Linear Regression with One Regressor

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Linear Regression with One Regressor Michael Ash Lecture 8

2 Linear Regression with One Regressor a.k.a. Bivariate Regression An important distinction 1. The Model Effect of a one-unit change in X on the mean of Y. Role of randomness and idiosyncratic variation. Mean caveats apply. 2. Estimating the Model Computing sample coefficients with Ordinary Least Squares Hypothesis testing

3 The Linear Regression Model Slope, or response β ClassSize = Change in TestScore Change in ClassSize = TestScore ClassSize The Greek capital letter delta stands for change in. The Greek lower-case letter beta β is the symbol for how Y (TestScore) responds to a change in X (ClassSize). In this case, β is measured in test points per student. Other examples: how murder rates (Y ) respond to poverty (X ); how highway deaths (Y ) respond to drunk-driving penalties (X ); how earnings (Y ) respond to years of schooling (X ). Consider the β in each case.

4 Using a known β Suppose we know that β = 0.6 test points per student. (Adding one student to the class reduces the class test score by 0.6 points.) What is the effect of reducing class size by two students? Rearranging the definition of β, and then putting in the particular example. TestScore = β ClassSize ClassSize = ( 0.6) ( 2) = +1.2 In words: Reducing class size by two students will raise test scores by 1.2 points.

5 Building a Model TestScore = β 0 + β ClassSize ClassSize is a statement about relationship that holds on average across the population of districts. TestScore = β 0 + β ClassSize ClassSize + other factors is a statement that is true for any district. β 0 + β ClassSize ClassSize is the average effect of class size. other factors includes teacher quality, textbook quality, community income or wealth, native English speakers, testing variation, luck.

6 Linear Regression Model with a Single Regressor Y i = β 0 + β 1 X i + u i Y is the dependent variable, or outcome variable, or left-hand variable. (No one says regressand with a straight face.) X is the independent variable, or regressor, or explanatory variable, or right-hand variable. β 0 + β 1 X is the population regression line, or the expected value (mean) of Y given X, or E(Y X ) = β 0 + β 1 X

7 Linear Regression Model with a Single Regressor Y i = β 0 + β 1 X i + u i β 1 and β 0 are the coefficents, or parameters of the regression line. β1 is the slope, the change in Y associated with a unit change in X. β0 is the intercept, the expected value of Y when X = 0. (Sometimes X = 0 doesn t make any sense.) β 0 raises or lowers the regression line.) u i is the error term or residual, which includes all of the unique, or idiosyncratic features of observation i, including randomness, measurement error, and luck that affect its outcome Y i.

8 Determinism and Randomness Appreciate determinism E(Y i X i ) = β 0 + β 1 X i Appreciate randomness u i Figure 4.1 Better or worse than predicted Determinism and randomness

9 Estimating the Coefficients of the Linear Regression Model Draw a best line through a scatterplot. Figure 4.2 Choosing ˆβ 0 and ˆβ 1 defines a line. What is the best line? Recall that the sample mean Y minimizes n (Y i m) 2 i=1

10 Estimating the Coefficients of the Linear Regression Model Now instead of getting to choose m, we get to choose b 0 and b 1 to minimize n (Y i b 0 b 1 X i ) 2 i=1 Let s focus on the key term: (Y i b 0 b 1 X i ) = (Y i (b 0 + b 1 X i )) = (Y i E(Y i X i ))

11 Estimating the Coefficients of the Linear Regression Model (Y i (b 0 + b 1 X i )) The key term expresses how far the actual value of Y i is from the expected value of Y i given X i according to the proposed line. We want to choose b 0 and b 1 to keep these gaps down. The values of b 0 and b 1 that keep n (Y i b 0 b 1 X i ) 2 i=1 as low as possible are called the ordinary least squares estimators of β 0 and β 1. The estimators are named ˆβ 0 and ˆβ 1.

