A linear algebraic method for pricing temporary life annuities

Size: px
Start display at page:

Download "A linear algebraic method for pricing temporary life annuities"

Transcription

1 A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London

2 Outline Introduction Cash flow valuation problems in actuarial science

3 Outline Introduction Cash flow valuation problems in actuarial science 1. A linear algebraic approach to random cash flow pricing 2. Approximate solutions

4 Outline Introduction Cash flow valuation problems in actuarial science 1. A linear algebraic approach to random cash flow pricing 2. Approximate solutions Applications

5 Introduction: pricing an annuity With no mortality risk, the present value of cash flow f (e.g. purchased temporary life annuity) payable at a future times t i, at time t k,0 k < i < N is p k = N 1 i=k+1 f i i j=k+1 (1 + r j ) r i is one period interest rate in [t i 1,t i ).

6 Introduction: pricing an annuity With no mortality risk, the present value of cash flow f (e.g. purchased temporary life annuity) payable at a future times t i, at time t k,0 k < i < N is p k = N 1 i=k+1 f i i j=k+1 (1 + r j ) r i is one period interest rate in [t i 1,t i ). Example: f = 1, N = 1, p 0 = r 1.

7 Pricing an annuity (cont d) With no interest rate risk but with force of mortality risk, the same present value is p k = N 1 i=k+1 f i i j=k+1 (1 + λ j ). λ i is force of mortality in [t i 1,t i ) λ i = probability that annuitant alive at t i 1 survives till t i.

8 Pricing an annuity (cont d) With both interest rate and mortality risk, p k = N 1 i=k+1 f i i j=k+1 (1 + λ j)(1 + r j ), E(p k ) =? Conventional approaches: 1. Use affine term structure models for both interest rate and force of mortality; 2. More complex models, with simulation-based pricing.

9 Pricing an annuity (cont d) Our approach: 1. Expand p k into a polynomial in λ j, r j ; base an approximation of E(p k ) on the moments of λ j, r j. 2. E(r j ), E(r i r j ) are available (forward curve data - no parametric model needed). Forward mortality information may be available.

10 Pricing an annuity (cont d) Our approach: 1. Expand p k into a polynomial in λ j, r j ; base an approximation of E(p k ) on the moments of λ j, r j. 2. E(r j ), E(r i r j ) are available (forward curve data - no parametric model needed). Forward mortality information may be available. 3. Strong results on convergence of approximation + very good simulation results. 4. Extends to various contracts (mortgage insurance, annuities, f contingent on something else).

11 A linear algebraic approach With discounting factor θ i = r i + λ i + r i λ i, the relationship p 1 = f 2, running present value at t θ 2 p 0 = f 1 f θ 1 (1 + θ 2 )(1 + θ 1 ), = f 1 + p θ 1, may also be written as (1 + θ 2 )p 1 + 0p 0 = f 2, ( 1)p 1 + (1 + θ 1 )p 0 = f 1.

12 A linear algebraic approach (cont d) 1. Thus p = [ p 1 p 0 ] solves a system of linear equations ([ ] [ ]) θ2 0 p = f. 0 θ 1 2. If f are temporary life annuity payments, E(p 0 ) is the lump sum purchase price. 3. More involved formulation possible for insurance contracts; leads to random terms of both sides. 4. For future θ i unknown and random, we have a problem of inverting a structured matrix with random entries.

13 Random matrix inversion problem For a series of cash flows f i,0 i N, we can write f = (Q + Θ)p p is N vector of running present values, f is N vector of cash flows. with θ i = r i + λ i + r i λ i. [Q] ij = 1 if i = j = 1 if i = j + 1 = 0 otherwise [Θ] ij = θ N i+1 if i = j = 0 otherwise, This means the value of the series of cash flows at time t k is [(Q + Θ) 1 f] k.

14 Approximate inversion: scalar case For θ i = θ < 1, f 1 + θ = ( 1 θ + θ 2 ) f M ( θ) i f. i=0 A similar result holds if θ is bounded by unity, but random. Does an analogous expansion hold if θ i θ j,i j?

