Homework 11. Part 1. Name: Score: / null

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Homework 11. Part 1. Name: Score: / null"

Transcription

1 Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = C. r = 0.10 D. There is no relationship between the correlation and how close the data points are to the line

2 2 Accepted characters: numbers, decimal point markers (period or comma), sign indicators (- For the following set of scores, Pearson's r is. (Round your final answer to two decimal places.) Answer Key: Accepted characters: numbers, decimal point markers (period or comma), sign indicators (- For the following set of scores, Pearson's r is. (Round your final answer to two decimal places.) Answer Key: 0.82

3 4 A Pearson correlation of r = between and indicates A. Each time increases, there is a perfectly predictable increase in B. Every change in causes a change in C. Every increase in causes an increase in D. All of the other 3 choices occur with a correlation of Answer Key: A 5 A set of n = 15 pairs of scores ( and values) has SS = 4, SS = 25, and SS = 6. The Pearson correlation for these data is A. 6 B C D Answer Key: D

4 6 Accepted characters: numbers, decimal point markers (period or comma), sign indicators (- For the following set of scores, Pearson's r is. (Round your final answer to two decimal places.) Answer Key: Accepted characters: numbers, decimal point markers (period or comma), sign indicators (- A set of n = 4 pairs of scores ( and values) has SS = 5, SS = 625, and SS = 50. The coefficient of determination (R 2 ) for these data is. (Round your answer to two decimal places.) Answer Key: A college professor reports that students who finish exams early tend to get better grades than students who hold on to exams until the last possible moment. The correlation between exam score and amount of time spent on the exam is an example of A. a positive correlation B. a negative correlation C. a correlation near one D. a correlation near zero

5 9 Identify the strength and direction of the relationship among the two variables shown in the graph. corr2.pdf A. strong, positive B. weak, positive C. weak, negative D. strong, negative 10 Sketch a scatterplot of the following data. Is the relationship between the variables positive or negative? A. positive B. negative

6 11 Identify the strength and direction of the relationship among the two variables shown in the graph. corr6.pdf A. weak, negative B. weak, positive C. strong, positive D. strong, negative Answer Key: D 12 In the following data, there are three scores (,, and Z) for each of the n = 5 individuals. Sketch a scatterplot for each of the relationships. The correlation between and is, between and Z is, and between and Z is. Z A. negative, positive, negative B. positive, positive, negative C. negative, negative, positive D. positive, negative, positive Answer Key: D

7 13 A scatter plot shows a set of data points that are widely scattered around a line that slopes down to the right. Which of the following values would be closest to the correlation for these data? A. r = B. r = C. r = 0.40 D. r = 0.80 Answer Key: A 14 The following graph displays a linear relationship between liking and self-disclosure. corr3.pdf True False Answer Key: False 15 Accepted characters: numbers, decimal point markers (period or comma), sign indicators (- - M - M ( - M ) ( - M ) = = -1 (1) * (-1) = Complete the above table and compute the covariance. The covariance (SS ) for these data is. Answer Key: 3

8 16 Identify the strength and direction of the relationship among the two variables shown in the graph. corr11.pdf A. weak, negative B. strong, negative C. strong, positive D. weak, positive Answer Key: A 17 Identify the strength and direction of the relationship among the two variables shown in the graph. corr14.pdf A. weak, positive B. weak, negative C. strong, positive D. strong, negative Answer Key: C

9 18 In a test for linear correlations, the assumption of normality means that A. the population of scores is normally distributed B. the population of scores is normally distributed C. for each score, the distribution of scores is normally distributed D. For each score, the distribution of scores is normally distributed E. All of the above Answer Key: E 19 Violation of the assumption of homoscedasticity means that A. the variances of and are negative B. the variance in is different from the variance in C. there is a negative correlation between and D. the variance in is the same as the variance in 20 Correlation values can range from -1.0 to True False Answer Key: True

January 26, 2009 The Faculty Center for Teaching and Learning

January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

More information

You buy a TV for $1000 and pay it off with $100 every week. The table below shows the amount of money you sll owe every week. Week 1 2 3 4 5 6 7 8 9

You buy a TV for $1000 and pay it off with $100 every week. The table below shows the amount of money you sll owe every week. Week 1 2 3 4 5 6 7 8 9 Warm Up: You buy a TV for $1000 and pay it off with $100 every week. The table below shows the amount of money you sll owe every week Week 1 2 3 4 5 6 7 8 9 Money Owed 900 800 700 600 500 400 300 200 100

More information

Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 13 Introduction to Linear Regression and Correlation Analysis Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

More information

Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Regression and Correlation

Regression and Correlation Regression and Correlation Topics Covered: Dependent and independent variables. Scatter diagram. Correlation coefficient. Linear Regression line. by Dr.I.Namestnikova 1 Introduction Regression analysis

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture. Correlation. Scatter Plots. Data The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

More information

2. Simple Linear Regression

2. Simple Linear Regression Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

More information

Module 5: Statistical Analysis

Module 5: Statistical Analysis Module 5: Statistical Analysis To answer more complex questions using your data, or in statistical terms, to test your hypothesis, you need to use more advanced statistical tests. This module reviews the

More information

Introduction to Linear Regression

Introduction to Linear Regression 14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression

More information

Reporting Statistics in Psychology

Reporting Statistics in Psychology This document contains general guidelines for the reporting of statistics in psychology research. The details of statistical reporting vary slightly among different areas of science and also among different

More information

Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

More information

Copyright 2013 by Laura Schultz. All rights reserved. Page 1 of 7

Copyright 2013 by Laura Schultz. All rights reserved. Page 1 of 7 Using Your TI-83/84/89 Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

More information

Title: Lending Club Interest Rates are closely linked with FICO scores and Loan Length

Title: Lending Club Interest Rates are closely linked with FICO scores and Loan Length Title: Lending Club Interest Rates are closely linked with FICO scores and Loan Length Introduction: The Lending Club is a unique website that allows people to directly borrow money from other people [1].

More information

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard

More information

SPSS TUTORIAL & EXERCISE BOOK

SPSS TUTORIAL & EXERCISE BOOK UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS

More information

2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program. Statistics Module Part 3 2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

More information

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

More information

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

More information

Scatter Plot, Correlation, and Regression on the TI-83/84

Scatter Plot, Correlation, and Regression on the TI-83/84 Scatter Plot, Correlation, and Regression on the TI-83/84 Summary: When you have a set of (x,y) data points and want to find the best equation to describe them, you are performing a regression. This page

More information

Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares

Linear Regression. Chapter 5. Prediction via Regression Line Number of new birds and Percent returning. Least Squares Linear Regression Chapter 5 Regression Objective: To quantify the linear relationship between an explanatory variable (x) and response variable (y). We can then predict the average response for all subjects

More information

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test

Algebra 1 If you are okay with that placement then you have no further action to take Algebra 1 Portion of the Math Placement Test Dear Parents, Based on the results of the High School Placement Test (HSPT), your child should forecast to take Algebra 1 this fall. If you are okay with that placement then you have no further action

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test March 2014 STAB22H3 Statistics I Duration: 1 hour and 45 minutes Last Name: First Name: Student number: Aids

More information

Introduction to Regression and Data Analysis

Introduction to Regression and Data Analysis Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

More information

Name: Date: Use the following to answer questions 2-3:

Name: Date: Use the following to answer questions 2-3: Name: Date: 1. A study is conducted on students taking a statistics class. Several variables are recorded in the survey. Identify each variable as categorical or quantitative. A) Type of car the student

More information

EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

More information

Statistics, Data Analysis, & Probability - Grade 7 Linda Fahlberg-Stojanovska & Ivancho Dimovski

Statistics, Data Analysis, & Probability - Grade 7 Linda Fahlberg-Stojanovska & Ivancho Dimovski Statistics, ata nalysis, & Probability - Grade 7 Linda Fahlberg-Stojanovska & Ivancho imovski MULTIPLE HOIE 1. The box and whisker plot below shows the dollar prices of twenty popcorn poppers as listed

More information

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS

RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS RARITAN VALLEY COMMUNITY COLLEGE ACADEMIC COURSE OUTLINE MATH 111H STATISTICS II HONORS I. Basic Course Information A. Course Number and Title: MATH 111H Statistics II Honors B. New or Modified Course:

More information

Alabama Department of Postsecondary Education

Alabama Department of Postsecondary Education Date Adopted 1998 Dates reviewed 2007, 2011, 2013 Dates revised 2004, 2008, 2011, 2013, 2015 Alabama Department of Postsecondary Education Representing Alabama s Public Two-Year College System Jefferson

More information

Mario Guarracino. Regression

Mario Guarracino. Regression Regression Introduction In the last lesson, we saw how to aggregate data from different sources, identify measures and dimensions, to build data marts for business analysis. Some techniques were introduced

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

Factors affecting online sales

Factors affecting online sales Factors affecting online sales Table of contents Summary... 1 Research questions... 1 The dataset... 2 Descriptive statistics: The exploratory stage... 3 Confidence intervals... 4 Hypothesis tests... 4

More information

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics

Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in

More information

College Readiness LINKING STUDY

College Readiness LINKING STUDY College Readiness LINKING STUDY A Study of the Alignment of the RIT Scales of NWEA s MAP Assessments with the College Readiness Benchmarks of EXPLORE, PLAN, and ACT December 2011 (updated January 17, 2012)

More information

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

More information

Data analysis process

Data analysis process Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis

More information

DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

More information

Moderation. Moderation

Moderation. Moderation Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

More information

Description. Textbook. Grading. Objective

Description. Textbook. Grading. Objective EC151.02 Statistics for Business and Economics (MWF 8:00-8:50) Instructor: Chiu Yu Ko Office: 462D, 21 Campenalla Way Phone: 2-6093 Email: kocb@bc.edu Office Hours: by appointment Description This course

More information

Lecture 5 Three level variance component models

Lecture 5 Three level variance component models Lecture 5 Three level variance component models Three levels models In three levels models the clusters themselves are nested in superclusters, forming a hierarchical structure. For example, we might have

More information

COURSE OUTLINE. Course Title Applied College Algebra

COURSE OUTLINE. Course Title Applied College Algebra COURSE OUTLINE Course Number MAT140 Course Title Applied College Algebra Credits 4 Hours: lecture/lab/other 4 lecture Catalog description: Co- or Pre-requisite Completion of MAT037 with a C or better or

More information

Tennessee Department of Education. Task: Sally s Car Loan

Tennessee Department of Education. Task: Sally s Car Loan Tennessee Department of Education Task: Sally s Car Loan Sally bought a new car. Her total cost including all fees and taxes was $15,. She made a down payment of $43. She financed the remaining amount

More information

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Excel Tutorial Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Working with Data Entering and Formatting Data Before entering data

More information

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar

business statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel

More information

Florida Math for College Readiness

Florida Math for College Readiness Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

More information

STAT 2300: BUSINESS STATISTICS Section 002, Summer Semester 2009

STAT 2300: BUSINESS STATISTICS Section 002, Summer Semester 2009 STAT 2300: BUSINESS STATISTICS Section 002, Summer Semester 2009 Instructor: Bill Welbourn Office: Lund 117 Email: bill.welbourn@aggiemail.usu.edu Lectures: MWF 7:30AM 9:40AM in ENGR 104 Office Hours:

More information

INDIVIDUAL MASTERY for: St#: 1153366 Test: CH 9 Acceleration Test on 29/07/2015 Grade: B Score: 85.37 % (35.00 of 41.00)

INDIVIDUAL MASTERY for: St#: 1153366 Test: CH 9 Acceleration Test on 29/07/2015 Grade: B Score: 85.37 % (35.00 of 41.00) INDIVIDUAL MASTERY for: St#: 1153366 Grade: B Score: 85.37 % (35.00 of 41.00) INDIVIDUAL MASTERY for: St#: 1346350 Grade: I Score: 21.95 % (9.00 of 41.00) INDIVIDUAL MASTERY for: St#: 1350672 Grade: A

More information

Geostatistics Exploratory Analysis

Geostatistics Exploratory Analysis Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa Master of Science in Geospatial Technologies Geostatistics Exploratory Analysis Carlos Alberto Felgueiras cfelgueiras@isegi.unl.pt

More information

INDIVIDUAL MASTERY for: St#: 1141027 Test: CH 9 Acceleration Test on 09/06/2015 Grade: A Score: 92.68 % (38.00 of 41.00)

INDIVIDUAL MASTERY for: St#: 1141027 Test: CH 9 Acceleration Test on 09/06/2015 Grade: A Score: 92.68 % (38.00 of 41.00) INDIVIDUAL MASTERY for: St#: 1141027 Grade: A Score: 92.68 % (38.00 of 41.00) INDIVIDUAL MASTERY for: St#: 1172998 Grade: B Score: 85.37 % (35.00 of 41.00) INDIVIDUAL MASTERY for: St#: 1232138 Grade: B

More information

UNIT 1: COLLECTING DATA

UNIT 1: COLLECTING DATA Core Probability and Statistics Probability and Statistics provides a curriculum focused on understanding key data analysis and probabilistic concepts, calculations, and relevance to real-world applications.

More information

Education & Training Plan Accounting Math Professional Certificate Program with Externship

Education & Training Plan Accounting Math Professional Certificate Program with Externship University of Texas at El Paso Professional and Public Programs 500 W. University Kelly Hall Ste. 212 & 214 El Paso, TX 79968 http://www.ppp.utep.edu/ Contact: Sylvia Monsisvais 915-747-7578 samonsisvais@utep.edu

More information

Title: Line of Best Fit. Brief Overview:

Title: Line of Best Fit. Brief Overview: Title: Line of Best Fit Brief Overview: This Concept Development Lesson is based on the skills needed to determine the line best fit for a set of data. The focus is based on grade levels 7-12. Students

More information

Oklahoma City Community College Academic Division of Business BUS 2023 BUSINESS STATISTICS

Oklahoma City Community College Academic Division of Business BUS 2023 BUSINESS STATISTICS Oklahoma City Community College Academic Division of Business BUS 2023 BUSINESS STATISTICS Course/ Meeting information Semester: Fall 2014 Section: TR01F Meeting Times: 5:30 PM Thursdays Location: 2N5

More information

STAT 360 Probability and Statistics. Fall 2012

STAT 360 Probability and Statistics. Fall 2012 STAT 360 Probability and Statistics Fall 2012 1) General information: Crosslisted course offered as STAT 360, MATH 360 Semester: Fall 2012, Aug 20--Dec 07 Course name: Probability and Statistics Number

More information

Information Technology Services will be updating the mark sense test scoring hardware and software on Monday, May 18, 2015. We will continue to score

Information Technology Services will be updating the mark sense test scoring hardware and software on Monday, May 18, 2015. We will continue to score Information Technology Services will be updating the mark sense test scoring hardware and software on Monday, May 18, 2015. We will continue to score all Spring term exams utilizing the current hardware

More information

The Basic Two-Level Regression Model

The Basic Two-Level Regression Model 2 The Basic Two-Level Regression Model The multilevel regression model has become known in the research literature under a variety of names, such as random coefficient model (de Leeuw & Kreft, 1986; Longford,

More information

Introducing the Linear Model

Introducing the Linear Model Introducing the Linear Model What is Correlational Research? Correlational designs are when many variables are measured simultaneously but unlike in an experiment none of them are manipulated. When we

More information

THE COST OF COLLEGE EDUCATION PROJECT PACKET

THE COST OF COLLEGE EDUCATION PROJECT PACKET THE COST OF COLLEGE EDUCATION PROJECT PACKET Introduction We live in a society where a college education is considered the norm and not the exception. While everyone is expected to attend a college or

More information

Paper No 19. FINALTERM EXAMINATION Fall 2009 MTH302- Business Mathematics & Statistics (Session - 2) Ref No: Time: 120 min Marks: 80

Paper No 19. FINALTERM EXAMINATION Fall 2009 MTH302- Business Mathematics & Statistics (Session - 2) Ref No: Time: 120 min Marks: 80 Paper No 19 FINALTERM EXAMINATION Fall 2009 MTH302- Business Mathematics & Statistics (Session - 2) Ref No: Time: 120 min Marks: 80 Question No: 1 ( Marks: 1 ) - Please choose one Scatterplots are used

More information

(More Practice With Trend Forecasts)

(More Practice With Trend Forecasts) Stats for Strategy HOMEWORK 11 (Topic 11 Part 2) (revised Jan. 2016) DIRECTIONS/SUGGESTIONS You may conveniently write answers to Problems A and B within these directions. Some exercises include special

More information

Statistics 151 Practice Midterm 1 Mike Kowalski

Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Mike Kowalski Statistics 151 Practice Midterm 1 Multiple Choice (50 minutes) Instructions: 1. This is a closed book exam. 2. You may use the STAT 151 formula sheets and

More information

Predictive Analytics Tools and Techniques

Predictive Analytics Tools and Techniques Global Journal of Finance and Management. ISSN 0975-6477 Volume 6, Number 1 (2014), pp. 59-66 Research India Publications http://www.ripublication.com Predictive Analytics Tools and Techniques Mr. Chandrashekar

More information

Homework #1 Solutions

Homework #1 Solutions Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

More information

Technological Tools to Learn and Teach Mathematics and Statistics

Technological Tools to Learn and Teach Mathematics and Statistics IMACST: VOLUME 3 NUMBER 1 FEBRUARY 212 61 Technological Tools to Learn and Teach Mathematics and Statistics Abstract: Mujo Mesanovic American University of Sharjah, mmesanovic@aus.edu The blended learning

More information

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

More information

Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

More information

MT120-ES: Topics in Applied College Math (4 credits; 100% online) Syllabus Fall 2013

MT120-ES: Topics in Applied College Math (4 credits; 100% online) Syllabus Fall 2013 Contact Information for Professor Wood MT120-ES: Topics in Applied College Math (4 credits; 100% online) Syllabus Fall 2013 Phone: (603) 271-6484 x4341 E-mail: mwood@ccsnh.edu Office: Sweeney Hall, Room

More information

Biology statistics made simple using Excel

Biology statistics made simple using Excel Millar Biology statistics made simple using Excel Biology statistics made simple using Excel Neil Millar Spreadsheet programs such as Microsoft Excel can transform the use of statistics in A-level science

More information

SOCIOLOGY 7702 FALL, 2014 INTRODUCTION TO STATISTICS AND DATA ANALYSIS

SOCIOLOGY 7702 FALL, 2014 INTRODUCTION TO STATISTICS AND DATA ANALYSIS SOCIOLOGY 7702 FALL, 2014 INTRODUCTION TO STATISTICS AND DATA ANALYSIS Professor Michael A. Malec Mailbox is in McGuinn 426 Office: McGuinn 427 Phone: 617-552-4131 Office Hours: TBA E-mail: malec@bc.edu

More information

TIPS FOR DOING STATISTICS IN EXCEL

TIPS FOR DOING STATISTICS IN EXCEL TIPS FOR DOING STATISTICS IN EXCEL Before you begin, make sure that you have the DATA ANALYSIS pack running on your machine. It comes with Excel. Here s how to check if you have it, and what to do if you

More information

Student Guide and Syllabus for MAT100 Introductory Algebra

Student Guide and Syllabus for MAT100 Introductory Algebra Course Information: MAT100 Introductory Algebra Section: 05C Section: 06C Section: 07C* Classroom: 341 Main Building Classroom: 341 Main Building Classroom: 341 Main Building Meeting Dates: Monday Thursday

More information

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

More information

Practice Set #4 and Solutions.

Practice Set #4 and Solutions. FIN-469 Investments Analysis Professor Michel A. Robe Practice Set #4 and Solutions. What to do with this practice set? To help students prepare for the assignment and the exams, practice sets with solutions

More information

Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group

Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group Introduction to Multilevel Modeling Using HLM 6 By ATS Statistical Consulting Group Multilevel data structure Students nested within schools Children nested within families Respondents nested within interviewers

More information

03 The full syllabus. 03 The full syllabus continued. For more information visit www.cimaglobal.com PAPER C03 FUNDAMENTALS OF BUSINESS MATHEMATICS

03 The full syllabus. 03 The full syllabus continued. For more information visit www.cimaglobal.com PAPER C03 FUNDAMENTALS OF BUSINESS MATHEMATICS 0 The full syllabus 0 The full syllabus continued PAPER C0 FUNDAMENTALS OF BUSINESS MATHEMATICS Syllabus overview This paper primarily deals with the tools and techniques to understand the mathematics

More information

Straightening Data in a Scatterplot Selecting a Good Re-Expression Model

Straightening Data in a Scatterplot Selecting a Good Re-Expression Model Straightening Data in a Scatterplot Selecting a Good Re-Expression What Is All This Stuff? Here s what is included: Page 3: Graphs of the three main patterns of data points that the student is likely to

More information

10. Analysis of Longitudinal Studies Repeat-measures analysis

10. Analysis of Longitudinal Studies Repeat-measures analysis Research Methods II 99 10. Analysis of Longitudinal Studies Repeat-measures analysis This chapter builds on the concepts and methods described in Chapters 7 and 8 of Mother and Child Health: Research methods.