12 The Ordinary Least Squares Estimators From Figure 4.2 to Figure 4.3 Choose b 0 and b 1 to minimize n (Y i b 0 b 1 X i ) 2 i=1 1. Could do this by trial and error. (Choose many alternative pairs b 0 and b 1 and see which gives the smallest sum of squared errors.) 2. Calculus creates simple formulas: ˆβ 1 = n i=1 (X i X)(Y i Y ) n i=1 (X i X ) 2 = s XY s 2 X ˆβ 0 = Y ˆβ 1 X 3. These are an average concept (again!) with all the good properties of sample averages.

13 Some OLS terminology OLS Regression Line Predicted Value of Y i given X i Ŷ = ˆβ 0 + ˆβ 1 X Ŷ i = ˆβ 0 + ˆβ 1 X i Predicted residual of the i th observation û i = Y i Ŷi

14 Test Scores and Student-Teacher Ratio Unit of observation: a California school district (n = 420) Variables: district average test score, district student-teacher ratio OLS Results ˆβ 0 = ˆβ 1 = 2.28 E(TestScore) = β 0 + β STR STR TestScore = STR The slope is 2.28: an increase in the student-teacher ratio (STR) by one student per class is, on average, associated with a decline in the districtwide test score by 2.28 points on the test.

15 Are the results big? Consider reducing STR by two students What would we expect to happen in a district with median student-to-teacher ratio and median test score? (No such district necessarily exists, but it s a useful reference point.) Table 4.1 Reduction of 2 students: from 19.7 (50th percentile) to 17.7 (c. 10th percentile) Expected change in test scores: = +4.6 Expected change in test scores: from (50th percentile) to (c. 60th percentile)? Worth it? Consider reducing STR by five students Beware out-of-sample predictions

16 Advantages of OLS Estimators Widely used method in social sciences, policy, and administration. Desirable Properties of OLS 1. ˆβ consistent and unbiased estimator of β 2. ˆβ is approximately normally distributed in large samples 3. With additional assumptions, ˆβ may be the smallest variance estimator of β.

Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

Chapter 9. Section Correlation

Chapter 9 Section 9.1 - Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation

2. Linear regression with multiple regressors

2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions

SIMPLE REGRESSION ANALYSIS

SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two

Lecture 5: Linear least-squares Regression III: Advanced Methods William G. Jacoby Department of Political Science Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Simple Linear Regression

t-tests and F-tests in regression

t-tests and F-tests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and F-tests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R

DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

Hedonism example. Our questions in the last session. Our questions in this session

Random Slope Models Hedonism example Our questions in the last session Do differences between countries in hedonism remain after controlling for individual age? How much of the variation in hedonism is

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything

Simple Regression Theory I 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY I 1 Simple Regression Theory I 2010 Samuel L. Baker Regression analysis lets you use data to explain and predict. A simple regression line drawn through data points In Assignment

Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

Nonlinear Regression Functions. SW Ch 8 1/54/

Nonlinear Regression Functions SW Ch 8 1/54/ The TestScore STR relation looks linear (maybe) SW Ch 8 2/54/ But the TestScore Income relation looks nonlinear... SW Ch 8 3/54/ Nonlinear Regression General

IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

MULTIPLE REGRESSION WITH CATEGORICAL DATA

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

Section 14 Simple Linear Regression: Introduction to Least Squares Regression

Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship

e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

Regression with a Binary Dependent Variable

Regression with a Binary Dependent Variable Chapter 9 Michael Ash CPPA Lecture 22 Course Notes Endgame Take-home final Distributed Friday 19 May Due Tuesday 23 May (Paper or emailed PDF ok; no Word, Excel,

Regression, least squares

Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

Numerical Summarization of Data OPRE 6301

Numerical Summarization of Data OPRE 6301 Motivation... In the previous session, we used graphical techniques to describe data. For example: While this histogram provides useful insight, other interesting

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

, has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.

BA 275 Review Problems - Week 9 (11/20/06-11/24/06) CD Lessons: 69, 70, 16-20 Textbook: pp. 520-528, 111-124, 133-141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An

Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING

APPLICATION OF LINEAR REGRESSION MODEL FOR POISSON DISTRIBUTION IN FORECASTING Sulaimon Mutiu O. Department of Statistics & Mathematics Moshood Abiola Polytechnic, Abeokuta, Ogun State, Nigeria. Abstract

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

17. SIMPLE LINEAR REGRESSION II

17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.