15 Convergent approximation to the solution: vector case Theorem Suppose that θ i satisfy P( Q 1 Θ < 1) = 1, f i satisfy max i f i < γ, γ < and the inverse of (Q + Θ) exists with probability 1. Define p = (Q + Θ) 1 f, p M = M ( Q 1 Θ) i Q 1 f (1) i=0 with ( Q 1 Θ) 0 = I. Then (i) p M p with probability 1. (ii) ( ) lim E p M p 2 2 = 0. M

16 What does p M look like? It may be shown that [Q 1 Θ] ij = θ N j+1 if i j, = 0 otherwise, j [Q 1 f] j = f N i. i=1 e.g. for N = 3, θ Q 1 Θ = θ 3 θ 2 0 θ 3 θ 2 θ 1 f 3 Q 1 f = f 3 + f 2 f 3 + f 2 + f 1

17 How good is the approximation? With probability 1, p M p Q 1 Θ M+1 1 Q 1 Θ Q 1 f holds for any induced norm, provided Q 1 Θ < 1. If θ i < θ max w.p.1, N(N + 1) Q 1 Θ 2 θ max. 2 Further, given any ǫ > 0, a matrix norm s.t. Q 1 Θ < θ max + ǫ. Non-conservative bounds are difficult; but- the algorithm seems to work well in practice.

18 Putting it all together Finally, Given moments E(r i ), E(λ i ), E(r i r j ), E(λ i λ j ), we can construct a second order approximation for ( N ) f i E i i=1 j=1 (1 + λ, j)(1 + r j ) } {{ } an element from vector E( 2 i=0 ( Q 1 Θ) i (Q 1 f)) in closed-form.

19 Putting it all together Finally, Given moments E(r i ), E(λ i ), E(r i r j ), E(λ i λ j ), we can construct a second order approximation for ( N ) f i E i i=1 j=1 (1 + λ, j)(1 + r j ) } {{ } an element from vector E( 2 i=0 ( Q 1 Θ) i (Q 1 f)) in closed-form. E(r i ) (forward curve), E(r i r j ) (forward curve correlations) may be known, or found from affine term structure model. E(λ i ), E(λ i λ j ) may be found from an affine term structure model for force of mortality.

20 Simulation Experiments Extensive numerical simulation experiments conducted for annuity valuation, insurance premium (Date et al, 2010), general cash flows (Date et al 2007). The method is computationally very cheap and shown to be quite accurate. This requires joint moments of interest rates and mortality up to M th order. These moments may be known (forward curve and historic correlations - no interest rate model needed for M = 2.) or they may be inferred from a given affine term structure model (e.g. for mortality).

21 Main References P. Date, R. Mamon, L. Jalen and I.C. Wang, A linear algebraic method for pricing temporary life annuities and insurance policies, Insurance: Mathematics and Economics, vol. 47, pages , P. Gaillardetz, Valuation of life insurance products under stochastic interest rates, Insurance: Mathematics and Economics, vol. 42, pages , P. Date, R. Mamon and I.C. Wang, Valuation of cash flows under random rates of interest: a linear algebraic approach, Insurance: Mathematics and Economics, vol. 41, pages 84 95, L. Ballotta and S. Haberman, The fair valuation problem of guaranteed annuity options: the stochastic mortality environment case, Insurance: Mathematics and Economics, vol. 38, pages , 2006.

Iterative Techniques in Matrix Algebra. Jacobi & Gauss-Seidel Iterative Techniques II

Iterative Techniques in Matrix Algebra. Jacobi & Gauss-Seidel Iterative Techniques II Iterative Techniques in Matrix Algebra Jacobi & Gauss-Seidel Iterative Techniques II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin

More information

Cofactor Expansion: Cramer s Rule

Cofactor Expansion: Cramer s Rule Cofactor Expansion: Cramer s Rule MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Today we will focus on developing: an efficient method for calculating

More information

Linear Dependence Tests

Linear Dependence Tests Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

More information

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013

Lecture 11. Shuanglin Shao. October 2nd and 7th, 2013 Lecture 11 Shuanglin Shao October 2nd and 7th, 2013 Matrix determinants: addition. Determinants: multiplication. Adjoint of a matrix. Cramer s rule to solve a linear system. Recall that from the previous

More information

Making use of netting effects when composing life insurance contracts

Making use of netting effects when composing life insurance contracts Making use of netting effects when composing life insurance contracts Marcus Christiansen Preprint Series: 21-13 Fakultät für Mathematik und Wirtschaftswissenschaften UNIVERSITÄT ULM Making use of netting

More information

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix.

MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. MATH 304 Linear Algebra Lecture 4: Matrix multiplication. Diagonal matrices. Inverse matrix. Matrices Definition. An m-by-n matrix is a rectangular array of numbers that has m rows and n columns: a 11

More information

TABLE OF CONTENTS. GENERAL AND HISTORICAL PREFACE iii SIXTH EDITION PREFACE v PART ONE: REVIEW AND BACKGROUND MATERIAL

TABLE OF CONTENTS. GENERAL AND HISTORICAL PREFACE iii SIXTH EDITION PREFACE v PART ONE: REVIEW AND BACKGROUND MATERIAL TABLE OF CONTENTS GENERAL AND HISTORICAL PREFACE iii SIXTH EDITION PREFACE v PART ONE: REVIEW AND BACKGROUND MATERIAL CHAPTER ONE: REVIEW OF INTEREST THEORY 3 1.1 Interest Measures 3 1.2 Level Annuity

More information

Recall that two vectors in are perpendicular or orthogonal provided that their dot

Recall that two vectors in are perpendicular or orthogonal provided that their dot Orthogonal Complements and Projections Recall that two vectors in are perpendicular or orthogonal provided that their dot product vanishes That is, if and only if Example 1 The vectors in are orthogonal

More information

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.

(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Math 2331 Linear Algebra 2.2 The Inverse of a Matrix Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math2331 Jiwen He, University

More information

ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS

ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS ACTUARIAL MATHEMATICS FOR LIFE CONTINGENT RISKS DAVID C. M. DICKSON University of Melbourne MARY R. HARDY University of Waterloo, Ontario V HOWARD R. WATERS Heriot-Watt University, Edinburgh CAMBRIDGE

More information

FAST SENSITIVITY COMPUTATIONS FOR MONTE CARLO VALUATION OF PENSION FUNDS

FAST SENSITIVITY COMPUTATIONS FOR MONTE CARLO VALUATION OF PENSION FUNDS FAST SENSITIVITY COMPUTATIONS FOR MONTE CARLO VALUATION OF PENSION FUNDS MARK JOSHI AND DAVID PITT Abstract. Sensitivity analysis, or so-called stress-testing, has long been part of the actuarial contribution

More information

Fundamentals of Actuarial Mathematics

Fundamentals of Actuarial Mathematics Fundamentals of Actuarial Mathematics S. David Promislow York University, Toronto, Canada John Wiley & Sons, Ltd Contents Preface Notation index xiii xvii PARTI THE DETERMINISTIC MODEL 1 1 Introduction

More information

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS

December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation

More information

Basics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20

Basics Inversion and related concepts Random vectors Matrix calculus. Matrix algebra. Patrick Breheny. January 20 Matrix algebra January 20 Introduction Basics The mathematics of multiple regression revolves around ordering and keeping track of large arrays of numbers and solving systems of equations The mathematical

More information

SCHOOL DISTRICT OF THE CHATHAMS CURRICULUM PROFILE

SCHOOL DISTRICT OF THE CHATHAMS CURRICULUM PROFILE CONTENT AREA(S): Mathematics COURSE/GRADE LEVEL(S): Honors Algebra 2 (10/11) I. Course Overview In Honors Algebra 2, the concept of mathematical function is developed and refined through the study of real

More information

TRANSACTIONS OF SOCIETY OF ACTUARIES 1952 VOL. 4 NO. 10 COMPLETE ANNUITIES. EUGENE A. RASOR* Ann T. N. E. GREVILLE

TRANSACTIONS OF SOCIETY OF ACTUARIES 1952 VOL. 4 NO. 10 COMPLETE ANNUITIES. EUGENE A. RASOR* Ann T. N. E. GREVILLE TRANSACTIONS OF SOCIETY OF ACTUARIES 1952 VOL. 4 NO. 10 COMPLETE ANNUITIES EUGENE A. RASOR* Ann T. N. E. GREVILLE INTRODUCTION I N GENERAL, a complete annuity of one per annum may be defined as a curtate

More information

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs:

1. Datsenka Dog Insurance Company has developed the following mortality table for dogs: 1 Datsenka Dog Insurance Company has developed the following mortality table for dogs: Age l Age l 0 2000 5 1200 1 1950 6 1000 2 1850 7 700 3 1600 8 300 4 1400 9 0 Datsenka sells an whole life annuity

