# Financial Risk Management Exam Sample Questions/Answers

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Financial Risk Management Exam Sample Questions/Answers Prepared by Daniel HERLEMONT 1

2 2

3 3

4 4

5 5

6 6

7 Chapter 3 Fundamentals of Statistics FRM-99, Question 4 Random walk assumes that returns from one time period are statistically independent from another period. This implies: A. Returns on 2 time periods can not be equal. B. Returns on 2 time periods are uncorrelated. C. Knowledge of the returns from one period does not help in predicting returns from another period D. Both b and c. FRM-99, Question 14 Suppose returns are uncorrelated over time. You are given that the volatility over 2 days is 1.2%. What is the volatility over 20 days? A. 0.38% B. 1.2% C. 3.79% D. 12.0% σ ( R20 ) = 10σ ( R10 ) FRM-98, Question 7 7

8 Assume an asset price variance increases linearly with time. Suppose the expected asset price volatility for the next 2 months is 15% (annualized), and for the 1 month that follows, the expected volatility is 35% (annualized). What is the average expected volatility over the next 3 months? A. 22% B. 24% C. 25% D. 35% σ = σ1 + σ 2 + σ 3 = = σ 13 = % 3 σ av FRM-97, Question 15 The standard VaR calculation for extension to multiple periods assumes that returns are serially uncorrelated. If prices display trend, the true VaR will be: A. the same as standard VaR B. greater than the standard VaR C. less than the standard VaR D. unable to be determined Bad Question!!! answer is b. Positive trend assumes positive correlation between returns, thus increasing the longer period variance. Correct answer is that the trend will change mean, thus d. FRM-99, Question 2 Under what circumstances could the explanatory power of regression analysis be overstated? A. The explanatory variables are not correlated with one another. B. The variance of the error term decreases as the value of the dependent variable increases. C. The error term is normally distributed. D. An important explanatory variable is excluded. D. If the true regression includes a third variable z that influences both x and y, the error term will not be conditionally independent of x, which violates one of the assumptions of the OLS model. This will artificially increase the explanatory power of the regression. FRM-99, Question 20 What is the covariance between populations a and b: a b A B C D a = 14, b = 27 a-14 b-27 (a-14)(b-27) sum=-25 Cov(a,b) = -25/4 =

9 FRM-99, Question 6 Daily returns on spot positions of the Euro against USD are highly correlated with returns on spot holdings of Yen against USD. This implies that: A. When Euro strengthens against USD, the yen also tends to strengthens, but returns are not necessarily equal. B. The two sets of returns tend to be almost equal C. The two sets of returns tend to be almost equal in magnitude but opposite in sign. D. None of the above. FRM-99, Question 10 You want to estimate correlation between stocks in Frankfurt and Tokyo. You have prices of selected securities. How will time discrepancy bias the computed volatilities for individual stocks and correlations between these two markets? A. Increased volatility with correlation unchanged. B. Lower volatility with lower correlation. C. Volatility unchanged with lower correlation. D. Volatility unchanged with correlation unchanged. The non-synchronicity of prices does not affect the volatility, but will induce some error in the correlation coefficient across series. Intuitively, this is similar to the effect of errors in the variables, which biased downward the slope coefficient and the correlation. FRM-00, Question 125 If the F-test shows that the set of X variables explains a significant amount of variation in the Y variable, then: A. Another linear regression model should be tried. B. A t-test should be used to test which of the individual X variables can be discarded. C. A transformation of Y should be made. D. Another test could be done using an indicator variable to test significance of the model. The F-test applies to the group of variables but does not say which one is most significant. To identify which particular variable is significant or not, we use a t-test and discard the variables that do not display individual significance. FRM-00, Question 112 Positive autocorrelation of prices can be defined as: A. An upward movement in price is more likely to be followed by another upward movement in price. B. A downward movement in price is more likely to be followed by another downward movement. C. Both A and B. D. Historic prices have no correlation with future prices. FRM-00, Question 112 Positive autocorrelation of prices can be defined as: A. An upward movement in price is more likely to be followed by another upward movement in price. B. A downward movement in price is more likely to be followed by another downward movement. C. Both A and B. D. Historic prices have no correlation with future prices. Answer C: both A and B 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

### Financial Risk Management Exam Sample Questions

Financial Risk Management Exam Sample Questions Prepared by Daniel HERLEMONT 1 PART I - QUANTITATIVE ANALYSIS 3 Chapter 1 - Bunds Fundamentals 3 Chapter 2 - Fundamentals of Probability 7 Chapter 3 Fundamentals

### Calculate the holding period return for this investment. It is approximately

1. An investor purchases 100 shares of XYZ at the beginning of the year for \$35. The stock pays a cash dividend of \$3 per share. The price of the stock at the time of the dividend is \$30. The dividend

### Simultaneous Equation Models As discussed last week, one important form of endogeneity is simultaneity. This arises when one or more of the

Simultaneous Equation Models As discussed last week, one important form of endogeneity is simultaneity. This arises when one or more of the explanatory variables is jointly determined with the dependent

### Instrumental Variables Regression. Instrumental Variables (IV) estimation is used when the model has endogenous s.

Instrumental Variables Regression Instrumental Variables (IV) estimation is used when the model has endogenous s. IV can thus be used to address the following important threats to internal validity: Omitted

### Instrumental Variables & 2SLS

Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20 - Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental

### MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

### The Binomial Tree and Lognormality

The Binomial Tree and Lognormality The Binomial Tree and Lognormality The usefulness of the binomial pricing model hinges on the binomial tree providing a reasonable representation of the stock price distribution

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

### Econometrics Simple Linear Regression

Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight

### Instrumental Variables & 2SLS

Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20 - Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental

### Problems with OLS Considering :

Problems with OLS Considering : we assume Y i X i u i E u i 0 E u i or var u i E u i u j 0orcov u i,u j 0 We have seen that we have to make very specific assumptions about u i in order to get OLS estimates

### ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2

University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages

### Limitations of regression analysis

Limitations of regression analysis Ragnar Nymoen Department of Economics, UiO 8 February 2009 Overview What are the limitations to regression? Simultaneous equations bias Measurement errors in explanatory

### 1 OLS under Measurement Error

ECON 370: Measurement Error 1 Violations of Gauss Markov Assumptions: Measurement Error Econometric Methods, ECON 370 1 OLS under Measurement Error We have found out that another source of endogeneity

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

### The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Describe

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### Review Jeopardy. Blue vs. Orange. Review Jeopardy

Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round \$200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### Chapter 11: Two Variable Regression Analysis

Department of Mathematics Izmir University of Economics Week 14-15 2014-2015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions

### 12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand when to use multiple Understand the multiple equation and what the coefficients represent Understand different methods

### Homework 11. Part 1. Name: Score: / null

Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is

### 2. Linear regression with multiple regressors

2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Statistics II Final Exam - January Use the University stationery to give your answers to the following questions.

Statistics II Final Exam - January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly

### GRADO EN ECONOMÍA. Is the Forward Rate a True Unbiased Predictor of the Future Spot Exchange Rate?

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES GRADO EN ECONOMÍA Is the Forward Rate a True Unbiased Predictor of the Future Spot Exchange Rate? Autor: Elena Renedo Sánchez Tutor: Juan Ángel Jiménez Martín

### Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur. Lecture - 2 Simple Linear Regression

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 2 Simple Linear Regression Hi, this is my second lecture in module one and on simple

### Department of Economics and Related Studies Financial Market Microstructure. Topic 1 : Overview and Fixed Cost Models of Spreads

Session 2008-2009 Department of Economics and Related Studies Financial Market Microstructure Topic 1 : Overview and Fixed Cost Models of Spreads 1 Introduction 1.1 Some background Most of what is taught

### Definition The covariance of X and Y, denoted by cov(x, Y ) is defined by. cov(x, Y ) = E(X µ 1 )(Y µ 2 ).

Correlation Regression Bivariate Normal Suppose that X and Y are r.v. s with joint density f(x y) and suppose that the means of X and Y are respectively µ 1 µ 2 and the variances are 1 2. Definition The

### ECON Introductory Econometrics. Lecture 17: Experiments

ECON4150 - Introductory Econometrics Lecture 17: Experiments Monique de Haan (moniqued@econ.uio.no) Stock and Watson Chapter 13 Lecture outline 2 Why study experiments? The potential outcome framework.

### Solución del Examen Tipo: 1

Solución del Examen Tipo: 1 Universidad Carlos III de Madrid ECONOMETRICS Academic year 2009/10 FINAL EXAM May 17, 2010 DURATION: 2 HOURS 1. Assume that model (III) verifies the assumptions of the classical

### Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur

Regression Analysis Prof. Soumen Maity Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 7 Multiple Linear Regression (Contd.) This is my second lecture on Multiple Linear Regression

### 1. Suppose that a score on a final exam depends upon attendance and unobserved factors that affect exam performance (such as student ability).

Examples of Questions on Regression Analysis: 1. Suppose that a score on a final exam depends upon attendance and unobserved factors that affect exam performance (such as student ability). Then,. When

### Semi-Log Model. Semi-Log Model

Semi-Log Model The slope coefficient measures the relative change in Y for a given absolute change in the value of the explanatory variable (t). Semi-Log Model Using calculus: ln Y b2 = t 1 Y = Y t Y =

### Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm.

Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm. Political Science 15 Lecture 12: Hypothesis Testing Sampling

### C(t) (1 + y) 4. t=1. For the 4 year bond considered above, assume that the price today is 900\$. The yield to maturity will then be the y that solves

Economics 7344, Spring 2013 Bent E. Sørensen INTEREST RATE THEORY We will cover fixed income securities. The major categories of long-term fixed income securities are federal government bonds, corporate

### Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.

SPSS Regressions Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objective This course is designed

### Econometrics Regression Analysis with Time Series Data

Econometrics Regression Analysis with Time Series Data João Valle e Azevedo Faculdade de Economia Universidade Nova de Lisboa Spring Semester João Valle e Azevedo (FEUNL) Econometrics Lisbon, May 2011

### PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard

### Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2

Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA

### Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

### Name: Student ID#: Serial #:

STAT 22 Business Statistics II- Term3 KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Department Of Mathematics & Statistics DHAHRAN, SAUDI ARABIA STAT 22: BUSINESS STATISTICS II Third Exam July, 202 9:20

### IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

### Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA - Part I

Index Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1 EduPristine CMA - Part I Page 1 of 11 Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting

### Lecture 18 Linear Regression

Lecture 18 Statistics Unit Andrew Nunekpeku / Charles Jackson Fall 2011 Outline 1 1 Situation - used to model quantitative dependent variable using linear function of quantitative predictor(s). Situation

### Examination II. Fixed income valuation and analysis. Economics

Examination II Fixed income valuation and analysis Economics Questions Foundation examination March 2008 FIRST PART: Multiple Choice Questions (48 points) Hereafter you must answer all 12 multiple choice

### Multiple Regression - Selecting the Best Equation An Example Techniques for Selecting the "Best" Regression Equation

Multiple Regression - Selecting the Best Equation When fitting a multiple linear regression model, a researcher will likely include independent variables that are not important in predicting the dependent

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Clustering in the Linear Model

Short Guides to Microeconometrics Fall 2014 Kurt Schmidheiny Universität Basel Clustering in the Linear Model 2 1 Introduction Clustering in the Linear Model This handout extends the handout on The Multiple

### The Multiple Regression Model: Hypothesis Tests and the Use of Nonsample Information

Chapter 8 The Multiple Regression Model: Hypothesis Tests and the Use of Nonsample Information An important new development that we encounter in this chapter is using the F- distribution to simultaneously

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

### 2. What are the theoretical and practical consequences of autocorrelation?

Lecture 10 Serial Correlation In this lecture, you will learn the following: 1. What is the nature of autocorrelation? 2. What are the theoretical and practical consequences of autocorrelation? 3. Since

### OLS in Matrix Form. Let y be an n 1 vector of observations on the dependent variable.

OLS in Matrix Form 1 The True Model Let X be an n k matrix where we have observations on k independent variables for n observations Since our model will usually contain a constant term, one of the columns

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### Chapter 5 Estimating Demand Functions

Chapter 5 Estimating Demand Functions 1 Why do you need statistics and regression analysis? Ability to read market research papers Analyze your own data in a simple way Assist you in pricing and marketing

### Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

### Probability and Statistical Methods. Chapter 4 Mathematical Expectation

Math 3 Chapter 4 Mathematical Epectation Mean of a Random Variable Definition. Let be a random variable with probability distribution f( ). The mean or epected value of is, f( ) µ = µ = E =, if is a discrete

### 17.0 Linear Regression

17.0 Linear Regression 1 Answer Questions Lines Correlation Regression 17.1 Lines The algebraic equation for a line is Y = β 0 + β 1 X 2 The use of coordinate axes to show functional relationships was

### Stat 411/511 ANOVA & REGRESSION. Charlotte Wickham. stat511.cwick.co.nz. Nov 31st 2015

Stat 411/511 ANOVA & REGRESSION Nov 31st 2015 Charlotte Wickham stat511.cwick.co.nz This week Today: Lack of fit F-test Weds: Review email me topics, otherwise I ll go over some of last year s final exam

### 1. The Classical Linear Regression Model: The Bivariate Case

Business School, Brunel University MSc. EC5501/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 018956584) Lecture Notes 3 1.

### Regression Analysis Using ArcMap. By Jennie Murack

Regression Analysis Using ArcMap By Jennie Murack Regression Basics How is Regression Different from other Spatial Statistical Analyses? With other tools you ask WHERE something is happening? Are there

### E205 Final: Version B

Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

### MBA 8230 Corporation Finance (Part II) Practice Final Exam #2

MBA 8230 Corporation Finance (Part II) Practice Final Exam #2 1. Which of the following input factors, if increased, would result in a decrease in the value of a call option? a. the volatility of the company's

### Regression Analysis: Basic Concepts

The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

### , has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.

BA 275 Review Problems - Week 9 (11/20/06-11/24/06) CD Lessons: 69, 70, 16-20 Textbook: pp. 520-528, 111-124, 133-141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An

### Panel Data Models. Chapter 5. Financial Econometrics. Michael Hauser WS15/16

1 / 63 Panel Data Models Chapter 5 Financial Econometrics Michael Hauser WS15/16 2 / 63 Content Data structures: Times series, cross sectional, panel data, pooled data Static linear panel data models:

### 5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

### Mgmt 469. Fixed Effects Models. Suppose you want to learn the effect of price on the demand for back massages. You

Mgmt 469 Fixed Effects Models Suppose you want to learn the effect of price on the demand for back massages. You have the following data from four Midwest locations: Table 1: A Single Cross-section of

### Financial Assets Behaving Badly The Case of High Yield Bonds. Chris Kantos Newport Seminar June 2013

Financial Assets Behaving Badly The Case of High Yield Bonds Chris Kantos Newport Seminar June 2013 Main Concepts for Today The most common metric of financial asset risk is the volatility or standard

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### Random variables and their properties

Random variables and their properties As we have discussed in class, when observing a random process, we are faced with uncertainty. It is easier to study that uncertainty if we make things numerical.

### Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions

Wooldridge, Introductory Econometrics, 3d ed. Chapter 12: Serial correlation and heteroskedasticity in time series regressions What will happen if we violate the assumption that the errors are not serially

### Collinearity of independent variables. Collinearity is a condition in which some of the independent variables are highly correlated.

Collinearity of independent variables Collinearity is a condition in which some of the independent variables are highly correlated. Why is this a problem? Collinearity tends to inflate the variance of

### ADVANCED FORECASTING MODELS USING SAS SOFTWARE

ADVANCED FORECASTING MODELS USING SAS SOFTWARE Girish Kumar Jha IARI, Pusa, New Delhi 110 012 gjha_eco@iari.res.in 1. Transfer Function Model Univariate ARIMA models are useful for analysis and forecasting

### CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

### SIMPLE REGRESSION ANALYSIS

SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two

### My factorial research design yields panel data in which i vignettes (i = 1,, 10) are nested

1 SUPPLEENTAL ATERIAL Analytic Strategy: Studies 1ab y factorial research design yields panel data in which i vignettes (i = 1,, 10) are nested within individuals ( = 1,, J). As a result, I estimated two-level

### Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

### Advanced time-series analysis

UCL DEPARTMENT OF SECURITY AND CRIME SCIENCE Advanced time-series analysis Lisa Tompson Research Associate UCL Jill Dando Institute of Crime Science l.tompson@ucl.ac.uk Overview Fundamental principles

### Chapter 5. Conditional CAPM. 5.1 Conditional CAPM: Theory. 5.1.1 Risk According to the CAPM. The CAPM is not a perfect model of expected returns.

Chapter 5 Conditional CAPM 5.1 Conditional CAPM: Theory 5.1.1 Risk According to the CAPM The CAPM is not a perfect model of expected returns. In the 40+ years of its history, many systematic deviations

### Practice 3 SPSS. Partially based on Notes from the University of Reading:

Practice 3 SPSS Partially based on Notes from the University of Reading: http://www.reading.ac.uk Simple Linear Regression A simple linear regression model is fitted when you want to investigate whether

### Calculating VaR. Capital Market Risk Advisors CMRA

Calculating VaR Capital Market Risk Advisors How is VAR Calculated? Sensitivity Estimate Models - use sensitivity factors such as duration to estimate the change in value of the portfolio to changes in

### Partial r 2, contribution and fraction [a]

Multiple and partial regression and correlation Partial r 2, contribution and fraction [a] Daniel Borcard Université de Montréal Département de sciences biologiques January 2002 The definitions of the

### 1 Short Introduction to Time Series

ECONOMICS 7344, Spring 202 Bent E. Sørensen January 24, 202 Short Introduction to Time Series A time series is a collection of stochastic variables x,.., x t,.., x T indexed by an integer value t. The

### Heteroskedasticity and Weighted Least Squares

Econ 507. Econometric Analysis. Spring 2009 April 14, 2009 The Classical Linear Model: 1 Linearity: Y = Xβ + u. 2 Strict exogeneity: E(u) = 0 3 No Multicollinearity: ρ(x) = K. 4 No heteroskedasticity/

### Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS

Chapter 5 Risk and Return ANSWERS TO SELECTED END-OF-CHAPTER QUESTIONS 5-1 a. Stand-alone risk is only a part of total risk and pertains to the risk an investor takes by holding only one asset. Risk is

### Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology

Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of

### Lecture 1: Asset pricing and the equity premium puzzle

Lecture 1: Asset pricing and the equity premium puzzle Simon Gilchrist Boston Univerity and NBER EC 745 Fall, 2013 Overview Some basic facts. Study the asset pricing implications of household portfolio

### SELF-TEST: SIMPLE REGRESSION

ECO 22000 McRAE SELF-TEST: SIMPLE REGRESSION Note: Those questions indicated with an (N) are unlikely to appear in this form on an in-class examination, but you should be able to describe the procedures

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### What is correlational research?

Key Ideas Purpose and use of correlational designs How correlational research developed Types of correlational designs Key characteristics of correlational designs Procedures used in correlational studies

### Experimental Designs leading to multiple regression analysis

Experimental Designs leading to multiple regression analysis 1. (Randomized) designed experiments. 2. Randomized block experiments. 3. Observational studies: probability based sample surveys 4. Observational

### Econometric Methods fo Panel Data Part II

Econometric Methods fo Panel Data Part II Robert M. Kunst University of Vienna April 2009 1 Tests in panel models Whereas restriction tests within a specific panel model follow the usual principles, based

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)