Yiming Peng, Department of Statistics. February 12, 2013

Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

Solución del Examen Tipo: 1

Solución del Examen Tipo: 1 Universidad Carlos III de Madrid ECONOMETRICS Academic year 2009/10 FINAL EXAM May 17, 2010 DURATION: 2 HOURS 1. Assume that model (III) verifies the assumptions of the classical

Prediction and Confidence Intervals in Regression

Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SH-DH. Hours are detailed in the syllabus.

17.0 Linear Regression

17.0 Linear Regression 1 Answer Questions Lines Correlation Regression 17.1 Lines The algebraic equation for a line is Y = β 0 + β 1 X 2 The use of coordinate axes to show functional relationships was

Lesson Lesson Outline Outline

Lesson 15 Linear Regression Lesson 15 Outline Review correlation analysis Dependent and Independent variables Least Squares Regression line Calculating l the slope Calculating the Intercept Residuals and

Causal Forecasting Models

CTL.SC1x -Supply Chain & Logistics Fundamentals Causal Forecasting Models MIT Center for Transportation & Logistics Causal Models Used when demand is correlated with some known and measurable environmental

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

Heteroskedasticity and Weighted Least Squares

Econ 507. Econometric Analysis. Spring 2009 April 14, 2009 The Classical Linear Model: 1 Linearity: Y = Xβ + u. 2 Strict exogeneity: E(u) = 0 3 No Multicollinearity: ρ(x) = K. 4 No heteroskedasticity/

Penalized regression: Introduction

Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood

Regression and Correlation

Regression and Correlation Topics Covered: Dependent and independent variables. Scatter diagram. Correlation coefficient. Linear Regression line. by Dr.I.Namestnikova 1 Introduction Regression analysis

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

Financial Risk Management Exam Sample Questions/Answers

Financial Risk Management Exam Sample Questions/Answers Prepared by Daniel HERLEMONT 1 2 3 4 5 6 Chapter 3 Fundamentals of Statistics FRM-99, Question 4 Random walk assumes that returns from one time period

Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.

SPSS Regressions Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objective This course is designed

Statistics - Written Examination MEC Students - BOVISA

Statistics - Written Examination MEC Students - BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution

A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012)

STT 200 LECTURE 1, SECTION 2,4 RECITATION 7 (10/16/2012) TA: Zhen (Alan) Zhang zhangz19@stt.msu.edu Office hour: (C500 WH) 1:45 2:45PM Tuesday (office tel.: 432-3342) Help-room: (A102 WH) 11:20AM-12:30PM,

Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2

Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA

The Big 50 Revision Guidelines for S1

The Big 50 Revision Guidelines for S1 If you can understand all of these you ll do very well 1. Know what is meant by a statistical model and the Modelling cycle of continuous refinement 2. Understand

Using Minitab for Regression Analysis: An extended example

Using Minitab for Regression Analysis: An extended example The following example uses data from another text on fertilizer application and crop yield, and is intended to show how Minitab can be used to

Econ 371 Problem Set #3 Answer Sheet

Econ 371 Problem Set #3 Answer Sheet 4.3 In this question, you are told that a OLS regression analysis of average weekly earnings yields the following estimated model. AW E = 696.7 + 9.6 Age, R 2 = 0.023,

Regression analysis in practice with GRETL

Regression analysis in practice with GRETL Prerequisites You will need the GNU econometrics software GRETL installed on your computer (http://gretl.sourceforge.net/), together with the sample files that

Simple Regression and Correlation

Simple Regression and Correlation Today, we are going to discuss a powerful statistical technique for examining whether or not two variables are related. Specifically, we are going to talk about the ideas

Basic Statistcs Formula Sheet

Basic Statistcs Formula Sheet Steven W. ydick May 5, 0 This document is only intended to review basic concepts/formulas from an introduction to statistics course. Only mean-based procedures are reviewed,