More information

We shall turn our attention to solving linear systems of equations. Ax = b

We shall turn our attention to solving linear systems of equations. Ax = b 59 Linear Algebra We shall turn our attention to solving linear systems of equations Ax = b where A R m n, x R n, and b R m. We already saw examples of methods that required the solution of a linear system

More information

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

More information

1 Limiting distribution for a Markov chain

1 Limiting distribution for a Markov chain Copyright c 2009 by Karl Sigman Limiting distribution for a Markov chain In these Lecture Notes, we shall study the limiting behavior of Markov chains as time n In particular, under suitable easy-to-check

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn

4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of

More information

Math 315: Linear Algebra Solutions to Midterm Exam I

Math 315: Linear Algebra Solutions to Midterm Exam I Math 35: Linear Algebra s to Midterm Exam I # Consider the following two systems of linear equations (I) ax + by = k cx + dy = l (II) ax + by = 0 cx + dy = 0 (a) Prove: If x = x, y = y and x = x 2, y =

More information

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix.

MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. MATH 304 Linear Algebra Lecture 8: Inverse matrix (continued). Elementary matrices. Transpose of a matrix. Inverse matrix Definition. Let A be an n n matrix. The inverse of A is an n n matrix, denoted

More information

O MIA-009 (F2F) : GENERAL INSURANCE, LIFE AND

O MIA-009 (F2F) : GENERAL INSURANCE, LIFE AND No. of Printed Pages : 11 MIA-009 (F2F) kr) ki) M.Sc. ACTUARIAL SCIENCE (MSCAS) N December, 2012 0 O MIA-009 (F2F) : GENERAL INSURANCE, LIFE AND HEALTH CONTINGENCIES Time : 3 hours Maximum Marks : 100

More information

On Simulation Method of Small Life Insurance Portfolios By Shamita Dutta Gupta Department of Mathematics Pace University New York, NY 10038

On Simulation Method of Small Life Insurance Portfolios By Shamita Dutta Gupta Department of Mathematics Pace University New York, NY 10038 On Simulation Method of Small Life Insurance Portfolios By Shamita Dutta Gupta Department of Mathematics Pace University New York, NY 10038 Abstract A new simulation method is developed for actuarial applications

More information

2. Annuities. 1. Basic Annuities 1.1 Introduction. Annuity: A series of payments made at equal intervals of time.

2. Annuities. 1. Basic Annuities 1.1 Introduction. Annuity: A series of payments made at equal intervals of time. 2. Annuities 1. Basic Annuities 1.1 Introduction Annuity: A series of payments made at equal intervals of time. Examples: House rents, mortgage payments, installment payments on automobiles, and interest

More information

Lecture 5 - Triangular Factorizations & Operation Counts

Lecture 5 - Triangular Factorizations & Operation Counts LU Factorization Lecture 5 - Triangular Factorizations & Operation Counts We have seen that the process of GE essentially factors a matrix A into LU Now we want to see how this factorization allows us

More information

INSTITUTE AND FACULTY OF ACTUARIES EXAMINATION

INSTITUTE AND FACULTY OF ACTUARIES EXAMINATION INSTITUTE AND FACULTY OF ACTUARIES EXAMINATION 27 April 2015 (pm) Subject CT5 Contingencies Core Technical Time allowed: Three hours INSTRUCTIONS TO THE CANDIDATE 1. Enter all the candidate and examination

More information

The Characteristic Polynomial

The Characteristic Polynomial Physics 116A Winter 2011 The Characteristic Polynomial 1 Coefficients of the characteristic polynomial Consider the eigenvalue problem for an n n matrix A, A v = λ v, v 0 (1) The solution to this problem

More information

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible:

Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Cramer s Rule and the Adjugate Using determinants, it is possible to express the solution to a system of equations whose coefficient matrix is invertible: Theorem [Cramer s Rule] If A is an invertible

More information

Please write your name and student number at the spaces provided:

Please write your name and student number at the spaces provided: MATH 3630 Actuarial Mathematics I Final Examination - sec 001 Monday, 10 December 2012 Time Allowed: 2 hours (6:00-8:00 pm) Room: MSB 411 Total Marks: 120 points Please write your name and student number

More information

LEVELING THE NET SINGLE PREMIUM. - Review the assumptions used in calculating the net single premium.

