# The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series.

 To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Save this PDF as:

Size: px
Start display at page:

Download "The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series."

## Transcription

1 Cointegration The VAR models discussed so fare are appropriate for modeling I(0) data, like asset returns or growth rates of macroeconomic time series. Economic theory, however, often implies equilibrium relationships between the levels of time series variables that are best described as being I(1). Similarly, arbitrage arguments imply that the I(1) prices of certain financial time series are linked. The statistical concept of cointegration is required to make sense of regression models and VAR models with I(1) data.

2 Spurious Regression If some or all of the variables in a regression are I(1) then the usual statistical results may or may not hold. One important case in which the usual statistical results do not hold is spurious regression, when all the regressors are I(1) and not cointegrated. That is, there is no linear combination of the variables that is I(0). Example: Granger-Newbold JOE 1974 Consider two independent and not cointegrated I(1) processes y 1t and y 2t y it = y it 1 + ε it, ε it GWN(0, 1), i =1, 2 Estimated levels and differences regressions y 1 = y 2, R 2 =0.21 (0.39) (0.05) y 1 = y 2, R 2 =0.00 (0.07) (0.06)

3 Statistical Implications of Spurious Regression Let Y t =(y 1t,...,y nt ) 0 denote an (n 1) vector of I(1) time series that are not cointegrated. Write Y t =(y 1t, Y 0 2t )0, and consider regressing of y 1t on Y 2t giving y 1t = ˆβ 0 2Y 2t +û t Since y 1t is not cointegrated with Y 2t true value of β 2 is zero The above is a spurious regression and û t I(1).

4 The following results about the behavior of ˆβ 2 in the spurious regression are due to Phillips (1986): ˆβ 2 does not converge in probability to zero but instead converges in distribution to a non-normal random variable not necessarily centered at zero. This is the spurious regression phenomenon. The usual OLS t-statistics for testing that the elements of β 2 are zero diverge to ± as T. Hence, with a large enough sample it will appear that Y t is cointegrated when it is not if the usual asymptotic normal inference is used. The usual R 2 from the regression converges to unity as T so that the model will appear to fit well even though it is misspecified. Regression with I(1)data only makes sense when the data are cointegrated.

5 Intuition Recall, with I(1) data sample moments converge to functions of Brownian motion. Consider two independent and not cointegrated I(1) processes y 1t and y 2t : Then y it = y it 1 + ε it, ε it WN(0,σ 2 i ), i =1, 2 T 2 T X T 2 T X t=1 t=1 y 2 it σ 2 i Z 1 y 1t y 2t σ 1 σ 2 Z 1 0 W i(r) 2 dr, i =1, 2 0 W 1(r)W 2 (r)dr where W 1 (r) andw 2 (r) are independent Wiener processes.

6 In the regression y 1t = ˆβy 2t +û t Phillips derived the following convergence result using the FCLT and the CMT: ˆβ = T 2 T X Ã σ 2 2 y 2 2t t=1 Z W 2(r) 2 dr T 2 T X t=1 y 1t y 2t! 1 σ 1 σ 2 Z 1 Therefore, ˆβ 9 p 0 ˆβ random variable 0 W 1(r)W 2 (r)dr

7 Cointegration Let Y t =(y 1t,...,y nt ) 0 denote an (n 1) vector of I(1) time series. Y t is cointegrated if there exists an (n 1) vector β =(β 1,...,β n ) 0 such that β 0 Y t = β 1 y 1t + + β n y nt I(0) In words, the nonstationary time series in Y t are cointegrated if there is a linear combination of them that is stationary or I(0). The linear combination β 0 Y t is often motivated by economic theory and referred to as a long-run equilibrium relationship. Intuition: I(1) time series with a long-run equilibrium relationship cannot drift too far apart from the equilibrium because economic forces will act to restore the equilibrium relationship.

8 Normalization The cointegration vector β is not unique since for any scalar c c β 0 Y t = β 0 Y t I(0) Hence, some normalization assumption is required to uniquely identify β. A typical normalization is so that or β =(1, β 2,..., β n ) 0 β 0 Y t = y 1t β 2 y 2t β n y nt I(0) y 1t = β 2 y 2t + + β n y nt + u t u t I(0) = cointegrating residual In long-run equilibrium, u t = 0 and the long-run equilibrium relationship is y 1t = β 2 y 2t + + β n y nt

9 Multiple Cointegrating Relationships If the (n 1) vector Y t is cointegrated there may be 0 <r<nlinearly independent cointegrating vectors. For example, let n =3andsupposetherearer =2 cointegrating vectors Then β 1 = (β 11,β 12,β 13 ) 0 β 2 = (β 21,β 22,β 23 ) 0 β 0 1 Y t = β 11 y 1t + β 12 y 2t + β 13 y 3t I(0) β 0 2 Y t = β 21 y 1t + β 22 y 2t + β 23 y 3t I(0) and the (3 2) matrix B 0 = Ã β 0 1 β 0 2! = Ã β11 β 12 β 13 β 21 β 22 β 33 forms a basis for the space of cointegrating vectors. The linearly independent vectors β 1 and β 2 in the cointegrating basis B are not unique unless some normalization assumptions are made. Furthermore, any linear combination of β 1 and β 2,e.g. β 3 = c 1 β 1 + c 2 β 2 where c 1 and c 2 are constants, is also a cointegrating vector.!

10 Examples of Cointegration and Common Trends in Economics and Finance Cointegration naturally arises in economics and finance. In economics, cointegration is most often associated with economic theories that imply equilibrium relationships between time series variables: The permanent income model implies cointegration between consumption and income, with consumption being the common trend. Money demand models imply cointegration between money, income, prices and interest rates. Growth theory models imply cointegration between income, consumption and investment, with productivity being the common trend.

11 Purchasing power parity implies cointegration between the nominal exchange rate and foreign and domestic prices. Covered interest rate parity implies cointegration between forward and spot exchange rates. The Fisher equation implies cointegration between nominal interest rates and inflation. The expectations hypothesis of the term structure implies cointegration between nominal interest rates at different maturities. The present value model of stock prices states that a stock s price is an expected discounted present value of its expected future dividends or earnings.

12 Remarks: The equilibrium relationships implied by these economic theories are referred to as long-run equilibrium relationships, because the economic forces that act in response to deviations from equilibriium may take a long time to restore equilibrium. As a result, cointegration is modeled using long spans of low frequency time series data measured monthly, quarterly or annually. In finance, cointegration may be a high frequency relationship or a low frequency relationship. Cointegration at a high frequency is motivated by arbitrage arguments. The Law of One Price implies that identical assets must sell for the same price to avoid arbitrage opportunities. This implies cointegration between the prices of the same asset trading on different markets, for example.

13 Similar arbitrage arguments imply cointegration between spot and futures prices, and spot and forward prices, and bid and ask prices. Here the terminology long-run equilibrium relationship is somewhat misleading because the economic forces acting to eliminate arbitrage opportunities work very quickly. Cointegration is appropriately modeled using short spans of high frequency data in seconds, minutes, hours or days.

14 Cointegration and Common Trends If the (n 1) vector time series Y t is cointegrated with 0 <r<ncointegrating vectors then there are n r common I(1) stochastic trends. For example, let Y t = (y 1t,y 2t ) 0 I(1) ε t = (ε 1t,ε 2t,ε 3t ) 0 I(0) and suppose that Y t is cointegrated with cointegrating vector β =(1, β 2 ) 0. This cointegration relationship may be represented as y 1t = β 2 tx y 2t = s=1 tx s=1 ε 1s + ε 3t ε 1s + ε 2t The common stochastic trend is P t s=1 ε 1s.

15 Notice that the cointegrating relationship annihilates the common stochastic trend: β 0 Y t = y 1t β 2 y 2t = β 2 tx s=1 ε 1s + ε 3t β 2 = ε 3t β 2 ε 2t I(0). tx s=1 ε 1s + ε 2t

16 Some Simulated Cointegrated Systems Cointegrated systems may be conveniently simulated using Phillips (1991) triangular representation. For example, consider a bivariate cointegrated system for Y t =(y 1t,y 2t ) 0 with cointegrating vector β =(1, β 2 ) 0. A triangular representation has the form y 1t = β 2 y 2t + u t, where u t I(0) y 2t = y 2t 1 + v t, where v t I(0) The first equation describes the long-run equilibrium relationship with an I(0) disequilibrium error u t. The second equation specifies y 2t as the common stochastic trend with innovation v t : y 2t = y 20 + tx j=1 v j.

17 In general, the innovations u t and v t may be contemporaneously and serially correlated. The time series structure of these innovations characterizes the short-run dynamics of the cointegrated system. The system with β 2 = 1, for example, might be used to model the behavior of the logarithm of spot and forward prices, spot and futures prices, stock prices and dividends, or consumption and income.

18 Example: Bivariate system with β =(1, 1) 0 y 1t = y 2t + u t y 2t = y 2t 1 + v t u t = 0.75u t 1 + ε t, ε t iid N(0, (0.5) 2 ), v t iid N(0, (0.5) 2 ) Note: y 2t defines the common trend

19 Trivariate cointegrated system with 1 cointegrating vector β =(1, β 1,β 2 ) 0 y 1t = β 1 y 2t + β 2 y 3t + u t, u t I(0) y 2t = y 2t 1 + v t, v t I(0) y 3t = y 3t 1 + w t, w t I(0) An example of a trivariate cointegrated system with one cointegrating vector is a system of nominal exchange rates, home country price indices and foreign country price indices. A cointegrating vector β = (1, 1, 1) 0 implies that the real exchange rate is stationary.

20 Example: Trivariate cointegrated system β =(1, 0.5, 0.5) 0 y 1t = 0.5y 2t +0.5y 3t + u t, u t = 0.75u t 1 + ε t,ε t iid N(0, (0.5) 2 ) y 2t = y 2t 1 + v t, v t iid N(0, (0.5) 2 ) y 3t = y 3t 1 + w t, w t iid N(0, (0.5) 2 ) Note: y 2t and y 3t are the common trends

21 Simulated trivariate cointegrated system with 2 cointegrating vectors A triangular representation for this system with cointegrating vectors β 1 =(1, 0, β 13 ) 0 and β 2 =(0, 1, β 23 ) 0 is y 1t = β 13 y 3t + u t, u t I(0) y 2t = β 23 y 3t + v t, v t I(0) y 3t = y 3t 1 + w t, w t I(0) An example in finance of such a system is the term structure of interest rates where y 3 represents the short rate and y 1 and y 2 represent two different long rates. The cointegrating relationships would indicate that the spreads between the long and short rates are stationary.

22 Example: Trivariate system with β 1 = (1, 0, 1) 0, β 2 =(0, 1, 1) 0 y 1t = y 3t + u t, u t = 0.75u t 1 + ε t,ε t iid N(0, (0.5) 2 ) y 2t = y 3t + v t, v t = 0.75v t 1 + η t,η t iid N(0, (0.5) 2 ) y 3t = y 3t 1 + w t, w t iid N(0, (0.5) 2 ) Note: y 3t defines the common trend.

23 Cointegration and Error Correction Models Consider a bivariate I(1) vector Y t =(y 1t,y 2t ) 0 and assume that Y t is cointegrated with cointegrating vector β =(1, β 2 ) 0 so that β 0 Y t = y 1t β 2 y 2t is I(0). Engle and Granger s famous (1987) Econometrica paper showed that cointegration implies the existence of an error correction model (ECM) of the form y 1t = c 1 + α 1 (y 1t 1 β 2 y 2t 1 ) + X j ψ j 11 y 1t j + X j ψ j 12 y 2t j + ε 1t y 2t = c 2 + α 2 (y 1t 1 β 2 y 2t 1 ) + X j ψ j 21 y 1t j + X j ψ j 22 y 2t j + ε 2t The ECM links the long-run equilibrium relationship implied by cointegration with the short-run dynamic adjustment mechanism that describes how the variables react when they move out of long-run equilibrium.

24 Let y t denote the log of real income and c t denote the log of consumption and assume that Y t =(y t,c t ) 0 is I(1). The Permanent Income Hypothesis implies that income and consumption are cointegrated with β =(1, 1) 0 : c t = μ + y t + u t μ = E[c t y t ] u t I(0) Suppose the ECM has the form y t = γ y + α y (c t 1 y t 1 μ)+ε yt c t = γ c + α c (c t 1 y t 1 μ)+ε ct The first equation relates the growth rate of income to the lagged disequilibrium error c t 1 y t 1 μ, and the second equation relates the growth rate of consumption to the lagged disequilibrium as well. The reactions of y t and c t to the disequilibrium error are captured by the adjustment coefficients α y and α c.