More information

Multivariate Analysis. Overview

Multivariate Analysis. Overview Multivariate Analysis Overview Introduction Multivariate thinking Body of thought processes that illuminate the interrelatedness between and within sets of variables. The essence of multivariate thinking

More information

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

A Short Guide to R with RStudio

A Short Guide to R with RStudio Short Guides to Microeconometrics Fall 2013 Prof. Dr. Kurt Schmidheiny Universität Basel A Short Guide to R with RStudio 1 Introduction 2 2 Installing R and RStudio 2 3 The RStudio Environment 2 4 Additions

More information

Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

More information

August 2012 EXAMINATIONS Solution Part I

August 2012 EXAMINATIONS Solution Part I August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

More information

A Correlation of. to the. South Carolina Data Analysis and Probability Standards

A Correlation of. to the. South Carolina Data Analysis and Probability Standards A Correlation of to the South Carolina Data Analysis and Probability Standards INTRODUCTION This document demonstrates how Stats in Your World 2012 meets the indicators of the South Carolina Academic Standards

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4

4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4 4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression

More information

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs

Data Analysis. Using Excel. Jeffrey L. Rummel. BBA Seminar. Data in Excel. Excel Calculations of Descriptive Statistics. Single Variable Graphs Using Excel Jeffrey L. Rummel Emory University Goizueta Business School BBA Seminar Jeffrey L. Rummel BBA Seminar 1 / 54 Excel Calculations of Descriptive Statistics Single Variable Graphs Relationships

More information

School of Mathematics and Science MATH 153 Introduction to Statistical Methods Section: WE1 & WE2

School of Mathematics and Science MATH 153 Introduction to Statistical Methods Section: WE1 & WE2 CCBC Essex School of Mathematics and Science MATH 153 Introduction to Statistical Methods Section: WE1 & WE2 CLASSROOM LOCATION: SEMESTER: Fall 2009 INSTRUCTOR: DONNA TUPPER OFFICE LOCATION: F-413 (or

More information

MATH 110: College Algebra

MATH 110: College Algebra MATH 110: College Algebra Introduction Required Materials Course Components Final Exam Grading Academic Policies Study Suggestions Course Outline and Checklist Introduction Welcome to Math 110. This course

More information

Using Excel for Statistics Tips and Warnings

Using Excel for Statistics Tips and Warnings Using Excel for Statistics Tips and Warnings November 2000 University of Reading Statistical Services Centre Biometrics Advisory and Support Service to DFID Contents 1. Introduction 3 1.1 Data Entry and

More information

MASTER SYLLABUS 2015-2016

MASTER SYLLABUS 2015-2016 MASTER SYLLABUS 2015-2016 A. Academic Division: Liberal Arts B. Discipline: Mathematics C. Course Number and Title: MATH0074 Beginning Algebra D. Course Coordinator: Christine Shearer Assistant Dean: Deb

More information

EDUCATIONAL BENEFITS OF A PAPERLESS CLASSROOM UTILIZING TABLET PCS. R. Ellis-Behnke, J. Gilliland, G.E. Schneider, D. Singer

EDUCATIONAL BENEFITS OF A PAPERLESS CLASSROOM UTILIZING TABLET PCS. R. Ellis-Behnke, J. Gilliland, G.E. Schneider, D. Singer EDUCATIONAL BENEFITS OF A PAPERLESS CLASSROOM UTILIZING TABLET PCS R. Ellis-Behnke, J. Gilliland, G.E. Schneider, D. Singer Massachusetts Institute of Technology, Cambridge, Massachusetts Our research

More information

Supplementary PROCESS Documentation

Supplementary PROCESS Documentation Supplementary PROCESS Documentation This document is an addendum to Appendix A of Introduction to Mediation, Moderation, and Conditional Process Analysis that describes options and output added to PROCESS

More information

12 CORRELATION AND REGRESSION

12 CORRELATION AND REGRESSION 2 CORRELATION AND REGRESSION Chapter 2 Correlation and Regression Objectives After studying this chapter you should be able to investigate the strength and direction of a relationship between two variables

More information