LEVELING THE NET SINGLE PREMIUM. - Review the assumptions used in calculating the net single premium. LEVELING THE NET SINGLE PREMIUM CHAPTER OBJECTIVES - Review the assumptions used in calculating the net single premium. - Describe what is meant by the present value of future benefits. - Explain the mathematics

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

PROVING STATEMENTS IN LINEAR ALGEBRA

PROVING STATEMENTS IN LINEAR ALGEBRA Mathematics V2010y Linear Algebra Spring 2007 PROVING STATEMENTS IN LINEAR ALGEBRA Linear algebra is different from calculus: you cannot understand it properly without some simple proofs. Knowing statements

More information

Case Study Modeling Longevity Risk for Solvency II

Case Study Modeling Longevity Risk for Solvency II Case Study Modeling Longevity Risk for Solvency II September 8, 2012 Longevity 8 Conference Waterloo, Ontario Presented by Stuart Silverman Principal & Consulting Actuary Background SOLVENCY II New Minimum

More information

DETERMINANTS. b 2. x 2

DETERMINANTS. b 2. x 2 DETERMINANTS 1 Systems of two equations in two unknowns A system of two equations in two unknowns has the form a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 This can be written more concisely in

More information

Matrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo

Matrix Norms. Tom Lyche. September 28, Centre of Mathematics for Applications, Department of Informatics, University of Oslo Matrix Norms Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 28, 2009 Matrix Norms We consider matrix norms on (C m,n, C). All results holds for

More information

School of Natural Sciences and Mathematics

School of Natural Sciences and Mathematics School of Natural Sciences and Mathematics Actuarial Science (M.S.) (6 minimum hours) The Master of Science in Actuarial Science (AS) Program at the University of Texas at Dallas is administered through

More information

Introduction to Flocking {Stochastic Matrices}

Introduction to Flocking {Stochastic Matrices} Supelec EECI Graduate School in Control Introduction to Flocking {Stochastic Matrices} A. S. Morse Yale University Gif sur - Yvette May 21, 2012 CRAIG REYNOLDS - 1987 BOIDS The Lion King CRAIG REYNOLDS

More information

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

More information

We want to define smooth curves: - for defining paths of cameras or objects. - for defining 1D shapes of objects

We want to define smooth curves: - for defining paths of cameras or objects. - for defining 1D shapes of objects lecture 10 - cubic curves - cubic splines - bicubic surfaces We want to define smooth curves: - for defining paths of cameras or objects - for defining 1D shapes of objects We want to define smooth surfaces

More information

Chapter 5. The Inverse; Numerical Methods

Chapter 5. The Inverse; Numerical Methods Vector Spaces in Physics 8/6/ Chapter. The nverse Numerical Methods n the Chapter we discussed the solution of systems of simultaneous linear algebraic equations which could be written in the form C -

More information

1. Students will demonstrate an understanding of the real number system as evidenced by classroom activities and objective tests

1. Students will demonstrate an understanding of the real number system as evidenced by classroom activities and objective tests MATH 102/102L Inter-Algebra/Lab Properties of the real number system, factoring, linear and quadratic equations polynomial and rational expressions, inequalities, systems of equations, exponents, radicals,

More information

Matrices, transposes, and inverses

Matrices, transposes, and inverses Matrices, transposes, and inverses Math 40, Introduction to Linear Algebra Wednesday, February, 202 Matrix-vector multiplication: two views st perspective: A x is linear combination of columns of A 2 4

More information

Valuation of the Surrender Option in Life Insurance Policies

Valuation of the Surrender Option in Life Insurance Policies Valuation of the Surrender Option in Life Insurance Policies Hansjörg Furrer Market-consistent Actuarial Valuation ETH Zürich, Frühjahrssemester 2010 Valuing Surrender Options Contents A. Motivation and

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

Fundamentals of Actuarial Mathematics. 3rd Edition

Fundamentals of Actuarial Mathematics. 3rd Edition Brochure More information from http://www.researchandmarkets.com/reports/2866022/ Fundamentals of Actuarial Mathematics. 3rd Edition Description: - Provides a comprehensive coverage of both the deterministic

More information

During the analysis of cash flows we assume that if time is discrete when:

During the analysis of cash flows we assume that if time is discrete when: Chapter 5. EVALUATION OF THE RETURN ON INVESTMENT Objectives: To evaluate the yield of cash flows using various methods. To simulate mathematical and real content situations related to the cash flow management

More information

Bonus-malus systems and Markov chains

Bonus-malus systems and Markov chains Bonus-malus systems and Markov chains Dutch car insurance bonus-malus system class % increase new class after # claims 0 1 2 >3 14 30 14 9 5 1 13 32.5 14 8 4 1 12 35 13 8 4 1 11 37.5 12 7 3 1 10 40 11

More information

The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23

The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23 (copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, high-dimensional

More information

Lecture 2 Matrix Operations

Lecture 2 Matrix Operations Lecture 2 Matrix Operations transpose, sum & difference, scalar multiplication matrix multiplication, matrix-vector product matrix inverse 2 1 Matrix transpose transpose of m n matrix A, denoted A T or

More information

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola

Further Topics in Actuarial Mathematics: Premium Reserves. Matthew Mikola Further Topics in Actuarial Mathematics: Premium Reserves Matthew Mikola April 26, 2007 Contents 1 Introduction 1 1.1 Expected Loss...................................... 2 1.2 An Overview of the Project...............................

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Securitization of Longevity Risk in Reverse Mortgages

Securitization of Longevity Risk in Reverse Mortgages Securitization of Longevity Risk in Reverse Mortgages Emiliano A. Valdez, PhD, FSA Michigan State University joint work with L. Wang and J. Piggott XXIII CNSF s International Seminar, Mexico City, Nov

More information

Lecture 6: The Group Inverse

Lecture 6: The Group Inverse Lecture 6: The Group Inverse The matrix index Let A C n n, k positive integer. Then R(A k+1 ) R(A k ). The index of A, denoted IndA, is the smallest integer k such that R(A k ) = R(A k+1 ), or equivalently,

More information

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given:

May 2012 Course MLC Examination, Problem No. 1 For a 2-year select and ultimate mortality model, you are given: Solutions to the May 2012 Course MLC Examination by Krzysztof Ostaszewski, http://www.krzysio.net, krzysio@krzysio.net Copyright 2012 by Krzysztof Ostaszewski All rights reserved. No reproduction in any

More information

1 Determinants. Definition 1

1 Determinants. Definition 1 Determinants The determinant of a square matrix is a value in R assigned to the matrix, it characterizes matrices which are invertible (det 0) and is related to the volume of a parallelpiped described

More information

THE ANALYTIC HIERARCHY PROCESS (AHP)

THE ANALYTIC HIERARCHY PROCESS (AHP) THE ANALYTIC HIERARCHY PROCESS (AHP) INTRODUCTION The Analytic Hierarchy Process (AHP) is due to Saaty (1980) and is often referred to, eponymously, as the Saaty method. It is popular and widely used,

More information

Nonnegative Matrix Factorization: Algorithms, Complexity and Applications

Nonnegative Matrix Factorization: Algorithms, Complexity and Applications Nonnegative Matrix Factorization: Algorithms, Complexity and Applications Ankur Moitra Massachusetts Institute of Technology July 6th, 2015 Ankur Moitra (MIT) NMF July 6th, 2015 m M n W m M = A inner dimension

More information

Multi-state transition models with actuarial applications c

Multi-state transition models with actuarial applications c Multi-state transition models with actuarial applications c by James W. Daniel c Copyright 2004 by James W. Daniel Reprinted by the Casualty Actuarial Society and the Society of Actuaries by permission

More information

Risk Management and Payout Design of Reverse Mortgages

Risk Management and Payout Design of Reverse Mortgages 1 Risk Management and Payout Design of Reverse Mortgages Daniel Cho, Katja Hanewald and Michael Sherris School of Risk & Actuarial ARC Centre of Excellence in Population Ageing Research (CEPAR) University

More information

INSTITUTE OF ACTUARIES OF INDIA

INSTITUTE OF ACTUARIES OF INDIA INSTITUTE OF ACTUARIES OF INDIA EXAMINATIONS 17 th November 2011 Subject CT5 General Insurance, Life and Health Contingencies Time allowed: Three Hours (10.00 13.00 Hrs) Total Marks: 100 INSTRUCTIONS TO

More information

Parameter and Model Uncertainties in Pricing Deep-deferred Annuities

Parameter and Model Uncertainties in Pricing Deep-deferred Annuities Outline Parameter and Model Uncertainties in Pricing Deep-deferred Annuities Min Ji Towson University, Maryland, USA Rui Zhou University of Manitoba, Canada Longevity 11, Lyon, 2015 1/32 Outline Outline

More information

Chapter 2: Systems of Linear Equations and Matrices:

Chapter 2: Systems of Linear Equations and Matrices: At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

More information

Applied Mathematics. Dr. Carlos Marques, Chair Mathematics Dept School of Arts & Sciences

Applied Mathematics. Dr. Carlos Marques, Chair Mathematics Dept School of Arts & Sciences Applied Mathematics Dr. Carlos Marques, Chair Mathematics Dept. carlos.marques@farmingdale.edu 631-420-2182 School of Arts & Sciences Bachelor of Science Degree The Applied Mathematics Bachelor of Science

More information

MATHEMATICAL METHODS OF STATISTICS

MATHEMATICAL METHODS OF STATISTICS MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS

More information

Mathematics of Cryptography

Mathematics of Cryptography CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter

More information

4. MATRICES Matrices

4. MATRICES Matrices 4. MATRICES 170 4. Matrices 4.1. Definitions. Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with m rows and n columns is said to have dimension m n and may be represented as follows:

More information

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d.

These axioms must hold for all vectors ū, v, and w in V and all scalars c and d. DEFINITION: A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the following axioms

More information

Financial Engineering g and Actuarial Science In the Life Insurance Industry

Financial Engineering g and Actuarial Science In the Life Insurance Industry Financial Engineering g and Actuarial Science In the Life Insurance Industry Presentation at USC October 31, 2013 Frank Zhang, CFA, FRM, FSA, MSCF, PRM Vice President, Risk Management Pacific Life Insurance

More information

e-issn: p-issn: X Page 67

e-issn: p-issn: X Page 67 International Journal of Computer & Communication Engineering Research (IJCCER) Volume 2 - Issue 2 March 2014 Performance Comparison of Gauss and Gauss-Jordan Yadanar Mon 1, Lai Lai Win Kyi 2 1,2 Information

More information

Cryptography. Course 2: attacks against RSA. Jean-Sébastien Coron. September 26, Université du Luxembourg

Cryptography. Course 2: attacks against RSA. Jean-Sébastien Coron. September 26, Université du Luxembourg Course 2: attacks against RSA Université du Luxembourg September 26, 2010 Attacks against RSA Factoring Equivalence between factoring and breaking RSA? Mathematical attacks Attacks against plain RSA encryption

More information

Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the

Solutions to Linear Algebra Practice Problems 1. form (because the leading 1 in the third row is not to the right of the Solutions to Linear Algebra Practice Problems. Determine which of the following augmented matrices are in row echelon from, row reduced echelon form or neither. Also determine which variables are free

More information

The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role

The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role The Fair Valuation of Life Insurance Participating Policies: The Mortality Risk Role Massimiliano Politano Department of Mathematics and Statistics University of Naples Federico II Via Cinthia, Monte S.Angelo

More information

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam MA 4 LINEAR ALGEBRA C, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 6, 9:3am - :5am Problem (5 points). Let the matrix A be given by 5 6 5 4 5 (a) Find the inverse A of A, if it exists.

More information

1 Portfolio mean and variance

1 Portfolio mean and variance Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a one-period investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring

More information

Nonlinear Algebraic Equations Example

Nonlinear Algebraic Equations Example Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities

More information

Safety margins for unsystematic biometric risk in life and health insurance

Safety margins for unsystematic biometric risk in life and health insurance Safety margins for unsystematic biometric risk in life and health insurance Marcus C. Christiansen June 1, 2012 7th Conference in Actuarial Science & Finance on Samos Seite 2 Safety margins for unsystematic

More information

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff

Nimble Algorithms for Cloud Computing. Ravi Kannan, Santosh Vempala and David Woodruff Nimble Algorithms for Cloud Computing Ravi Kannan, Santosh Vempala and David Woodruff Cloud computing Data is distributed arbitrarily on many servers Parallel algorithms: time Streaming algorithms: sublinear

More information

1 Cash-flows, discounting, interest rate models

1 Cash-flows, discounting, interest rate models Assignment 1 BS4a Actuarial Science Oxford MT 2014 1 1 Cash-flows, discounting, interest rate models Please hand in your answers to questions 3, 4, 5 and 8 for marking. The rest are for further practice.

More information

Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams

Chapter 6. Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams Chapter 6 Learning Objectives Principles Used in This Chapter 1. Annuities 2. Perpetuities 3. Complex Cash Flow Streams 1. Distinguish between an ordinary annuity and an annuity due, and calculate present

More information

Unit 21 Influence Coefficients

Unit 21 Influence Coefficients Unit 21 Influence Coefficients Readings: Rivello 6.6, 6.13 (again), 10.5 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering Systems Have considered the vibrational behavior of

More information

1 Introduction to Matrices

1 Introduction to Matrices 1 Introduction to Matrices In this section, important definitions and results from matrix algebra that are useful in regression analysis are introduced. While all statements below regarding the columns

More information

Some Observations on Variance and Risk

Some Observations on Variance and Risk Some Observations on Variance and Risk 1 Introduction By K.K.Dharni Pradip Kumar 1.1 In most actuarial contexts some or all of the cash flows in a contract are uncertain and depend on the death or survival

More information

Facilitating On-Demand Risk and Actuarial Analysis in MATLAB. Timo Salminen, CFA, FRM Model IT

Facilitating On-Demand Risk and Actuarial Analysis in MATLAB. Timo Salminen, CFA, FRM Model IT Facilitating On-Demand Risk and Actuarial Analysis in MATLAB Timo Salminen, CFA, FRM Model IT Introduction It is common that insurance companies can valuate their liabilities only quarterly Sufficient

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

Featured article: Evaluating the Cost of Longevity in Variable Annuity Living Benefits

Featured article: Evaluating the Cost of Longevity in Variable Annuity Living Benefits Featured article: Evaluating the Cost of Longevity in Variable Annuity Living Benefits By Stuart Silverman and Dan Theodore This is a follow-up to a previous article Considering the Cost of Longevity Volatility

More information

Determinants. Dr. Doreen De Leon Math 152, Fall 2015

Determinants. Dr. Doreen De Leon Math 152, Fall 2015 Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.

More information

Practice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16.

Practice Math 110 Final. Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. Practice Math 110 Final Instructions: Work all of problems 1 through 5, and work any 5 of problems 10 through 16. 1. Let A = 3 1 1 3 3 2. 6 6 5 a. Use Gauss elimination to reduce A to an upper triangular

More information

Mathematics of Life Contingencies MATH 3281

Mathematics of Life Contingencies MATH 3281 Mathematics of Life Contingencies MATH 3281 Life annuities contracts Edward Furman Department of Mathematics and Statistics York University February 13, 2012 Edward Furman Mathematics of Life Contingencies

More information

Actuarial Speak 101 Terms and Definitions

Actuarial Speak 101 Terms and Definitions Actuarial Speak 101 Terms and Definitions Introduction and Caveat: It is intended that all definitions and explanations are accurate. However, for purposes of understanding and clarity of key points, the

More information

Chapter 7: Option pricing foundations Exercises - solutions

Chapter 7: Option pricing foundations Exercises - solutions Chapter 7: Option pricing foundations Exercises - solutions 1. (a) We use the put-call parity: Share + Put = Call + PV(X) or Share + Put - Call = 97.70 + 4.16 23.20 = 78.66 and P V (X) = 80 e 0.0315 =

More information

THE MATHEMATICS OF LIFE INSURANCE THE NET SINGLE PREMIUM. - Investigate the component parts of the life insurance premium.

THE MATHEMATICS OF LIFE INSURANCE THE NET SINGLE PREMIUM. - Investigate the component parts of the life insurance premium. THE MATHEMATICS OF LIFE INSURANCE THE NET SINGLE PREMIUM CHAPTER OBJECTIVES - Discuss the importance of life insurance mathematics. - Investigate the component parts of the life insurance premium. - Demonstrate

More information

Version 3A ACTUARIAL VALUATIONS. Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain

Version 3A ACTUARIAL VALUATIONS. Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain ACTUARIAL VALUATIONS Remainder,Income, and Annuity Examples For One Life, Two Lives, and Terms Certain Version 3A For Use in Income, Estate, and Gift Tax Purposes, Including Valuation of Pooled Income

More information

Lecture Notes on Actuarial Mathematics

Lecture Notes on Actuarial Mathematics Lecture Notes on Actuarial Mathematics Jerry Alan Veeh May 1, 2006 Copyright 2006 Jerry Alan Veeh. All rights reserved. 0. Introduction The objective of these notes is to present the basic aspects of the

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information