25 Consider the special case y t = γ y +0.5(c t 1 y t 1 μ)+ε yt, c t = γ c + ε ct. Consider three situations: 1. c t 1 y t 1 μ =0. Then E[ y t Y t 1 ] = γ y E[ c t Y t 1 ] = γ d 2. c t 1 y t 1 μ>0. Then E[ y t Y t 1 ]=γ y +0.5(c t 1 y t 1 μ) >γ y Here the consumption has increased above its long-run mean (positive disequilibrium error) and the ECM predicts that y t will grow faster than its long-run rate to restore the consumption-income ratio its long-run mean.

26 3. c t 1 y t 1 μ<0. Then E[ y t Y t 1 ]=γ y +0.5(c t 1 y t 1 μ) <c y Here consumption-income ratio has decreased below its long-run mean (negative disequilibrium error) and the ECM predicts that y t will grow more slowly than its long-run rate to restore the consumptionincome ratio to its long-run mean.

27 Tests for Cointegration Let the (n 1) vector Y t be I(1). Recall, Y t is cointegrated with 0 <r<ncointegrating vectors if there exists an (r n) matrixb 0 such that B 0 Y t = β 0 1 Y t. β 0 ry t = u 1t. u rt I(0) Testing for cointegration may be thought of as testing for the existence of long-run equilibria among the elements of Y t.

28 Cointegration tests cover two situations: There is at most one cointegrating vector Originally considered by Engle and Granger (1986), Cointegration and Error Correction: Representation, Estimation and Testing, Econometrica. They developed a simple two-step residual-based testing procedure based on regression techniques. There are possibly 0 r<ncointegrating vectors. Originally considered by Johansen (1988), Statistical Analysis of Cointegration Vectors, Journal of Economics Dynamics and Control. He developed a sophisticated sequential procedure for determining the existence of cointegration and for determining the number of cointegrating relationships based on maximum likelihood techniques.

29 Residual-Based Tests for Cointegration Engle and Granger s two-step procedure for determining if the (n 1) vector β is a cointegrating vector is as follows: Form the cointegrating residual β 0 Y t = u t Perform a unit root test on u t to determine if it is I(0). The null hypothesis in the Engle-Granger procedure is no-cointegration and the alternative is cointegration.

30 There are two cases to consider. 1. The proposed cointegrating vector β is pre-specified (not estimated). For example, economic theory may imply specificvaluesfortheelementsinβ such as β =(1, 1) 0. The cointegrating residual is then readily constructed using the prespecified cointegrating vector. 2. The proposed cointegrating vector is estimated from the data and an estimate of the cointegrating residual ˆβ 0 Y t =û t is formed. Note: Tests for cointegration using a pre-specified cointegrating vector are generally much more powerful than tests employing an estimated vector.

31 Testing for Cointegration When the Cointegrating Vector Is Pre-specified Let Y t denote an (n 1) vector of I(1) time series, let β denote an (n 1) prespecified cointegrating vector and let u t = β 0 Y t = cointegrating residual Thehypothesestobetestedare H 0 : u t = β 0 Y t I(1) (no cointegration) H 1 : u t = β 0 Y t I(0) (cointegration) Anyunitrootteststatisticmaybeusedtoevaluate the above hypotheses. The most popular choices are the ADF and PP statistics, but one may also use the more powerful ERS and Ng- Perron tests. Cointegration is found if the unit root test rejects the no-cointegration null.

32 It should be kept in mind, however, that the cointegrating residual may include deterministic terms (constant or trend) and the unit root tests should account for these terms accordingly.

33 Testing for Cointegration When the Cointegrating Vector Is Estimated Let Y t denote an (n 1) vector of I(1) time series and let β denote an (n 1) unknown cointegrating vector. The hypotheses to be tested are H 0 : u t = β 0 Y t I(1) (no cointegration) H 1 : u t = β 0 Y t I(0) (cointegration) Since β is unknown, to use the Engle-Granger procedure it must be first estimated from the data. Before β can be estimated some normalization assumption must be made to uniquely identify it. A common normalization is to specify Y t =(y 1t, Y 0 2t )0 where Y 2t =(y 2t,...,y nt ) 0 is an ((n 1) 1) vector and the cointegrating vector is normalized as β =(1, β 0 2 )0.

34 Engle and Granger propose estimating the normalized cointegrating vector β 2 by least squares from the regression y 1t = γ 0 D t + β 0 2 Y 2t + u t D t = deterministic terms and testing the no-cointegration hypothesis with a unit root test using the estimated cointegrating residual û t = y 1t ˆγ 0 D t ˆβ 2 Y 2t The unit root test regression in this case is without deterministic terms (constant or constant and trend). For example, if one uses the ADF test, the test regression is û t = πû t 1 + px j=1 ξ û t j + error

35 Distribution Theory Phillips and Ouliaris (PO) (1990) show that ADF and PP unit root tests (t-tests and normalized bias) applied to the estimated cointegrating residual do not have the usual Dickey-Fuller distributions under the null hypothesis of no-cointegration. Due to the spurious regression phenomenon under the null hypothesis, the distribution of the ADF and PP unit root tests have asymptotic distributions that are functions of Wiener processes that Depend on the deterministic terms in the regression used to estimate β 2 Depend on the number of variables, n 1, in Y 2t.

36 These distributions are known as the Phillips-Ouliaris (PO) distributions, and are described in Phillips and Ouliaris (1990).

37 To further complicate matters, Hansen (1992) showed the appropriate PO distributions of the ADF and PP unit root tests applied to the residuals also depend on the trend behavior of y 1t and Y 2t as follows: Case I: Y 2t and y 1t are both I(1) without drift and D t = 1. The ADF and PP unit root test statistics follow the PO distributions, adjusted for a constant, with dimension parameter n 1. Case II: Y 2t is I(1) with drift, y 1t may or may not be I(1) with drift and D t = 1. The ADF and PP unit root test statistics follow the PO distributions, adjusted for a constant and trend, with dimension parameter n 2. If n 2 = 0 then the ADF and PP unit root test statistics follow the DF distributions adjusted for a constant and trend.

38 Case III: Y 2t is I(1) without drift, y 1t is I(1) with drift and D t =(1,t) 0. The resulting ADF and PP unit root test statistics on the residuals follow the PO distributions, adjusted for a constant and trend, with dimension parameter n 1. Example: PO Critical Values PO Critical Values: Case I n-1 1% 5%

39 Regression-Based Estimates of Cointegrating Vectors and Error Correction Models Least Square Estimator Least squares may be used to consistently estimate a normalized cointegrating vector. However, the asymptotic behavior of the least squares estimator is nonstandard. The following results about the behavior of ˆβ 2 if Y t is cointegrated are due to Stock (1987) and Phillips (1991): T (ˆβ 2 β 2 ) converges in distribution to a nonnormal random variable not necessarily centered at zero. The least squares estimate ˆβ 2 is consistent for β 2 and converges to β 2 at rate T instead of the usual rate T 1/2.Thatis,ˆβ 2 is super consistent.

40 ˆβ 2 is consistent even if Y 2t is correlated with u t so that there is no asymptotic simultaneity bias. In general, the asymptotic distribution of T (ˆβ 2 β 2 ) is asymptotically biased and non-normal. The usual OLS formula for computing avar(ˆβ d 2 )isincorrect and so the usual OLS standard errors are not correct. Even though the asymptotic bias goes to zero as T gets large ˆβ 2 may be substantially biased in small samples. The least squres estimator is also not efficient. The above results indicate that the least squares estimator of the cointegrating vector β 2 could be improved upon. A simple improvement is suggested by Stock and Watson (1993).

41 What causes the bias and non-normality in ˆβ 2? Assume a triangular representation of the form y 1t = Y 0 2t β 2 + u 1t Y 2t = Y 2t 1 + u 2t The bias and non-normality is a function of the time series structure of u t =(u 1t, u 0 2t )0. Assume a Wold structure for u t Ã u1t! u 2t Ã! ε1t ε 2t Ã ψ11 (L) = Ψ 21 (L) ÃÃ 0 iid N 0 Ψ 12 (L) Ψ 22 (L)!!Ã! ε1t ε 2t!!, Ã σ11 σ 12 σ 21 Σ 22 Result: There is no asymptotic bias if u t WN(0, I n )

42 Stock and Watson s Efficient Lead/Lag Estimator Stock and Watson (1993) provide a very simple method for obtaining an asymptotically efficient (equivalent to maximum likelihood) estimator for the normalized cointegrating vector β 2 as well as a valid formula for computing its asymptotic variance. Let Y t = (y 1t, Y2t 0 )0 Y 2t = (y 2t,...,y nt ) 0 β = (1, β 0 2 )0

43 Stock and Watson s efficient estimation procedure is: Augment the cointegrating regression of y 1t on Y 2t with appropriate deterministic terms D t with p leads and lags of Y 2t y 1t = γ 0 D t + β 0 2 Y 2t + px j= p = γ 0 D t + β 0 2 Y 2t + ψ 0 0 Y 2t ψ 0 j Y 2t j + u t +ψ 0 p Y 2t+p + + ψ 0 1 Y 2t+1 +ψ 0 1 Y 2t ψ 0 p Y 2t p + u t Estimate the augmented regression by least squares. The resulting estimator of β 2 is called the dynamic OLS estimator and is denoted ˆβ 2,DOLS. It will be consistent, asymptotically normally distributed and efficient (equivalent to MLE) under certain assumptions (see Stock and Watson (1993))

44 Asymptotically valid standard errors for the individual elements of ˆβ 2,DOLS are given by the OLS standard errors multiplied by the ratio Ã! ˆσ 2 1/2 u clrv(u t ) where ˆσ 2 u is the OLS estimate of var(u t ) and clrv(u t ) is any consistent estimate of the long-run variance of u t using the residuals û t from. Alternatively, the Newey-West HAC standard errors mayalsobeused. An alternative method to correct the standard errors utilizes a Cochrane-Orcutt GLS transformation of the error term. This is called the dynamic GLS estimator. Recently, Okagi and Ling (2005) have utilized this estimator to produce improved tests for cointegration based on Hausman-type tests.

45 Estimating Error Correction Models by Least Squares Consider a bivariate I(1) vector Y t =(y 1t,y 2t ) 0 and assume that Y t is cointegrated with cointegrating vector β =(1, β 2 ) 0 so that β 0 Y t = y 1t β 2 y 2t is I(0). Suppose one has a consistent estimate ˆβ 2 (by OLS or DOLS) of the cointegrating coefficient and is interested in estimating the corresponding error correction model for y 1t and y 2t using y 1t = c 1 + α 1 (y 1t 1 ˆβ 2 y 2t 1 ) + X j ψ j 11 y 1t j + X j ψ j 12 y 2t j + ε 1t y 2t = c 2 + α 2 (y 1t 1 ˆβ 2 y 2t 1 ) + X j ψ j 21 y 1t j + X j ψ 2 22 y 2t j + ε 2t Because ˆβ 2 is super consistent it may be treated as known in the ECM, so that the estimated disequilibrium error y 1t ˆβ 2 y 2t may be treated like the known disequilibrium error y 1t β 2 y 2t.

46 Since all variables in the ECM are I(0), the two regression equations may be consistently estimated using ordinary least squares (OLS). Alternatively, the ECM system may be estimated by seemingly unrelated regressions (SUR) to increase efficiency if the number of lags in the two equations are different.

### Estimation and Inference in Cointegration Models Economics 582

Estimation and Inference in Cointegration Models Economics 582 Eric Zivot May 17, 2012 Tests for Cointegration Let the ( 1) vector Y be (1). Recall, Y is cointegrated with 0 cointegrating vectors if there

### Cointegration. Basic Ideas and Key results. Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board

Cointegration Basic Ideas and Key results Egon Zakrajšek Division of Monetary Affairs Federal Reserve Board Summer School in Financial Mathematics Faculty of Mathematics & Physics University of Ljubljana

### Chapter 5: Bivariate Cointegration Analysis

Chapter 5: Bivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie V. Bivariate Cointegration Analysis...

### Non-Stationary Time Series, Cointegration and Spurious Regression

Econometrics 2 Fall 25 Non-Stationary Time Series, Cointegration and Spurious Regression Heino Bohn Nielsen 1of32 Motivation: Regression with Non-Stationarity What happens to the properties of OLS if variables

### SYSTEMS OF REGRESSION EQUATIONS

SYSTEMS OF REGRESSION EQUATIONS 1. MULTIPLE EQUATIONS y nt = x nt n + u nt, n = 1,...,N, t = 1,...,T, x nt is 1 k, and n is k 1. This is a version of the standard regression model where the observations

### Business Cycles and Natural Gas Prices

Department of Economics Discussion Paper 2004-19 Business Cycles and Natural Gas Prices Apostolos Serletis Department of Economics University of Calgary Canada and Asghar Shahmoradi Department of Economics

### TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND

I J A B E R, Vol. 13, No. 4, (2015): 1525-1534 TEMPORAL CAUSAL RELATIONSHIP BETWEEN STOCK MARKET CAPITALIZATION, TRADE OPENNESS AND REAL GDP: EVIDENCE FROM THAILAND Komain Jiranyakul * Abstract: This study

### Testing The Quantity Theory of Money in Greece: A Note

ERC Working Paper in Economic 03/10 November 2003 Testing The Quantity Theory of Money in Greece: A Note Erdal Özmen Department of Economics Middle East Technical University Ankara 06531, Turkey ozmen@metu.edu.tr

### Are the US current account deficits really sustainable? National University of Ireland, Galway

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Are the US current account deficits really sustainable? Author(s)

### Unit Labor Costs and the Price Level

Unit Labor Costs and the Price Level Yash P. Mehra A popular theoretical model of the inflation process is the expectationsaugmented Phillips-curve model. According to this model, prices are set as markup

### A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500

A Trading Strategy Based on the Lead-Lag Relationship of Spot and Futures Prices of the S&P 500 FE8827 Quantitative Trading Strategies 2010/11 Mini-Term 5 Nanyang Technological University Submitted By:

### Business cycles and natural gas prices

Business cycles and natural gas prices Apostolos Serletis and Asghar Shahmoradi Abstract This paper investigates the basic stylised facts of natural gas price movements using data for the period that natural

### Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate?

Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Emily Polito, Trinity College In the past two decades, there have been many empirical studies both in support of and opposing

### 1 Choosing the Lag Length for the ADF Test

1 Choosing the Lag Length for the ADF Test An important practical issue for the implementation of the ADF test is the specification of the lag length p. If p is too small then the remaining serial correlation

### Working Papers. Cointegration Based Trading Strategy For Soft Commodities Market. Piotr Arendarski Łukasz Postek. No. 2/2012 (68)

Working Papers No. 2/2012 (68) Piotr Arendarski Łukasz Postek Cointegration Based Trading Strategy For Soft Commodities Market Warsaw 2012 Cointegration Based Trading Strategy For Soft Commodities Market

### Empirical Properties of the Indonesian Rupiah: Testing for Structural Breaks, Unit Roots, and White Noise

Volume 24, Number 2, December 1999 Empirical Properties of the Indonesian Rupiah: Testing for Structural Breaks, Unit Roots, and White Noise Reza Yamora Siregar * 1 This paper shows that the real exchange

### On the long run relationship between gold and silver prices A note

Global Finance Journal 12 (2001) 299 303 On the long run relationship between gold and silver prices A note C. Ciner* Northeastern University College of Business Administration, Boston, MA 02115-5000,

### Chapter 6: Multivariate Cointegration Analysis

Chapter 6: Multivariate Cointegration Analysis 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie VI. Multivariate Cointegration

### Relationship between Commodity Prices and Exchange Rate in Light of Global Financial Crisis: Evidence from Australia

Relationship between Commodity Prices and Exchange Rate in Light of Global Financial Crisis: Evidence from Australia Omar K. M. R. Bashar and Sarkar Humayun Kabir Abstract This study seeks to identify

### IS THERE A LONG-RUN RELATIONSHIP

7. IS THERE A LONG-RUN RELATIONSHIP BETWEEN TAXATION AND GROWTH: THE CASE OF TURKEY Salih Turan KATIRCIOGLU Abstract This paper empirically investigates long-run equilibrium relationship between economic

### Why the saving rate has been falling in Japan

MPRA Munich Personal RePEc Archive Why the saving rate has been falling in Japan Yoshiaki Azuma and Takeo Nakao January 2009 Online at http://mpra.ub.uni-muenchen.de/62581/ MPRA Paper No. 62581, posted

### THE PRICE OF GOLD AND STOCK PRICE INDICES FOR

THE PRICE OF GOLD AND STOCK PRICE INDICES FOR THE UNITED STATES by Graham Smith November 2001 Abstract This paper provides empirical evidence on the relationship between the price of gold and stock price

### Minimum LM Unit Root Test with One Structural Break. Junsoo Lee Department of Economics University of Alabama

Minimum LM Unit Root Test with One Structural Break Junsoo Lee Department of Economics University of Alabama Mark C. Strazicich Department of Economics Appalachian State University December 16, 2004 Abstract

### Chapter 9: Univariate Time Series Analysis

Chapter 9: Univariate Time Series Analysis In the last chapter we discussed models with only lags of explanatory variables. These can be misleading if: 1. The dependent variable Y t depends on lags of

### Australian Dollars Exchange Rate and Gold Prices: An Interval Method Analysis

he 7th International Symposium on Operations Research and Its Applications (ISORA 08) Lijiang, China, October 3 Novemver 3, 2008 Copyright 2008 ORSC & APORC, pp. 46 52 Australian Dollars Exchange Rate

### An Empirical Study on the Relationship between Stock Index and the National Economy: The Case of China

An Empirical Study on the Relationship between Stock Index and the National Economy: The Case of China Ming Men And Rui Li University of International Business & Economics Beijing, People s Republic of

### Relationship between Stock Futures Index and Cash Prices Index: Empirical Evidence Based on Malaysia Data

2012, Vol. 4, No. 2, pp. 103-112 ISSN 2152-1034 Relationship between Stock Futures Index and Cash Prices Index: Empirical Evidence Based on Malaysia Data Abstract Zukarnain Zakaria Universiti Teknologi

### 1. The Classical Linear Regression Model: The Bivariate Case

Business School, Brunel University MSc. EC5501/5509 Modelling Financial Decisions and Markets/Introduction to Quantitative Methods Prof. Menelaos Karanasos (Room SS69, Tel. 018956584) Lecture Notes 3 1.

### Performing Unit Root Tests in EViews. Unit Root Testing

Página 1 de 12 Unit Root Testing The theory behind ARMA estimation is based on stationary time series. A series is said to be (weakly or covariance) stationary if the mean and autocovariances of the series

### Non-Stationary Time Series andunitroottests

Econometrics 2 Fall 2005 Non-Stationary Time Series andunitroottests Heino Bohn Nielsen 1of25 Introduction Many economic time series are trending. Important to distinguish between two important cases:

### 1 Cointegration. ECONOMICS 266, Spring, 1997 Bent E. Sørensen March 1, 2005

ECONOMICS 266, Spring, 1997 Bent E. Sørensen March 1, 2005 1 Cointegration. The survey by Campbell and Perron (1991) is a very good supplement to this chapter - for further study read Watson s survey for

### Causality between Government Expenditure and National Income: Evidence from Sudan. Ebaidalla Mahjoub Ebaidalla 1

Journal of Economic Cooperation and Development, 34, 4 (2013), 61-76 Causality between Government Expenditure and National Income: Evidence from Sudan Ebaidalla Mahjoub Ebaidalla 1 This study aims to determine

### THE EFFECTS OF BANKING CREDIT ON THE HOUSE PRICE

THE EFFECTS OF BANKING CREDIT ON THE HOUSE PRICE * Adibeh Savari 1, Yaser Borvayeh 2 1 MA Student, Department of Economics, Science and Research Branch, Islamic Azad University, Khuzestan, Iran 2 MA Student,

### The Power of the KPSS Test for Cointegration when Residuals are Fractionally Integrated

The Power of the KPSS Test for Cointegration when Residuals are Fractionally Integrated Philipp Sibbertsen 1 Walter Krämer 2 Diskussionspapier 318 ISNN 0949-9962 Abstract: We show that the power of the

### FULLY MODIFIED OLS FOR HETEROGENEOUS COINTEGRATED PANELS

FULLY MODIFIED OLS FOR HEEROGENEOUS COINEGRAED PANELS Peter Pedroni ABSRAC his chapter uses fully modified OLS principles to develop new methods for estimating and testing hypotheses for cointegrating

### An Introduction to Time Series Regression

An Introduction to Time Series Regression Henry Thompson Auburn University An economic model suggests examining the effect of exogenous x t on endogenous y t with an exogenous control variable z t. In

### Testing for Granger causality between stock prices and economic growth

MPRA Munich Personal RePEc Archive Testing for Granger causality between stock prices and economic growth Pasquale Foresti 2006 Online at http://mpra.ub.uni-muenchen.de/2962/ MPRA Paper No. 2962, posted

### Real Exchange Rates and Real Interest Differentials: The Case of a Transitional Economy - Cambodia

Department of Economics Issn 1441-5429 Discussion paper 08/10 Real Exchange Rates and Real Interest Differentials: The Case of a Transitional Economy - Cambodia Tuck Cheong Tang 1 Abstract: This study

### FORECASTING DEPOSIT GROWTH: Forecasting BIF and SAIF Assessable and Insured Deposits

Technical Paper Series Congressional Budget Office Washington, DC FORECASTING DEPOSIT GROWTH: Forecasting BIF and SAIF Assessable and Insured Deposits Albert D. Metz Microeconomic and Financial Studies

### The price-volume relationship of the Malaysian Stock Index futures market

The price-volume relationship of the Malaysian Stock Index futures market ABSTRACT Carl B. McGowan, Jr. Norfolk State University Junaina Muhammad University Putra Malaysia The objective of this study is

### In this chapter, we cover some more advanced topics in time series econometrics. In

C h a p t e r Eighteen Advanced Time Series Topics In this chapter, we cover some more advanced topics in time series econometrics. In Chapters 10, 11, and 12, we emphasized in several places that using

### The Long-Run Relation Between The Personal Savings Rate And Consumer Sentiment

The Long-Run Relation Between The Personal Savings Rate And Consumer Sentiment Bradley T. Ewing 1 and James E. Payne 2 This study examined the long run relationship between the personal savings rate and

### Time Series Analysis and Spurious Regression: An Error Correction

Time Series Analysis and Spurious Regression: An Error Correction Peter K. Enns Takaaki Masaki Nathan J. Kelly pe52@cornell.edu tm427@cornell.edu nathan.j.kelly@gmail.com Cornell University Cornell University

### Cointegration and error correction

EVIEWS tutorial: Cointegration and error correction Professor Roy Batchelor City University Business School, London & ESCP, Paris EVIEWS Tutorial 1 EVIEWS On the City University system, EVIEWS 3.1 is in

### Electricity Demand for Sri Lanka: A Time Series Analysis

SEEDS Surrey Energy Economics Discussion paper Series SURREY ENERGY ECONOMICS CENTRE Electricity Demand for Sri Lanka: A Time Series Analysis Himanshu A. Amarawickrama and Lester C Hunt October 2007 SEEDS

### Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes

Bias in the Estimation of Mean Reversion in Continuous-Time Lévy Processes Yong Bao a, Aman Ullah b, Yun Wang c, and Jun Yu d a Purdue University, IN, USA b University of California, Riverside, CA, USA

### INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition)

INDIRECT INFERENCE (prepared for: The New Palgrave Dictionary of Economics, Second Edition) Abstract Indirect inference is a simulation-based method for estimating the parameters of economic models. Its

### Do Heating Oil Prices Adjust Asymmetrically To Changes In Crude Oil Prices Paul Berhanu Girma, State University of New York at New Paltz, USA

Do Heating Oil Prices Adjust Asymmetrically To Changes In Crude Oil Prices Paul Berhanu Girma, State University of New York at New Paltz, USA ABSTRACT This study investigated if there is an asymmetric

### Pricing Corn Calendar Spread Options. Juheon Seok and B. Wade Brorsen

Pricing Corn Calendar Spread Options by Juheon Seok and B. Wade Brorsen Suggested citation format: Seok, J., and B. W. Brorsen. 215. Pricing Corn Calendar Spread Options. Proceedings of the NCCC-134 Conference

### ANALYSIS OF EUROPEAN, AMERICAN AND JAPANESE GOVERNMENT BOND YIELDS

Applied Time Series Analysis ANALYSIS OF EUROPEAN, AMERICAN AND JAPANESE GOVERNMENT BOND YIELDS Stationarity, cointegration, Granger causality Aleksandra Falkowska and Piotr Lewicki TABLE OF CONTENTS 1.

### The Effect of Infrastructure on Long Run Economic Growth

November, 2004 The Effect of Infrastructure on Long Run Economic Growth David Canning Harvard University and Peter Pedroni * Williams College --------------------------------------------------------------------------------------------------------------------

### Foreign Direct Investment and Economic Growth in Sri Lanka

Sri Lankan Journal of Agricultural Economics. Vol. 6, No. 1, 2004 Foreign Direct Investment and Economic Growth in Sri Lanka N. Balamurali and C. Bogahawatte * ABSTRACT This paper examines the relationship

### How do oil prices affect stock returns in GCC markets? An asymmetric cointegration approach.

How do oil prices affect stock returns in GCC markets? An asymmetric cointegration approach. Mohamed El Hedi AROURI (LEO-Université d Orléans & EDHEC, mohamed.arouri@univ-orleans.fr) Julien FOUQUAU (ESC

### PITFALLS IN TIME SERIES ANALYSIS. Cliff Hurvich Stern School, NYU

PITFALLS IN TIME SERIES ANALYSIS Cliff Hurvich Stern School, NYU The t -Test If x 1,..., x n are independent and identically distributed with mean 0, and n is not too small, then t = x 0 s n has a standard

### The Feeble Link between Exchange Rates and Fundamentals: Can We Blame the Discount Factor?

LUCIO SARNO ELVIRA SOJLI The Feeble Link between Exchange Rates and Fundamentals: Can We Blame the Discount Factor? Recent research demonstrates that the well-documented feeble link between exchange rates

### Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

### Financial TIme Series Analysis: Part II

Department of Mathematics and Statistics, University of Vaasa, Finland January 29 February 13, 2015 Feb 14, 2015 1 Univariate linear stochastic models: further topics Unobserved component model Signal

### Chapter 1. Vector autoregressions. 1.1 VARs and the identi cation problem

Chapter Vector autoregressions We begin by taking a look at the data of macroeconomics. A way to summarize the dynamics of macroeconomic data is to make use of vector autoregressions. VAR models have become

Nonlinear Error-Correction Models for Interest Rates in the Netherlands Dick van Dijk æ Tinbergen Institute, Erasmus University Rotterdam and Philip Hans Franses Rotterdam Institute for Business Economic

### SHORT RUN AND LONG RUN DYNAMICS OF RESIDENTIAL ELECTRICITY CONSUMPTION: HOMOGENEOUS AND HETEROGENEOUS PANEL ESTIMATIONS FOR OECD

Professor Faik BĐLGĐLĐ, PhD E-mail: fbilgili@erciyes.edu.tr Department of Economics, Faculty of Economics and Administrative Sciences, Erciyes University, Turkey Assistant Professor Yalçın PAMUK, PhD E-mail:

### CHAPTER-6 LEAD-LAG RELATIONSHIP BETWEEN SPOT AND INDEX FUTURES MARKETS IN INDIA

CHAPTER-6 LEAD-LAG RELATIONSHIP BETWEEN SPOT AND INDEX FUTURES MARKETS IN INDIA 6.1 INTRODUCTION The introduction of the Nifty index futures contract in June 12, 2000 has offered investors a much greater

### C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)}

C: LEVEL 800 {MASTERS OF ECONOMICS( ECONOMETRICS)} 1. EES 800: Econometrics I Simple linear regression and correlation analysis. Specification and estimation of a regression model. Interpretation of regression

### National Institute for Applied Statistics Research Australia. Working Paper

National Institute for Applied Statistics Research Australia The University of Wollongong Working Paper 10-14 Cointegration with a Time Trend and Pairs Trading Strategy: Empirical Study on the S&P 500

### Analysis of Financial Time Series with EViews

Analysis of Financial Time Series with EViews Enrico Foscolo Contents 1 Asset Returns 2 1.1 Empirical Properties of Returns................. 2 2 Heteroskedasticity and Autocorrelation 4 2.1 Testing for

### Time Series Analysis III

Lecture 12: Time Series Analysis III MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis III 1 Outline Time Series Analysis III 1 Time Series Analysis III MIT 18.S096 Time Series Analysis

### Is the Basis of the Stock Index Futures Markets Nonlinear?

University of Wollongong Research Online Applied Statistics Education and Research Collaboration (ASEARC) - Conference Papers Faculty of Engineering and Information Sciences 2011 Is the Basis of the Stock

### Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems

Normalization and Mixed Degrees of Integration in Cointegrated Time Series Systems Robert J. Rossana Department of Economics, 04 F/AB, Wayne State University, Detroit MI 480 E-Mail: r.j.rossana@wayne.edu

### ill-defined statistical test for fractional integration parameter

ill-defined statistical test for fractional integration parameter Ahmed BENSALMA 1 1 ENSSEA Pôle universitaire Koléa, Tipaza, Algeria (ex/ INPS 11 Chemin Doudou mokhtar Ben-aknoun Alger) Email: bensalma.ahmed@gmail.com

### Chapter 4: Vector Autoregressive Models

Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...

### The information content of lagged equity and bond yields

Economics Letters 68 (2000) 179 184 www.elsevier.com/ locate/ econbase The information content of lagged equity and bond yields Richard D.F. Harris *, Rene Sanchez-Valle School of Business and Economics,

### Revisiting Share Market Efficiency: Evidence from the New Zealand Australia, US and Japan Stock Indices

American Journal of Applied Sciences 2 (5): 996-1002, 2005 ISSN 1546-9239 Science Publications, 2005 Revisiting Share Market Efficiency: Evidence from the New Zealand Australia, US and Japan Stock Indices

### AN EMPIRICAL INVESTIGATION OF THE RELATIONSHIP AMONG P/E RATIO, STOCK RETURN AND DIVIDEND YIELS FOR ISTANBUL STOCK EXCHANGE

AN EMPIRICAL INVESTIGATION OF THE RELATIONSHIP AMONG P/E RATIO, STOCK RETURN AND DIVIDEND YIELS FOR ISTANBUL STOCK EXCHANGE Funda H. SEZGIN Mimar Sinan Fine Arts University, Faculty of Science and Letters

### Examining the Relationship between ETFS and Their Underlying Assets in Indian Capital Market

2012 2nd International Conference on Computer and Software Modeling (ICCSM 2012) IPCSIT vol. 54 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V54.20 Examining the Relationship between

### Serhat YANIK* & Yusuf AYTURK*

LEAD-LAG RELATIONSHIP BETWEEN ISE 30 SPOT AND FUTURES MARKETS Serhat YANIK* & Yusuf AYTURK* Abstract The lead-lag relationship between spot and futures markets indicates which market leads to the other.

### The Law of one Price in Global Natural Gas Markets - A Threshold Cointegration Analysis

The Law of one Price in Global Natural Gas Markets - A Threshold Cointegration Analysis Sebastian Nick a, Benjamin Tischler a, a Institute of Energy Economics, University of Cologne, Vogelsanger Straße

### Inflation as a function of labor force change rate: cointegration test for the USA

Inflation as a function of labor force change rate: cointegration test for the USA I.O. Kitov 1, O.I. Kitov 2, S.A. Dolinskaya 1 Introduction Inflation forecasting plays an important role in modern monetary

### EXPORT INSTABILITY, INVESTMENT AND ECONOMIC GROWTH IN ASIAN COUNTRIES: A TIME SERIES ANALYSIS

ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208269 27 Hillhouse Avenue New Haven, Connecticut 06520-8269 CENTER DISCUSSION PAPER NO. 799 EXPORT INSTABILITY, INVESTMENT AND ECONOMIC GROWTH IN ASIAN

### LOGNORMAL MODEL FOR STOCK PRICES

LOGNORMAL MODEL FOR STOCK PRICES MICHAEL J. SHARPE MATHEMATICS DEPARTMENT, UCSD 1. INTRODUCTION What follows is a simple but important model that will be the basis for a later study of stock prices as

### The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2013, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (40 points) Answer briefly the following questions. 1. Describe

### Energy consumption and GDP: causality relationship in G-7 countries and emerging markets

Ž. Energy Economics 25 2003 33 37 Energy consumption and GDP: causality relationship in G-7 countries and emerging markets Ugur Soytas a,, Ramazan Sari b a Middle East Technical Uni ersity, Department

### THE U.S. CURRENT ACCOUNT: THE IMPACT OF HOUSEHOLD WEALTH

THE U.S. CURRENT ACCOUNT: THE IMPACT OF HOUSEHOLD WEALTH Grant Keener, Sam Houston State University M.H. Tuttle, Sam Houston State University 21 ABSTRACT Household wealth is shown to have a substantial

### Chapter 5. Analysis of Multiple Time Series. 5.1 Vector Autoregressions

Chapter 5 Analysis of Multiple Time Series Note: The primary references for these notes are chapters 5 and 6 in Enders (2004). An alternative, but more technical treatment can be found in chapters 10-11

### State Space Time Series Analysis

State Space Time Series Analysis p. 1 State Space Time Series Analysis Siem Jan Koopman http://staff.feweb.vu.nl/koopman Department of Econometrics VU University Amsterdam Tinbergen Institute 2011 State

### Time Series Analysis

Time Series Analysis Identifying possible ARIMA models Andrés M. Alonso Carolina García-Martos Universidad Carlos III de Madrid Universidad Politécnica de Madrid June July, 2012 Alonso and García-Martos

### The Engle-Granger representation theorem

The Engle-Granger representation theorem Reference note to lecture 10 in ECON 5101/9101, Time Series Econometrics Ragnar Nymoen March 29 2011 1 Introduction The Granger-Engle representation theorem is

### Air passenger departures forecast models A technical note

Ministry of Transport Air passenger departures forecast models A technical note By Haobo Wang Financial, Economic and Statistical Analysis Page 1 of 15 1. Introduction Sine 1999, the Ministry of Business,

### p Values and Alternative Boundaries

p Values and Alternative Boundaries for CUSUM Tests Achim Zeileis Working Paper No. 78 December 2000 December 2000 SFB Adaptive Information Systems and Modelling in Economics and Management Science Vienna

### Questions and Answers on Hypothesis Testing and Confidence Intervals

Questions and Answers on Hypothesis Testing and Confidence Intervals L. Magee Fall, 2008 1. Using 25 observations and 5 regressors, including the constant term, a researcher estimates a linear regression

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Cointegration and the ECM

Cointegration and the ECM Two nonstationary time series are cointegrated if they tend to move together through time. For instance, we have established that the levels of the Fed Funds rate and the 3-year

### MULTIPLE REGRESSIONS ON SOME SELECTED MACROECONOMIC VARIABLES ON STOCK MARKET RETURNS FROM 1986-2010

Advances in Economics and International Finance AEIF Vol. 1(1), pp. 1-11, December 2014 Available online at http://www.academiaresearch.org Copyright 2014 Academia Research Full Length Research Paper MULTIPLE

### Powerful new tools for time series analysis

Christopher F Baum Boston College & DIW August 2007 hristopher F Baum ( Boston College & DIW) NASUG2007 1 / 26 Introduction This presentation discusses two recent developments in time series analysis by

### LONG-TERM DISABILITY CLAIMS RATES AND THE CONSUMPTION-TO-WEALTH RATIO

C The Journal of Risk and Insurance, 2009, Vol. 76, No. 1, 109-131 LONG-TERM DISABILITY CLAIMS RATES AND THE CONSUMPTION-TO-WEALTH RATIO H. J. Smoluk ABSTRACT Aframeworkforlinkinglong-termdisability(LTD)claimsratestothemacroeconomy

### GRADO EN ECONOMÍA. Is the Forward Rate a True Unbiased Predictor of the Future Spot Exchange Rate?

FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES GRADO EN ECONOMÍA Is the Forward Rate a True Unbiased Predictor of the Future Spot Exchange Rate? Autor: Elena Renedo Sánchez Tutor: Juan Ángel Jiménez Martín

### Testing for Unit Roots: What Should Students Be Taught?

Testing for Unit Roots: What Should Students Be Taught? John Elder and Peter E. Kennedy Abstract: Unit-root testing strategies are unnecessarily complicated because they do not exploit prior knowledge

### Chapter 6. Econometrics. 6.1 Introduction. 6.2 Univariate techniques Transforming data

Chapter 6 Econometrics 6.1 Introduction We re going to use a few tools to characterize the time series properties of macro variables. Today, we will take a relatively atheoretical approach to this task,

### The effect of Macroeconomic Determinants on the Performance of the Indian Stock Market

The effect of Macroeconomic Determinants on the Performance of the Indian Stock Market 1 Samveg Patel Abstract The study investigates the effect of macroeconomic determinants on the performance of the

### COURSES: 1. Short Course in Econometrics for the Practitioner (P000500) 2. Short Course in Econometric Analysis of Cointegration (P000537)

Get the latest knowledge from leading global experts. Financial Science Economics Economics Short Courses Presented by the Department of Economics, University of Pretoria WITH 2015 DATES www.ce.up.ac.za