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

To switch back to the ordinary annuity mode, enter

HANDBOOK: HOW TO USE YOUR HP 12C CALCULATOR This document is designed to provide you with (1) the basics of how your HP 12C financial calculator operates, and (2) the typical keystrokes that will be required

Using Excel for Statistical Analysis

Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

Module 3: Correlation and Covariance

Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis

Hints for Success on the AP Statistics Exam. (Compiled by Zack Bigner)

Hints for Success on the AP Statistics Exam. (Compiled by Zack Bigner) The Exam The AP Stat exam has 2 sections that take 90 minutes each. The first section is 40 multiple choice questions, and the second

The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini

NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building

Geostatistics Exploratory Analysis

Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

The basic unit in matrix algebra is a matrix, generally expressed as: a 11 a 12. a 13 A = a 21 a 22 a 23

(copyright by Scott M Lynch, February 2003) Brief Matrix Algebra Review (Soc 504) Matrix algebra is a form of mathematics that allows compact notation for, and mathematical manipulation of, high-dimensional

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.)

Chapter 15 Multiple Choice Questions (The answers are provided after the last question.) 1. What is the median of the following set of scores? 18, 6, 12, 10, 14? a. 10 b. 14 c. 18 d. 12 2. Approximately

Statistical Models in R

Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate

Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression

Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction

Variance of OLS Estimators and Hypothesis Testing. Randomness in the model. GM assumptions. Notes. Notes. Notes. Charlie Gibbons ARE 212.

Variance of OLS Estimators and Hypothesis Testing Charlie Gibbons ARE 212 Spring 2011 Randomness in the model Considering the model what is random? Y = X β + ɛ, β is a parameter and not random, X may be

Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

Using Your TI-NSpire Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

Analyzing Intervention Effects: Multilevel & Other Approaches. Simplest Intervention Design. Better Design: Have Pretest

Analyzing Intervention Effects: Multilevel & Other Approaches Joop Hox Methodology & Statistics, Utrecht Simplest Intervention Design R X Y E Random assignment Experimental + Control group Analysis: t

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

Introduction to Linear Regression

14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression

Good luck! BUSINESS STATISTICS FINAL EXAM INSTRUCTIONS. Name:

Glo bal Leadership M BA BUSINESS STATISTICS FINAL EXAM Name: INSTRUCTIONS 1. Do not open this exam until instructed to do so. 2. Be sure to fill in your name before starting the exam. 3. You have two hours

Review of Bivariate Regression

Review of Bivariate Regression A.Colin Cameron Department of Economics University of California - Davis accameron@ucdavis.edu October 27, 2006 Abstract This provides a review of material covered in an

Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

HOW TO USE YOUR HP 12 C CALCULATOR

HOW TO USE YOUR HP 12 C CALCULATOR This document is designed to provide you with (1) the basics of how your HP 12C financial calculator operates, and (2) the typical keystrokes that will be required on

Section 3.1 Measures of Central Tendency: Mode, Median, and Mean

Section 3.1 Measures of Central Tendency: Mode, Median, and Mean One number can be used to describe the entire sample or population. Such a number is called an average. There are many ways to compute averages,

AP Statistics 2002 Scoring Guidelines

AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought

Outline. Correlation & Regression, III. Review. Relationship between r and regression

Outline Correlation & Regression, III 9.07 4/6/004 Relationship between correlation and regression, along with notes on the correlation coefficient Effect size, and the meaning of r Other kinds of correlation

5. Multiple regression

5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

Least Squares Regression. Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.

Least Squares Regression Alan T. Arnholt Department of Mathematical Sciences Appalachian State University arnholt@math.appstate.edu Spring 2006 R Notes 1 Copyright c 2006 Alan T. Arnholt 2 Least Squares

Linear Models for Continuous Data

Chapter 2 Linear Models for Continuous Data The starting point in our exploration of statistical models in social research will be the classical linear model. Stops along the way include multiple linear

Instrumental Variables & 2SLS

Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20 - Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental