x 2 = (ct) 2 +1, x 2 = (ct ) 2 +1, Major disadvantage of geometric approach: scaling according to hyperbolic laws.

Size: px
Start display at page:

Download "x 2 = (ct) 2 +1, x 2 = (ct ) 2 +1, Major disadvantage of geometric approach: scaling according to hyperbolic laws."

Transcription

1 Scaling of axes The Lorentz transformation S S changes the scale of the axes. Choose a length unit by s 2 = 1. Then x 2 = (ct) 2 +1, ie hyperbola, all points on it have length s 2 = 1. In particular t = 0 cuts x-axis at x = 1. But as s 2 is a Lorentz invariant, then this is equivalent to t = 0 cuts x -axis at x = 1. Analogously s 2 = 1 gives the time unit x 2 = (ct ) 2 +1, (ct) 2 = x 2 +1 (ct ) 2 = x 2 +1, again a hyperbola x = 0 gives time unit in S frame; x = 0 in S frame. (Not shown on plot.) Major disadvantage of geometric approach: scaling according to hyperbolic laws. 93

2 Chapter 8 Covariant formulation of Special Relativity Must be possible to write laws of physics in a covariant form ie one that under Lorentz transformations remains form invariant The mathematics we need is tensor analyis (in four dimensions), as we shall know how they transform under (Lorentz) transformations. So form invariant equations tensor equations Develop in analogy with our three dimensional experience. 8.1 Covariant and Contravariant Tensors Three dimensional rotations leave r 2 = x 2 1 +x2 2 +x2 3 invariant; Lorentz transformations of the coordinates leaves invariant. The sign is a problem. Define (x 0, x), where x 0 = ct, s 2 = x 2 0 (x2 1 +x2 2 +x2 3 ), x i = (ict,x 1,x 2,x 3 ) i Then Euclidean metric (irrelevant overall sign) and Lorentz transformations become cosθ sinθ 0 0 x i = l ij x j, with L = sinθ cosθ

3 So ict = ictcosθ +xsinθ x = ictsinθ+xcosθ So comparing gives cosθ = γ, sinθ = iγv/c, or iθ = φ, tanhφ = v c, (Again φ is the rapidity variable.) This makes Minkowski diagrams apparently look simpler(just rotations in a 4-dimensional Euclidean space), but eventually must return to t Modern approach is not to use this, but to use covariant/contravariant vector formalism because for General Relativity essential Quantum Field Theory already has an i which can easily get mixed up with the additional i here The disadvantage is that it is more complicated The three dimensional experience Orthogonal axes e2 x e1 e3 Orthogonal co-ordinate system: e i e j = δ ij. Co-ordinates x i are given by x = x i e i x i = e i x. Rotation to a new co-ordinate system, e i = l ip e p e i = l pi e p e p l pi. Vectors: three cpts transforming according to a i = l ipa p Tensors: (second rank) nine cpts transforming according to T ij = l ip l jq T pq. 95

4 Oblique axes e2 x e3 e1 Base vectors not orthogonal e i e j = g ij. Then x i and x i defined by x = x i e i, and x i = e i x, are different x i = e i x = e i (x j e j ) = e i e j x j = g ij x j x i. Consider an arbitrary transformation e i = β p i e p. Note the index position and spaces in β p i. The Einstein summation convention is now applied to summing over one upper and one lower index. Define inverse transformation as e i = e pα p i. Again note the index position and spaces in α p i. Then relation between α, β is given by where e i = (βp j e j )α p i = α p i β p j = δ j i e i = β p i ( e j αj p ) = β p i αj p = δj i, δ j i = { 1 if i = j 0 otherwise 96

5 (no need to worry about position of indices here). Then x i = e i x = β p i e p x or x i = β p i x p. Also x = x p e p = xp e p = x p ( e j αj p ) giving x j = x p α j p or x i = α i p xp. Can also find inverse from x i = α i p xp or β j i x i = β j i αi p xp = δ j p xp = x j or Note that we also have Raising and lowering indices x i = x j β i j. x x = (x i e i ) (x j e j ) = g ij x i x j x i x i x i x i. For any vector a the a i (where a = a i e i ) and a i (defined by e i a) are called contravariant or covariant components of a respectively. They are related by a i = g ij a j. We might wish to invert this equation. Define g ij by g ij g jk = δk i. Then g ij a j = g ij g jk a k = δk iak = a i or a i = g ij a j. Then we can define e i = g ij e j, so a = a i e i = g ij a j e i = a i e i, ie g ij lowers indices and g ij raises indices. Transformation properties of g ij are given by g ij = e i e j = (β p i e p) (β q j e q), ie g ij = β p i β q j g pq. 97

6 Reciprocal basis As e i e j = (g ik e k ) e j = g ik g kj = δ i j, we can find an explicit form for e i the reciprocal basis. Now e 1 must be to e 2, e 3, so e 1 = c e 2 e 3. Now e 1 e 1 = 1 = c e 1 ( e 2 e 3 ) which yields c. Similarly for the others, so e 1 = e 2 e 3 e 1 ( e 2 e 3 ), e2 = e 3 e 1 e 1 ( e 2 e 3 ), e3 = e 1 e 2 e 1 ( e 2 e 3 ). Now e i = g ij e j gives e i e j = g ik e k e j = g ik δ j k = gij, and hence g ip = ( e j e k ) ( e q e r ) e 1 ( e 2 e 3 ) 2. where ijk and pqr are cyclic. Compare to the simplicity of g ip = e i e p. Note that obviously for an orthonormal basis, e 1 = e 1 etc... Example Define an oblique co-ordinate system by e 1 = 2 e x +3 e y + e z e 2 = e x 3 e y + e z e 3 = e y + e z. Find the expansion of a = 5 e x +6 e y +7 e z in this basis. From above the reciprocal basis is given by so e 1 = 1 6 (2 e x + e y e z ) e 2 = 1 6 (2 e x 2 e y +2 e z ) e 3 = 1 6 ( 4 e x + e y +5 e z ), a 1 = e 1 a = 3/2, a 2 = e 2 a = 2, a 3 = e 3 a = 7/2, and a 1 e 1 +a 2 e 2 +a 3 e 3 = 5 e x +6 e y +7 e z = a as expected. 98

7 8.1.2 Generalisation to four dimensions Straightforward, using previously developed machinery. In preparation for future use we introduce the conventions Greek indices run over spatial and time co-ordinates, ie 0, 1, 2, 3 Latin indices run over spatial co-ordinates, ie 1, 2, 3 Scalars A scalar is any quantity specified by a single number at each point, which has the same value in all co-ordinate systems. Vectors, tensors Any quantity specified specified by components such that a µ = α µ ν aν contravariant vector a µ = β ν µ a ν covariant vector with Second rank tensor: T µν = α µ λ αν ρt λρ T µν = βµ λ βν ρ T λρ T µ ν = α µ λ β ν ρ T λ ρ contravariant tensor covariant tensor mixed tensor α λ µ β ν λ = δν µ, β λ µ αν λ = δν µ. Observations If φ is invariant, then φ/ x µ is a covariant vector, for [x ν = x µ β ν µ ] ( φ x µ ) = φ φ x ν = x µ x ν x = β ν µ µ δ µ ν is a mixed (isotropic) tensor for δµ ν = β λ ν αµ ρ δρ λ φ x. ν Scalar products in form a b a µ b µ are invariant (a µ b µ, a µ b µ not invariants, will not arise) More generally, any vector or tensor combination has repeated indices in upper and lower positions 99

8 Can write in a matrix notation, for example T µν = (αtα T ) µν Quotient rule: If a set of components T µν is such that for all covariant vectors a µ the product T µν a ν is a contravariant vector then T µν is a tensor. The metric The co-ordinate transformation leaves invariant ds 2 = g µν dx µ dx ν. g µν is now a (symmetric) tensor called the metric tensor. Use g µν and g µν to raise/lower indices (as before). 8.2 The Special Relativity case Define 4-vectors and x µ = (x 0,x 1,x 2,x 3 ) (ct,x,y,z) (ct, r), ds 2 = c 2 dt 2 dx 2 dy 2 dz 2 = η µν dx µ dx ν, where instead of the more general symbol g µν we use η µν, the Minkowskian or West Coast metric with η µν = = ηµν The other metric in common use is diag( 1,1,1,1), the East Coast metric, so be careful. [a strong opinion topic] As η µν is the same in all frames, then we have the further constraint giving ds 2 = η µν dx µ dx ν = η µν (α µ λ dxλ )(α ν ρ dxρ ) η µν dx µ dx ν, η µν α µ λ αν ρ = η λρ = α λ ν α ν ρ = δ λ ρ. Thus comparing with previous result gives β = α Λ say. So we have η µν Λ µ λ Λν ρ = η λρ, as fundamental constraint on Lorentz transformations Λ. 100

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited

The Matrix Elements of a 3 3 Orthogonal Matrix Revisited Physics 116A Winter 2011 The Matrix Elements of a 3 3 Orthogonal Matrix Revisited 1. Introduction In a class handout entitled, Three-Dimensional Proper and Improper Rotation Matrices, I provided a derivation

More information

Special Theory of Relativity

Special Theory of Relativity June 1, 2010 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 11 Introduction Einstein s theory of special relativity is based on the assumption (which might be a deep-rooted superstition

More information

A Primer on Index Notation

A Primer on Index Notation A Primer on John Crimaldi August 28, 2006 1. Index versus Index notation (a.k.a. Cartesian notation) is a powerful tool for manipulating multidimensional equations. However, there are times when the more

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Elasticity Theory Basics

Elasticity Theory Basics G22.3033-002: Topics in Computer Graphics: Lecture #7 Geometric Modeling New York University Elasticity Theory Basics Lecture #7: 20 October 2003 Lecturer: Denis Zorin Scribe: Adrian Secord, Yotam Gingold

More information

Lecture L3 - Vectors, Matrices and Coordinate Transformations

Lecture L3 - Vectors, Matrices and Coordinate Transformations S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between

More information

Matrix Differentiation

Matrix Differentiation 1 Introduction Matrix Differentiation ( and some other stuff ) Randal J. Barnes Department of Civil Engineering, University of Minnesota Minneapolis, Minnesota, USA Throughout this presentation I have

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus

Physics 235 Chapter 1. Chapter 1 Matrices, Vectors, and Vector Calculus Chapter 1 Matrices, Vectors, and Vector Calculus In this chapter, we will focus on the mathematical tools required for the course. The main concepts that will be covered are: Coordinate transformations

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary

More information

State of Stress at Point

State of Stress at Point State of Stress at Point Einstein Notation The basic idea of Einstein notation is that a covector and a vector can form a scalar: This is typically written as an explicit sum: According to this convention,

More information

1 Determinants and the Solvability of Linear Systems

1 Determinants and the Solvability of Linear Systems 1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely side-stepped

More information

Rotation Matrices and Homogeneous Transformations

Rotation Matrices and Homogeneous Transformations Rotation Matrices and Homogeneous Transformations A coordinate frame in an n-dimensional space is defined by n mutually orthogonal unit vectors. In particular, for a two-dimensional (2D) space, i.e., n

More information

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances

Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances Torgerson s Classical MDS derivation: 1: Determining Coordinates from Euclidean Distances It is possible to construct a matrix X of Cartesian coordinates of points in Euclidean space when we know the Euclidean

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Introduction to Tensor Calculus for General Relativity

Introduction to Tensor Calculus for General Relativity Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 1999 Introduction to Tensor Calculus for General Relativity c 1999 Edmund Bertschinger. All rights reserved. 1 Introduction

More information

Introduction to Tensor Calculus

Introduction to Tensor Calculus Introduction to Tensor Calculus arxiv:1603.01660v3 [math.ho] 23 May 2016 Taha Sochi May 25, 2016 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT. Email: t.sochi@ucl.ac.uk.

More information

Inner Product Spaces

Inner Product Spaces Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and

More information

Brief Review of Tensors

Brief Review of Tensors Appendix A Brief Review of Tensors A1 Introductory Remarks In the study of particle mechanics and the mechanics of solid rigid bodies vector notation provides a convenient means for describing many physical

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

More information

Figure 1.1 Vector A and Vector F

Figure 1.1 Vector A and Vector F CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

More information

Section 1.1. Introduction to R n

Section 1.1. Introduction to R n The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Section 6.1 - Inner Products and Norms

Section 6.1 - Inner Products and Norms Section 6.1 - Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008 This chapter is available free to all individuals, on understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Second Rank Tensor Field Theory

Second Rank Tensor Field Theory Physics 411 Lecture 25 Second Rank Tensor Field Theory Lecture 25 Physics 411 Classical Mechanics II October 31st, 2007 We have done the warm-up: E&M. The first rank tensor field theory we developed last

More information

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0.

x1 x 2 x 3 y 1 y 2 y 3 x 1 y 2 x 2 y 1 0. Cross product 1 Chapter 7 Cross product We are getting ready to study integration in several variables. Until now we have been doing only differential calculus. One outcome of this study will be our ability

More information

CBE 6333, R. Levicky 1. Tensor Notation.

CBE 6333, R. Levicky 1. Tensor Notation. CBE 6333, R. Levicky 1 Tensor Notation. Engineers and scientists find it useful to have a general terminology to indicate how many directions are associated with a physical quantity such as temperature

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions.

13 MATH FACTS 101. 2 a = 1. 7. The elements of a vector have a graphical interpretation, which is particularly easy to see in two or three dimensions. 3 MATH FACTS 0 3 MATH FACTS 3. Vectors 3.. Definition We use the overhead arrow to denote a column vector, i.e., a linear segment with a direction. For example, in three-space, we write a vector in terms

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

CBE 6333, R. Levicky 1 Differential Balance Equations

CBE 6333, R. Levicky 1 Differential Balance Equations CBE 6333, R. Levicky 1 Differential Balance Equations We have previously derived integral balances for mass, momentum, and energy for a control volume. The control volume was assumed to be some large object,

More information

Vectors and Index Notation

Vectors and Index Notation Vectors and Index Notation Stephen R. Addison January 12, 2004 1 Basic Vector Review 1.1 Unit Vectors We will denote a unit vector with a superscript caret, thus â denotes a unit vector. â â = 1 If x is

More information

Structure of the Root Spaces for Simple Lie Algebras

Structure of the Root Spaces for Simple Lie Algebras Structure of the Root Spaces for Simple Lie Algebras I. Introduction A Cartan subalgebra, H, of a Lie algebra, G, is a subalgebra, H G, such that a. H is nilpotent, i.e., there is some n such that (H)

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433

1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Stress & Strain: A review xx yz zz zx zy xy xz yx yy xx yy zz 1 of 79 Erik Eberhardt UBC Geological Engineering EOSC 433 Disclaimer before beginning your problem assignment: Pick up and compare any set

More information

Chapter 9 Unitary Groups and SU(N)

Chapter 9 Unitary Groups and SU(N) Chapter 9 Unitary Groups and SU(N) The irreducible representations of SO(3) are appropriate for describing the degeneracies of states of quantum mechanical systems which have rotational symmetry in three

More information

Continuous Groups, Lie Groups, and Lie Algebras

Continuous Groups, Lie Groups, and Lie Algebras Chapter 7 Continuous Groups, Lie Groups, and Lie Algebras Zeno was concerned with three problems... These are the problem of the infinitesimal, the infinite, and continuity... Bertrand Russell The groups

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

2 Session Two - Complex Numbers and Vectors

2 Session Two - Complex Numbers and Vectors PH2011 Physics 2A Maths Revision - Session 2: Complex Numbers and Vectors 1 2 Session Two - Complex Numbers and Vectors 2.1 What is a Complex Number? The material on complex numbers should be familiar

More information

Unit 3 (Review of) Language of Stress/Strain Analysis

Unit 3 (Review of) Language of Stress/Strain Analysis Unit 3 (Review of) Language of Stress/Strain Analysis Readings: B, M, P A.2, A.3, A.6 Rivello 2.1, 2.2 T & G Ch. 1 (especially 1.7) Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013

Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013 Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2016) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Matrix Representations of Linear Transformations and Changes of Coordinates

Matrix Representations of Linear Transformations and Changes of Coordinates Matrix Representations of Linear Transformations and Changes of Coordinates 01 Subspaces and Bases 011 Definitions A subspace V of R n is a subset of R n that contains the zero element and is closed under

More information

Inner Product Spaces and Orthogonality

Inner Product Spaces and Orthogonality Inner Product Spaces and Orthogonality week 3-4 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

How To Understand The Dynamics Of A Multibody System

How To Understand The Dynamics Of A Multibody System 4 Dynamic Analysis. Mass Matrices and External Forces The formulation of the inertia and external forces appearing at any of the elements of a multibody system, in terms of the dependent coordinates that

More information

Inner product. Definition of inner product

Inner product. Definition of inner product Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Computer Graphics Labs

Computer Graphics Labs Computer Graphics Labs Abel J. P. Gomes LAB. 2 Department of Computer Science and Engineering University of Beira Interior Portugal 2011 Copyright 2009-2011 All rights reserved. LAB. 2 1. Learning goals

More information

ME 115(b): Solution to Homework #1

ME 115(b): Solution to Homework #1 ME 115(b): Solution to Homework #1 Solution to Problem #1: To construct the hybrid Jacobian for a manipulator, you could either construct the body Jacobian, JST b, and then use the body-to-hybrid velocity

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

[1] Diagonal factorization

[1] Diagonal factorization 8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:

More information

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu)

6. Vectors. 1 2009-2016 Scott Surgent (surgent@asu.edu) 6. Vectors For purposes of applications in calculus and physics, a vector has both a direction and a magnitude (length), and is usually represented as an arrow. The start of the arrow is the vector s foot,

More information

Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

More information

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1

ASEN 3112 - Structures. MDOF Dynamic Systems. ASEN 3112 Lecture 1 Slide 1 19 MDOF Dynamic Systems ASEN 3112 Lecture 1 Slide 1 A Two-DOF Mass-Spring-Dashpot Dynamic System Consider the lumped-parameter, mass-spring-dashpot dynamic system shown in the Figure. It has two point

More information

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation

CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in

More information

CS3220 Lecture Notes: QR factorization and orthogonal transformations

CS3220 Lecture Notes: QR factorization and orthogonal transformations CS3220 Lecture Notes: QR factorization and orthogonal transformations Steve Marschner Cornell University 11 March 2009 In this lecture I ll talk about orthogonal matrices and their properties, discuss

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi

Geometry of Vectors. 1 Cartesian Coordinates. Carlo Tomasi Geometry of Vectors Carlo Tomasi This note explores the geometric meaning of norm, inner product, orthogonality, and projection for vectors. For vectors in three-dimensional space, we also examine the

More information

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices.

3. Let A and B be two n n orthogonal matrices. Then prove that AB and BA are both orthogonal matrices. Prove a similar result for unitary matrices. Exercise 1 1. Let A be an n n orthogonal matrix. Then prove that (a) the rows of A form an orthonormal basis of R n. (b) the columns of A form an orthonormal basis of R n. (c) for any two vectors x,y R

More information

Linear Algebra: Vectors

Linear Algebra: Vectors A Linear Algebra: Vectors A Appendix A: LINEAR ALGEBRA: VECTORS TABLE OF CONTENTS Page A Motivation A 3 A2 Vectors A 3 A2 Notational Conventions A 4 A22 Visualization A 5 A23 Special Vectors A 5 A3 Vector

More information

Lecture 3: Coordinate Systems and Transformations

Lecture 3: Coordinate Systems and Transformations Lecture 3: Coordinate Systems and Transformations Topics: 1. Coordinate systems and frames 2. Change of frames 3. Affine transformations 4. Rotation, translation, scaling, and shear 5. Rotation about an

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Lecture notes on linear algebra

Lecture notes on linear algebra Lecture notes on linear algebra David Lerner Department of Mathematics University of Kansas These are notes of a course given in Fall, 2007 and 2008 to the Honors sections of our elementary linear algebra

More information

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS.

THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS. THE ELECTROMAGNETIC FIELD DUE TO THE ELECTRONS 367 Proceedings of the London Mathematical Society Vol 1 1904 p 367-37 (Retyped for readability with same page breaks) ON AN EXPRESSION OF THE ELECTROMAGNETIC

More information

3 Orthogonal Vectors and Matrices

3 Orthogonal Vectors and Matrices 3 Orthogonal Vectors and Matrices The linear algebra portion of this course focuses on three matrix factorizations: QR factorization, singular valued decomposition (SVD), and LU factorization The first

More information

A linear algebraic method for pricing temporary life annuities

A linear algebraic method for pricing temporary life annuities A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics

Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree of PhD of Engineering in Informatics INTERNATIONAL BLACK SEA UNIVERSITY COMPUTER TECHNOLOGIES AND ENGINEERING FACULTY ELABORATION OF AN ALGORITHM OF DETECTING TESTS DIMENSIONALITY Mehtap Ergüven Abstract of Ph.D. Dissertation for the degree

More information

Lecture 2: Homogeneous Coordinates, Lines and Conics

Lecture 2: Homogeneous Coordinates, Lines and Conics Lecture 2: Homogeneous Coordinates, Lines and Conics 1 Homogeneous Coordinates In Lecture 1 we derived the camera equations λx = P X, (1) where x = (x 1, x 2, 1), X = (X 1, X 2, X 3, 1) and P is a 3 4

More information

α = u v. In other words, Orthogonal Projection

α = u v. In other words, Orthogonal Projection Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v

More information

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix

On Motion of Robot End-Effector using the Curvature Theory of Timelike Ruled Surfaces with Timelike Directrix Malaysian Journal of Mathematical Sciences 8(2): 89-204 (204) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homepage: http://einspem.upm.edu.my/journal On Motion of Robot End-Effector using the Curvature

More information

Time Ordered Perturbation Theory

Time Ordered Perturbation Theory Michael Dine Department of Physics University of California, Santa Cruz October 2013 Quantization of the Free Electromagnetic Field We have so far quantized the free scalar field and the free Dirac field.

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A. June 2012 Introduction to SME and Scattering Theory Don Colladay New College of Florida Sarasota, FL, 34243, U.S.A. This lecture was given at the IUCSS summer school during June of 2012. It contains a

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Foundations of Mathematical Physics: Vectors, Tensors and Fields

Foundations of Mathematical Physics: Vectors, Tensors and Fields Foundations of Mathematical Physics: Vectors, Tensors and Fields 29 21 John Peacock www.roe.ac.uk/japwww/teaching/vtf.html Textbooks The standard recommended text for this course (and later years) is Riley,

More information

Teaching Electromagnetic Field Theory Using Differential Forms

Teaching Electromagnetic Field Theory Using Differential Forms IEEE TRANSACTIONS ON EDUCATION, VOL. 40, NO. 1, FEBRUARY 1997 53 Teaching Electromagnetic Field Theory Using Differential Forms Karl F. Warnick, Richard H. Selfridge, Member, IEEE, and David V. Arnold

More information

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6

Chapter 7. Matrices. Definition. An m n matrix is an array of numbers set out in m rows and n columns. Examples. ( 1 1 5 2 0 6 Chapter 7 Matrices Definition An m n matrix is an array of numbers set out in m rows and n columns Examples (i ( 1 1 5 2 0 6 has 2 rows and 3 columns and so it is a 2 3 matrix (ii 1 0 7 1 2 3 3 1 is a

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics Basilio Bona DAUIN-Politecnico di Torino 2009 Basilio Bona (DAUIN-Politecnico di Torino) Dynamics 2009 1 / 30 Dynamics - Introduction In order to determine the dynamics of a manipulator, it is

More information

The Hyperbolic Number Plane

The Hyperbolic Number Plane The Hyperbolic Number Plane Garret Sobczyk Universidad de las Americas email: sobczyk@udlapvms.pue.udlap.mx INTRODUCTION. The complex numbers were grudgingly accepted by Renaissance mathematicians because

More information

APPENDIX D. VECTOR ANALYSIS 1. The following conventions are used in this appendix and throughout the book:

APPENDIX D. VECTOR ANALYSIS 1. The following conventions are used in this appendix and throughout the book: APPENDIX D. VECTOR ANALYSIS 1 Appendix D Vector Analysis The following conventions are used in this appendix and throughout the book: f, g, φ, ψ are scalar functions of x,t; A, B, C, D are vector functions

More information

9 MATRICES AND TRANSFORMATIONS

9 MATRICES AND TRANSFORMATIONS 9 MATRICES AND TRANSFORMATIONS Chapter 9 Matrices and Transformations Objectives After studying this chapter you should be able to handle matrix (and vector) algebra with confidence, and understand the

More information

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form

A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form Section 1.3 Matrix Products A linear combination is a sum of scalars times quantities. Such expressions arise quite frequently and have the form (scalar #1)(quantity #1) + (scalar #2)(quantity #2) +...

More information

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression

The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonal-diagonal-orthogonal type matrix decompositions Every

More information

1 Symmetries of regular polyhedra

1 Symmetries of regular polyhedra 1230, notes 5 1 Symmetries of regular polyhedra Symmetry groups Recall: Group axioms: Suppose that (G, ) is a group and a, b, c are elements of G. Then (i) a b G (ii) (a b) c = a (b c) (iii) There is an

More information

Spazi vettoriali e misure di similaritá

Spazi vettoriali e misure di similaritá Spazi vettoriali e misure di similaritá R. Basili Corso di Web Mining e Retrieval a.a. 2008-9 April 10, 2009 Outline Outline Spazi vettoriali a valori reali Operazioni tra vettori Indipendenza Lineare

More information

APPLICATIONS. are symmetric, but. are not.

APPLICATIONS. are symmetric, but. are not. CHAPTER III APPLICATIONS Real Symmetric Matrices The most common matrices we meet in applications are symmetric, that is, they are square matrices which are equal to their transposes In symbols, A t =

More information