are doping levels of the substrate

### Semiconductor Fundamentals

Student Workbook 91564-00 Edition 4 Ê>{XHèRÆ3UË 3091564000503 FOURTH EDITION Second Printing, March 2005 Copyright March, 2003 Lab-Volt Systems, Inc. All rights reserved. No part of this publication may

### CHAPTER 1: Semiconductor Materials & Physics

Chapter 1 1 CHAPTER 1: Semiconductor Materials & Physics In this chapter, the basic properties of semiconductors and microelectronic devices are discussed. 1.1 Semiconductor Materials Solid-state materials

### FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

### Lab 1 Diode Characteristics

Lab 1 Diode Characteristics Purpose The purpose of this lab is to study the characteristics of the diode. Some of the characteristics that will be investigated are the I-V curve and the rectification properties.

### Measuring Silicon and Germanium Band Gaps using Diode Thermometers

Measuring Silicon and Germanium Band Gaps using Diode Thermometers Haris Amin Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated: April 11, 2007) This paper reports the band gaps of

### W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören

W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors

### Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:

### Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

### Conduction in Semiconductors

Chapter 1 Conduction in Semiconductors 1.1 Introduction All solid-state devices, e.g. diodes and transistors, are fabricated from materials known as semiconductors. In order to understand the operation

### Bipolar Transistor Basics

Bipolar Transistor Basics In the Diode tutorials we saw that simple diodes are made up from two pieces of semiconductor material, either silicon or germanium to form a simple PN-junction and we also learnt

### FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

### GenTech Practice Questions

GenTech Practice Questions Basic Electronics Test: This test will assess your knowledge of and ability to apply the principles of Basic Electronics. This test is comprised of 90 questions in the following

### Diodes. 1 Introduction 1 1.1 Diode equation... 2 1.1.1 Reverse Bias... 2 1.1.2 Forward Bias... 2 1.2 General Diode Specifications...

Diodes Contents 1 Introduction 1 1.1 Diode equation................................... 2 1.1.1 Reverse Bias................................ 2 1.1.2 Forward Bias................................ 2 1.2 General

### Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

### Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 40 (Field Effect Transistor (FET) (Types, JFET, MOSFET, Complementary MOSFET)

### Bipolar Junction Transistor Basics

by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical

### Semiconductor research leading to the point contact transistor

JO HN BA RDEEN Semiconductor research leading to the point contact transistor Nobel Lecture, December 11, 1956 In this lecture we shall attempt to describe the ideas and experiments which led to the discovery

### Fundamentals of Microelectronics

Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS

### CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor Study the characteristics of energy bands as a function of applied voltage in the metal oxide semiconductor structure known

### TRANSISTOR AMPLIFIERS AET 8. First Transistor developed at Bell Labs on December 16, 1947

AET 8 First Transistor developed at Bell Labs on December 16, 1947 Objective 1a Identify Bipolar Transistor Amplifier Operating Principles Overview (1) Dynamic Operation (2) Configurations (3) Common Emitter

### Unit 12 Practice Test

Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

### Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

### Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

### Project 2B Building a Solar Cell (2): Solar Cell Performance

April. 15, 2010 Due April. 29, 2010 Project 2B Building a Solar Cell (2): Solar Cell Performance Objective: In this project we are going to experimentally measure the I-V characteristics, energy conversion

### Gamma and X-Ray Detection

Gamma and X-Ray Detection DETECTOR OVERVIEW The kinds of detectors commonly used can be categorized as: a. Gas-filled Detectors b. Scintillation Detectors c. Semiconductor Detectors The choice of a particular

### FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights

PAGE 1 FEBRUARY 2009 Schottky Diodes by Rick Cory, Skyworks Solutions, Inc. Introduction Schottky diodes have been used for several decades as the key elements in frequency mixer and RF power detector

### The three terminals of the BJT are called the Base (B), the Collector (C) and the Emitter (E).

Transistors: ipolar Junction Transistors (JT) General configuration and definitions The transistor is the main building block element of electronics. t is a semiconductor device and it comes in two general

### SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

### The MOSFET Transistor

The MOSFET Transistor The basic active component on all silicon chips is the MOSFET Metal Oxide Semiconductor Field Effect Transistor Schematic symbol G Gate S Source D Drain The voltage on the gate controls

### Optical Electronics RBG LED and the colours of the rainbow

Optical Electronics RBG LED and the colours of the rainbow Introduction Aidan Cameron External Workshops Engineer, School of Microelectronic Engineering, Griffith University David V. Thiel Head, School

### ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,

### THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259

DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.

### Solar Cell Parameters and Equivalent Circuit

9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit

### The two simplest atoms. Electron shells and Orbits. Electron shells and Orbits

EET140/ET1 Electronics Semiconductors and Diodes Electrical and Telecommunications Engineering Technology Department Prepared by textbook based on Electronics Devices by Floyd, Prentice Hall, 7 th edition.

### Forward-Active Terminal Currents

Forward-Active Terminal urrents ollector current: (electron diffusion current density) x (emitter area) diff = ÐJ n A = qd n n po A V V th ------------------------------ e W (why minus sign? is by def.

### Spring 2002 Dawn Hettelsater, Yan Zhang and Ali Shakouri, 05/09/2002

University of California at Santa Cruz Jack Baskin School of Engineering Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 7: Solar Cells Spring 2002 Dawn Hettelsater, Yan

### The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) OBJECTIVES The objective of this lab is to help you assemble and test a common source amplifier circuit that uses a Metal-Oxide-Semiconductor

### The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

### From Nano-Electronics and Photonics to Renewable Energy

From Nano-Electronics and Photonics to Renewable Energy Tom Smy Department of Electronics, Carleton University Questions are welcome! OUTLINE Introduction: to EE and Engineering Physics Renewable Energy

### Electronics Field-effect transistors

Electronics Field-effect transistors Prof. Márta Rencz, Gergely Nagy BME DED October 7, 2013 The basics of field-effect transistors The operation of field-effect transistors is based on ability of controlling

### Semiconductor p-n junction diodes

Semiconductor p-n junction diodes p n p-n junction formation p-type material Semiconductor material doped with acceptors. Material has high hole concentration Concentration of free electrons in p-type

### Solar Energy Discovery Lab

Solar Energy Discovery Lab Objective Set up circuits with solar cells in series and parallel and analyze the resulting characteristics. Introduction A photovoltaic solar cell converts radiant (solar) energy

### BIPOLAR JUNCTION TRANSISTORS

CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back

### Transistor Models. ampel

Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other

### Junction FETs. FETs. Enhancement Not Possible. n p n p n p

A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley