Al Si. Atomic bondings and properties of U1 andu2 phases of Al-Mg-Si alloy. GAO Ying-jun, CHEN Hua-ning, WEI Na, WEN Chun-li, HUANG Chuang-gao

Size: px
Start display at page:

Download "Al Si. Atomic bondings and properties of U1 andu2 phases of Al-Mg-Si alloy. GAO Ying-jun, CHEN Hua-ning, WEI Na, WEN Chun-li, HUANG Chuang-gao"

Transcription

1 Vol.20 No.7 The Chinese Journal of Nonferrous Metals July (2010) U1 U2 ( ) EET TFD -- U1 U2 U1 U2 U2 U1 (001) //(110) U1 (001) // (010) U2 ( ) -- U1 U2 TG111.1 A Atomic bondings and properties of U1 andu2 phases of -- alloy GAO Ying-jun, CHEN Hua-ning, WEI Na, WEN Chun-li, HUANG Chuang-gao (College of Physics Science and Engineering, Guangxi University, Nanning , China) Abstract: Atomic bondings of U1 and U2 phases in -- alloy during aging were calculated by using the EET theory and the improved TFD theory. The results show that the strongest bonding and the second strong bonding in two phases are both bonds, which are stronger than those in matrix. The firm network structures of bonds are formed in U1 and U2 phases to enhance the bond network and strengthen alloy, while the bonding networks of in U1 phase are not only stronger than those in U2 phase, but also with greater combining energy, therefore the structure of U1 is more stable. The calculation results also show that the electron density on the interface (001) //(110) U1 between U1 and matrix of is continuous with lower strain energy so that the interface (0001) //(110) U1 is more stable, while that on the interface (001) //(010) U2 is not continuous with a greater stored energy, poor atom-matching and higher stored energy, which will lead to precipitate a new phase or form a creak to break the alloy. Key Word: -- alloy; U1 and U2 phases; atomic bonding; mechanical property -- [1 2] Cu GP β β β [2] [3 5] l-- U1 U2 [5] SSSS (, ) GPZ β (β +B +U1+U2) β( 2 ) U1 U2 l-- 200~300 [4] U1 U2 [5 8] U1 U2 ( , ); ( , , ) ; : ; gaoyj@gxu.edu.cn

2 [9 10] [11] (EET) [12] TFD [13], EET TFD -- U1 U2 4 ( 4 ) U2 β" U1 U2 β β 100 U2 (Co 2 ) [4, 14] Pnma a= nm b= nm c=0.794 nm U2 2 ( U2 [ 310] //[100] U2, [5] 001) //(010), [001] U2 [130] // U1 U1 [4] ( 2 Ca 2 La 2 O 3 [14] ) 50~500 nm 50 nm a=b= nm c= nm w()/w()=0.66 P3 m1(no.164) U1 1 [7 8] (001) A1 //(110) U1 [310] A1 //[001] U1 [ 130] // [ 120] U1 (001) A1 //(110) U1 [100] A1 // [0001] U1 1 10] // [ 120] U1 [ 2 U2 Fig.2 Microstructure of U2 cell: (a) Bond network structure in U2 cell; (b) Bond network structure along [010] 2 1 U1 Fig.1 Microstructure of U1 cell 1.2 U2 U2 [5] EET EET [12 13] s ( n a ) D uv ( nα ) = Ru + Rv β lg (1) D uv R u R v β

3 U1 U β [11 12] u v u v u v u v k1 nc + k2nc = I α (2) α k 1 k 2 u v n u c n v c u v I α [15] [4 5] (BLD) [12] n A [15 18] (1) (2), BLD ε 1 4 n c ρ α E A 1 U1 Table 1 Atomic bonding of metastable phase U1 Bond I D /nm α D /nm /nm nc nd ne nf ng ρ α /nm 1 E A /(kj mol 1 ) D D D D D D D D n H D n I D nj U1 phase: a=0.405 nm, b=0.405 nm, c=0.674 nm; atom state: ε=4, R 1 = nm, n c = ; atom state: ε=3, R 1 = nm, n c = ; atom state: ε=4, R 1 = nm, n c = U2 Table 2 Atomic bonding of metastable phase U2 Bond I α D /nm ρ α /nm 1 E A /(kj mol 1 ) nc nd ne nf ng nh ni nj nk nl nm D D D D D D D D D D D D D D n N n O np D D U2 phase: a=0.675 nm, b=0.405 nm, c=0.794 nm; atom state: ε=4, R 1 = nm, n c = ; atom state: ε=3, R 1 = nm, n c = ; atom state: ε=4, R 1 = nm, n c =3.664

4 (001) // (110) U1 Table 3 Atomic bonding of (001) // (110) U1 interphase boundary Bond I α Cell D /nm ρ α /nm 1 E A /(kj mol 1 ) D D Bond nc nd ne nf ng I α U1 Cell D /nm ρ α /nm 1 E A /(kj mol 1 ) D D D D D D D D n H D n I D nj In matrix, atom state: ε=5, R 1 = nm, n c = In U1 phase, atom sate: ε=4, R 1 = nm, n c = ; atom state: ε=3, R 1 = nm, n c = ; atom state: ε=4, R 1 = nm, n c = Interface combination state: (001) face: S= nm 2, n c = , ρ= nm 2, σ N =2, ρ min = %, σ =68; (110) U1 face: S= nm 2, n c = , ρ= nm 2, σ N =79, ρ = nm 2 ρ ρ S σ σ 2.2 TFD [13] ρ (hkl) ρ (uvw) ρ σ( ρ 10% ρ 10% ρ 10% ) ρ (hkl) (uvw) ρ (hkl) ρ (uvw) ρ TFD [13] uvw c n nc ρ ( uvw) =, ρ ( hkl) = (3) S S ( uvw) hkl ( hkl) ρ( uvw) ρ( hkl) ρ = 100% (4) 1 ( ρ( uvw) + ρ( hkl) ) 2 nc n A I A +n B I B +n C I C + S (uvw) S (hkl) (uvw) (hkl) U1 U2 U1 U2 D uv (n a ) nm BLD [12, 16] (ε 6, ε 4, ε 6) [16] 3 4 5

5 U1 U (001) // (010) U2 Table 4 Atomic bonding of (001) // (010) U2 interphase boundary Bond I α Cell D /nm ρ α /nm 1 E A /(kj/mol) D D Bond nc nd ne nf ng nh ni nj nk nl nm I α U2 Cell D /nm ρ α /nm 1 E A /(kj/mol) D D D D D D D D D D D D D D n N n O np D D In matrix, atom state: ε=4, R 1 = nm, n c = In U2 phase, atom state: ε=6, R 1 = , n c =3; atom state: ε= 4, R 1 = nm, n c =2; atom state: ε=5, R 1 = nm, n c = Interface combination state: (001) face: S= nm 2, n c = , ρ= nm 2, σ N =2, ρ min =47.856%, σ =80; (010) U2 face: S= nm 2, n c = , ρ= nm 2, σ N =40, ρ = nm [19] [14] [19] U1 U2 10 (U1 E U kj/mol [9, 20] E U1 = kj/mol U2 E U2 = kj/mol [9, 20] E U2 = kj/mol) [9] 15% U1 U2 [13] D uv (n a )

6 ( ρ A n A /D A ) n A E A E = (5) A BAFA /DA B A A b u b v F A /D B A [12] F A 1 4 U1 3 U1 (100) Fig.3 Bonding structure of plane (100) in U1 cell 4 U2 (010) Fig.4 Bonding structure of plane (100) in U2 cell nm ρ (001) // (110) U1 (001) // (010) U U1 U2 EET [13] σ N n A ρ A E A σ N σ N n A ( σ N n A ) n A n A n A ρ A U2 [16] ( 6 ) U1 U2 n A n B ρ A ρ B E A E B ( n A ()= ρ α = nm 1 E A = kj/mol) 2~3 U2 U1 U2 1 2 EET U1 n A = ρ A = nm 1 E A = kj/mol U2 n A = ρ A = nm 1 E A = kj/mol U1 U2 U1 U2 E A (U1)= kj/mol E A (U2) kj/mol(e A (U1) E A (U2)) U1 [9] U1 U2 U1 U2 5 E U1 = kj/mol E U2 = kj/mol U2 U1 3.2 U1 U2 EET [13]

7 U1 U ρ σ σ ( ρ 10%) (ρ) ρ 10% ρ σ ( ) 4 1) U1 U ) U1 U2 2~3 U1 U2 U1 U2 2 U2 U1 U1 U2 3) (001) // (110) U1 (001) // (010) U2 REFERENCES 5 U1 U2 Fig.5 Bonding networks of U1 (a) and U2 (b) phases 3 4 (001) //(110) U1 ρ U1 = nm 2 (001) //(010) U2 ρ U2 = nm 2 (001) //(110) U1 U1 ρ min = %( 10%) U1 U1 (001) // (010) U2 ρ min =47.856%( 10%) [1] HIROSAWA S, SATO T. Nano-scale clusters formed in the early state of phase decomposition[j]. Mater Sci Forum, 2005, 475/479: [2] FUKUI K, TAKEDA M. The metastable phase responsible for peak hardness and its morphology in an -- alloy[j]. Mater Sci Forum, 2005, 475/479: [3] VISSERS R, van HUIS M A, ZANDBERGEN H W, MARIOARA C D. The crystal structure of the β phase in -- alloys[j]. Acta Mater, 2007, 55: [4] ANDERS G F, RAGNVALD H. Bonding in and -- compounds relevant to -- alloys[j]. Phys Rev B, 2003, 67: [5] ANDERSEN S J, MARIOARA C D, FRØSETH A, VISSERS R, ZANDBERGEN H W. Crystal structure of the orthorhombic U2 precipitate in the -- alloy system and its relation to the β and β" phases[j]. Mater Sci Eng A, 2005, 390: [6] TSAO C S, CHEN C Y. Precipitation kinetics and transformation of metastable phases in -- alloys[j]. Acta Mater, 2006, 54: [7] ANDERSEN S J, MARIOARA C D, VISSERS R, FROSETH A, ZANDBERGEN H W. The structural relation between precipitates in -- alloys[j]. Mater Sci Eng A, 2007, 444:

8 [8] MATSUDA K, SAKAGUCHI Y, MIYATA Y. Precipitation sequence of various kinds of metastable phases in -- alloy[j]. J Mater Sci, 2000, 35: [9] RAVI C, WOLVERTON C. First-principles study of crystal structure and stability of ---(Cu) precipitates[j]. Acta Mater, 2004, 52: [10] VAN M A, CHEN J H. Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in -- alloys in the late stages of evolution[j]. Acta Mater, 2006, 54: [11] L. [M].,. :, 1996: 393. PAULING L. The nature of chemical bonds[m]. LU Jia-xi, et al, transl. Shanghai: Shanghai Science and Technology Press, 1996: 393. [12]. [M]. :,1993. ZHANG Rui-lin. Empirical electron theory in solids and molecules[m]. Changchun: Jilin Science and Technology Press, [13],,. [M]. :, 2002: 23. LIU Zhi-lin, LI Zhi-lin, LIU Wei-dong. Electron structure and properties of interface[m]. Beijing: Science Press, 2002: 23. [14] GREGORY A L, ROALD H. The TiNi family of compounds: Structure and bonding[j]. Inorg Chem, 1998, 37: [15] GAO Ying-jun, HUANG Chuang-gao, HOU Xian-hua. Atomic bonding and property of --Sc alloy[j]. Materials Transaction, 2005, 46: [16]. α, δ γ [J]., 1979, 4(4): YU Rui-huang. Analysis of valence electron structure about α, δ phase and γ phase in - binary phase diagram[j]. Journal of Jilin University, 1979, 4(4): [17] GAO Ying-jun, HOU Xian-hua, MO Qi-feng. Atomic bonding of precipitate and phase transformation of -Cu- alloy[j]. J loy & Compounds, 2007, 441: [18] GAO Ying-jun, MO Qi-feng, CHEN Hua-ning. Atomic bonding and mechanical properties of -Li-Zr alloy [J]. Mater Sci Eng A, 2009, 499: [19],,. [J]. A, 1988, 18(3): XU Wan-dong, ZHANG Rui-lin, YU Rui-huang. Calculation of crystal binding energy in transition metal compounds[j]. Science in China (Series A), 1988, 18(3): [20],. [M].,. :, 1979: 85. Shuichi Iida, et al. Mathematical tables of physics[m]. ZHANG Zhi-xian, et al, transl. Beijing: Science Press, 1979: 85. ( )

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur? PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06

More information

Thermodynamic database of the phase diagrams in copper base alloy systems

Thermodynamic database of the phase diagrams in copper base alloy systems Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 6: Chemical change MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You may

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers Key Questions & Exercises Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Answers 1. The atomic weight of carbon is 12.0107 u, so a mole of carbon has a mass of 12.0107 g. Why doesn t a mole of

More information

Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples

Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples C. W. Chang 1, Q. P. Lee 1, C. E. Ho 1 1, 2, *, and C. R. Kao 1 Department of Chemical & Materials Engineering 2 Institute of Materials

More information

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts Bonds hapter 8 Bonding: General oncepts Forces that hold groups of atoms together and make them function as a unit. Bond Energy Bond Length It is the energy required to break a bond. The distance where

More information

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry

Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Chem 115 POGIL Worksheet - Week 4 Moles & Stoichiometry Why? Chemists are concerned with mass relationships in chemical reactions, usually run on a macroscopic scale (grams, kilograms, etc.). To deal with

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness

Sn-Cu Intermetallic Grain Morphology Related to Sn Layer Thickness Journal of ELECTRONIC MATERIALS, Vol. 36, No. 11, 2007 DOI: 10.1007/s11664-007-0270-x Ó 2007 TMS Special Issue Paper -Cu Intermetallic Grain Morphology Related to Layer Thickness MIN-HSIEN LU 1 and KER-CHANG

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

Analysis of China Motor Vehicle Insurance Business Trends

Analysis of China Motor Vehicle Insurance Business Trends Analysis of China Motor Vehicle Insurance Business Trends 1 Xiaohui WU, 2 Zheng Zhang, 3 Lei Liu, 4 Lanlan Zhang 1, First Autho University of International Business and Economic, Beijing, wuxiaohui@iachina.cn

More information

Influence of Solder Reaction Across Solder Joints

Influence of Solder Reaction Across Solder Joints Influence of Solder Reaction Across Solder Joints Kejun Zeng FC BGA Packaging Development Semiconductor Packaging Development Texas Instruments, Inc. 6 th TRC Oct. 27-28, 2003 Austin, TX 1 Outline Introduction

More information

Supporting Information. Phosphorus-, nitrogen- and carbon- containing polyelectrolyte complex:

Supporting Information. Phosphorus-, nitrogen- and carbon- containing polyelectrolyte complex: Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 S1 Supporting Information Phosphorus-, nitrogen- and carbon- containing polyelectrolyte complex:

More information

The Mole. 6.022 x 10 23

The Mole. 6.022 x 10 23 The Mole 6.022 x 10 23 Background: atomic masses Look at the atomic masses on the periodic table. What do these represent? E.g. the atomic mass of Carbon is 12.01 (atomic # is 6) We know there are 6 protons

More information

Chapter 8. Phase Diagrams

Chapter 8. Phase Diagrams Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal

More information

Size effects. Lecture 6 OUTLINE

Size effects. Lecture 6 OUTLINE Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

More information

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law.

Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Mendeleev proposed that elements be arranged

More information

Synthesis and Characterization of MnO 2 Nanoparticles using Co-precipitation Technique

Synthesis and Characterization of MnO 2 Nanoparticles using Co-precipitation Technique International Journal of Chemistry and Chemical Engineering. ISSN 2248-9924 Volume 3, Number 3 (2013), pp. 155-160 Research India Publications http://www.ripublication.com Synthesis and Characterization

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O Chem 100 Mole conversions and stoichiometry worksheet 1. How many Ag atoms are in.4 mol Ag atoms? 6.0 10 Ag atoms 4.4 mol Ag atoms = 1.46 10 Ag atoms 1 mol Ag atoms. How many Br molecules are in 18. mol

More information

Thermodynamics of Crystal Formation

Thermodynamics of Crystal Formation Thermodynamics of Crystal Formation! All stable ionic crystals have negative standard enthalpies of formation, ΔH o f, and negative standard free energies of formation, ΔG o f. Na(s) + ½ Cl 2 (g) NaCl(s)

More information

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

MODERN ATOMIC THEORY AND THE PERIODIC TABLE CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek

More information

Comparative crystal structure determination of griseofulvin: Powder X-ray diffraction versus single-crystal X-ray diffraction

Comparative crystal structure determination of griseofulvin: Powder X-ray diffraction versus single-crystal X-ray diffraction Article Analytical Chemistry October 2012 Vol.57 No.30: 3867 3871 doi: 10.1007/s11434-012-5245-5 SPECIAL TOPICS: Comparative crystal structure determination of griseofulvin: Powder X-ray diffraction versus

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct

More information

Relevant Reading for this Lecture... Pages 83-87.

Relevant Reading for this Lecture... Pages 83-87. LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

More information

Chapter Outline. How do atoms arrange themselves to form solids?

Chapter Outline. How do atoms arrange themselves to form solids? Chapter Outline How do atoms arrange themselves to form solids? Fundamental concepts and language Unit cells Crystal structures Simple cubic Face-centered cubic Body-centered cubic Hexagonal close-packed

More information

All answers must use the correct number of significant figures, and must show units!

All answers must use the correct number of significant figures, and must show units! CHEM 10113, Quiz 2 September 7, 2011 Name (please print) All answers must use the correct number of significant figures, and must show units! IA Periodic Table of the Elements VIIIA (1) (18) 1 2 1 H IIA

More information

Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process

Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated Welding Thermal Cycle Process Available online at SciVerse ScienceDirect J. Mater. Sci. Technol., 2013, 29(5), 446e450 Continuous Cooling Bainite Transformation Characteristics of a Low Carbon Microalloyed Steel under the Simulated

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Etching effects and the formation of Streaking Defects on Al Extrusions

Etching effects and the formation of Streaking Defects on Al Extrusions Etching effects and the formation of Streaking Defects on Al Extrusions Surface defects such as streaking are often present on anodized extrusions of 6xxx series alloys. The streak defect is the result

More information

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Questions on Chapter 8 Basic Concepts of Chemical Bonding Questions on Chapter 8 Basic Concepts of Chemical Bonding Circle the Correct Answer: 1) Which ion below has a noble gas electron configuration? A) Li 2+ B) Be 2+ C) B2+ D) C2+ E) N 2-2) Of the ions below,

More information

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F.

B I N G O B I N G O. Hf Cd Na Nb Lr. I Fl Fr Mo Si. Ho Bi Ce Eu Ac. Md Co P Pa Tc. Uut Rh K N. Sb At Md H. Bh Cm H Bi Es. Mo Uus Lu P F. Hf Cd Na Nb Lr Ho Bi Ce u Ac I Fl Fr Mo i Md Co P Pa Tc Uut Rh K N Dy Cl N Am b At Md H Y Bh Cm H Bi s Mo Uus Lu P F Cu Ar Ag Mg K Thomas Jefferson National Accelerator Facility - Office of cience ducation

More information

How To Rate Plan On A Credit Card With A Credit Union

How To Rate Plan On A Credit Card With A Credit Union Rate History Contact: 1 (800) 331-1538 Form * ** Date Date Name 1 NH94 I D 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006 8/20/2006 2 LTC94P I F 9/14/1998 N/A N/A N/A 35.00% 20.00% 1/25/2006 3/27/2006

More information

Candidate Style Answer

Candidate Style Answer Candidate Style Answer Chemistry A Unit F321 Atoms, Bonds and Groups High banded response This Support Material booklet is designed to accompany the OCR GCE Chemistry A Specimen Paper F321 for teaching

More information

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye

X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions:

SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY. 1 (a) Use the data in the table below to answer the following questions: SUGGESTION ANSWER SCHEME CHAPTER 8: THERMOCHEMISTRY ANSWER SCHEME UPS 2004/2005 SK027 1 (a) Use the data in the table below to answer the following questions: Enthalpy change ΔH (kj/mol) Atomization energy

More information

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints

Interface Reaction and Mechanical Properties of Lead-free Sn Zn Alloy/Cu Joints Materials Transactions, Vol. 43, No. 8 (2002) pp. 1797 to 1801 Special Issue on Lead-Free Electronics Packaging c 2002 The Japan Institute of Metals Interface Reaction and Mechanical Properties of Lead-free

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

The Compound Operations of Uncertain Cloud Concepts

The Compound Operations of Uncertain Cloud Concepts Journal of Computational Information Systems 11: 13 (2015) 4881 4888 Available at http://www.jofcis.com The Compound Operations of Uncertain Cloud Concepts Longjun YIN 1,, Junjie XU 1, Guansheng ZHANG

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for "n"!

ELECTRON CONFIGURATION (SHORT FORM) # of electrons in the subshell. valence electrons Valence electrons have the largest value for n! 179 ELECTRON CONFIGURATION (SHORT FORM) - We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

More information

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions.

2. Write the chemical formula(s) of the product(s) and balance the following spontaneous reactions. 1. Using the Activity Series on the Useful Information pages of the exam write the chemical formula(s) of the product(s) and balance the following reactions. Identify all products phases as either (g)as,

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes.

PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. 1 PERIODIC TABLE OF GROUPS OF ELEMENTS Elements can be classified using two different schemes. Metal Nonmetal Scheme (based on physical properties) Metals - most elements are metals - elements on left

More information

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of

The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.

More information

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan

Heat Treatment of Aluminum Foundry Alloys. Fred Major Rio Tinto Alcan Heat Treatment of Aluminum Foundry Alloys Fred Major Rio Tinto Alcan OUTLINE Basics of Heat Treatment (What is happening to the metal at each step). Atomic Structure of Aluminum Deformation Mechanisms

More information

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal 1. The elements on the Periodic Table are arranged in order of increasing A) atomic mass B) atomic number C) molar mass D) oxidation number 2. Which list of elements consists of a metal, a metalloid, and

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-3 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 15 printed pages. Code number given on the right hand side of the

More information

1332 CHAPTER 18 Sample Questions

1332 CHAPTER 18 Sample Questions 1332 CHAPTER 18 Sample Questions Couple E 0 Couple E 0 Br 2 (l) + 2e 2Br (aq) +1.06 V AuCl 4 + 3e Au + 4Cl +1.00 V Ag + + e Ag +0.80 V Hg 2+ 2 + 2e 2 Hg +0.79 V Fe 3+ (aq) + e Fe 2+ (aq) +0.77 V Cu 2+

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution

Anharmonicity and Weak Mode Assignment in La 2 x Sr x CuO 4 with Oxygen Isotopic Substitution Vol. 111 (2007) ACTA PHYSICA POLONICA A No. 1 Proceedings of the Symposium K: Complex Oxide Materials for New Technologies of E-MRS Fall Meeting 2006, Warsaw, September 4 8, 2006 Anharmonicity and Weak

More information

Lecture 22: Spinodal Decomposition: Part 1: general description and

Lecture 22: Spinodal Decomposition: Part 1: general description and Lecture 22: Spinodal Decomposition: Part 1: general description and practical implications Today s topics basics and unique features of spinodal decomposition and its practical implications. The relationship

More information

Regional Electricity Forecasting

Regional Electricity Forecasting Regional Electricity Forecasting presented to Michigan Forum on Economic Regulatory Policy January 29, 2010 presented by Doug Gotham State Utility Forecasting Group State Utility Forecasting Group Began

More information

Effect of Temperature and Aging Time on 2024 Aluminum Behavior

Effect of Temperature and Aging Time on 2024 Aluminum Behavior Proceedings of the XIth International Congress and Exposition June 2-5, 2008 Orlando, Florida USA 2008 Society for Experimental Mechanics Inc. Effect of Temperature and Aging Time on 2024 Aluminum Behavior

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

Aging of Zeolite SCR Catalysts

Aging of Zeolite SCR Catalysts 1 Diesel Aftertreatment Accelerated Aging Cycle Development (DAAAC) Aging of Zeolite Based SCR Systems Theodore M. Kostek Aging of Zeolite SCR Catalysts Zeolite structure Steps in SCR reaction Structure,

More information

Electronegativity and Polarity

Electronegativity and Polarity and Polarity N Goalby Chemrevise.org Definition: is the relative tendency of an atom in a molecule to attract electrons in a covalent bond to itself. is measured on the Pauling scale (ranges from 0 to

More information

Effects of aging on the kinetics of nanocrystalline anatase crystallite growth

Effects of aging on the kinetics of nanocrystalline anatase crystallite growth Materials Chemistry and Physics 95 (2006) 275 279 Effects of aging on the kinetics of nanocrystalline anatase crystallite growth Hsing-I Hsiang, Shih-Chung Lin Department of Resources Engineering, National

More information

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS

ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS ORIENTATION CHARACTERISTICS OF THE MICROSTRUCTURE OF MATERIALS K. Sztwiertnia Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta St., 30-059 Krakow, Poland MMN 2009

More information

Thermodynamics. Thermodynamics 1

Thermodynamics. Thermodynamics 1 Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

More information

EXPERIMENT 4 The Periodic Table - Atoms and Elements

EXPERIMENT 4 The Periodic Table - Atoms and Elements EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements

More information

Unit 2 Periodic Behavior and Ionic Bonding

Unit 2 Periodic Behavior and Ionic Bonding Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements

More information

Chem 1721 Brief Notes: Chapter 19

Chem 1721 Brief Notes: Chapter 19 Chem 1721 Brief Notes: Chapter 19 Chapter 19: Electrochemistry Consider the same redox reaction set up 2 different ways: Cu metal in a solution of AgNO 3 Cu Cu salt bridge electrically conducting wire

More information

Final Exam Review. I normalize your final exam score out of 70 to a score out of 150. This score out of 150 is included in your final course total.

Final Exam Review. I normalize your final exam score out of 70 to a score out of 150. This score out of 150 is included in your final course total. Final Exam Review Information Your ACS standardized final exam is a comprehensive, 70 question multiple choice (a d) test featuring material from BOTH the CHM 101 and 102 syllabi. Questions are graded

More information

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76

CH3 Stoichiometry. The violent chemical reaction of bromine and phosphorus. P.76 CH3 Stoichiometry The violent chemical reaction of bromine and phosphorus. P.76 Contents 3.1 Counting by Weighing 3.2 Atomic Masses 3.3 The Mole 3.4 Molar Mass 3.5 Percent Composition of Compounds 3.6

More information

Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading

Chapters 2 and 6 in Waseda. Lesson 8 Lattice Planes and Directions. Suggested Reading Analytical Methods for Materials Chapters 2 and 6 in Waseda Lesson 8 Lattice Planes and Directions Suggested Reading 192 Directions and Miller Indices Draw vector and define the tail as the origin. z Determine

More information

New York Public School Spending In Perspec7ve

New York Public School Spending In Perspec7ve New York Public School Spending In Perspec7ve School District Fiscal Stress Conference Nelson A. Rockefeller Ins0tute of Government New York State Associa0on of School Business Officials October 4, 2013

More information

AP CHEMISTRY 2007 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2007 SCORING GUIDELINES (Form B) AP CHEMISTRY 2007 SCORING GUIDELINES (Form B) First Ionization Energy Question 6 Second Ionization Energy Third Ionization Energy (kj mol 1 ) (kj mol 1 ) (kj mol 1 ) Element 1 1,251 2,300 3,820 Element

More information

Ionic Bonding Pauling s Rules and the Bond Valence Method

Ionic Bonding Pauling s Rules and the Bond Valence Method Ionic Bonding Pauling s Rules and the Bond Valence Method Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #14 Pauling Rules for Ionic Structures Linus Pauling,, J. Amer. Chem. Soc. 51,,

More information

REVIEW QUESTIONS Chapter 8

REVIEW QUESTIONS Chapter 8 Chemistry 101 ANSWER KEY REVIEW QUESTIONS Chapter 8 Use only a periodic table to answer the following questions. 1. Write complete electron configuration for each of the following elements: a) Aluminum

More information

Study on the early stage of thin filmgrowth in pulsed beamdeposition by kinetic Monte Carlo simulation

Study on the early stage of thin filmgrowth in pulsed beamdeposition by kinetic Monte Carlo simulation Surface and Coatings Technology 158 159 (2002) 247 252 Study on the early stage of thin filmgrowth in pulsed beamdeposition by kinetic Monte Carlo simulation a, b Q.Y. Zhang *, P.K. Chu a State Key Laboratory

More information

SartoriusChina. Say Hi. SartoriusChina. SartoriusChina

SartoriusChina. Say Hi. SartoriusChina. SartoriusChina SartoriusChina Say Hi SartoriusChina 1 U (8G) SartoriusChina ! (Hellen Sha) 2015 4 20 Mai : hellen.sha@sartorius.com. (Hellen Sha), 2015 4 20 A Warm Welcome to Sartorius! Ms. Haiyun Sha (Hellen Sha) SCM

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

Al 2 O 3, Its Different Molecular Structures, Atomic Layer Deposition, and Dielectrics

Al 2 O 3, Its Different Molecular Structures, Atomic Layer Deposition, and Dielectrics Al 2 O 3, Its Different Molecular Structures, Atomic Layer Deposition, and Dielectrics Mark Imus Douglas Sisk, Ph.D., Mentor Marian High School RET Program University of Notre Dame Project Proposal Tunneling

More information

From Quantum to Matter 2006

From Quantum to Matter 2006 From Quantum to Matter 006 Why such a course? Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 4, 004 vrije Universiteit amsterdam Why study quantum mechanics? From Quantum to Matter: The main

More information

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending

U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending U.S. Department of Housing and Urban Development: Weekly Progress Report on Recovery Act Spending by State and Program Report as of 3/7/2011 5:40:51 PM HUD's Weekly Recovery Act Progress Report: AK Grants

More information

X-ray photoelectron. Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 δ and La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 δ before and after thermal treatment and permeation test

X-ray photoelectron. Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 δ and La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 δ before and after thermal treatment and permeation test study on Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3 δ and La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 δ before and after thermal treatment and permeation test Patrizia Rosa 1 1 Dipartimenti di Fisica Università degli Studi di

More information

How to Subnet a Network How to use this paper Absolute Beginner: Read all Sections 1-4 N eed a q uick rev iew : Read Sections 2-4 J ust need a little h elp : Read Section 4 P a r t I : F o r t h e I P

More information

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

More information

Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Electrochemistry - ANSWERS

Electrochemistry - ANSWERS Electrochemistry - ANSWERS 1. Using a table of standard electrode potentials, predict if the following reactions will occur spontaneously as written. a) Al 3+ + Ni Ni 2+ + Al Al 3+ + 3e - Al E = -1.68

More information

Copyrighted by Gabriel Tang B.Ed., B.Sc.

Copyrighted by Gabriel Tang B.Ed., B.Sc. Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested

More information

Mechanical Analysis of Crossbeam in a Gantry Machine Tool and its Deformation Compensation

Mechanical Analysis of Crossbeam in a Gantry Machine Tool and its Deformation Compensation Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 2015, 9, 213-218 213 Open Access Mechanical Analysis of Crossbeam in a Gantry Machine Tool and its Deformation

More information

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Types of Epitaxy. Homoepitaxy. Heteroepitaxy Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

J H Liao 1, Jianshe Tang 2,b, Ching Hwa Weng 2, Wei Lu 2, Han Wen Chen 2, John TC Lee 2

J H Liao 1, Jianshe Tang 2,b, Ching Hwa Weng 2, Wei Lu 2, Han Wen Chen 2, John TC Lee 2 Solid State Phenomena Vol. 134 (2008) pp 359-362 Online available since 2007/Nov/20 at www.scientific.net (2008) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.134.359 Metal Hard

More information

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table.

Chapter 5 Periodic Table. Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. Chapter 5 Periodic Table Dmitri Mendeleev: Russian Chemist credited with the discovery of the periodic table. How did he organize the elements? According to similarities in their chemical and physical

More information

Supporting Information

Supporting Information Supporting Information Simple and Rapid Synthesis of Ultrathin Gold Nanowires, Their Self-Assembly and Application in Surface-Enhanced Raman Scattering Huajun Feng, a Yanmei Yang, a Yumeng You, b Gongping

More information

Chapter 2 Atoms and Molecules

Chapter 2 Atoms and Molecules Chapter 2 Atoms and Molecules 2-1 Elements and their symbols Most of the chemicals you find in everyday life can be broken down into simper substances Key Concepts: A substance that cannot be broken down

More information

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each) CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum

More information

High temperature Cu-AI-Nb- based shape memory alloys

High temperature Cu-AI-Nb- based shape memory alloys J. Phys. IVFrance 11 (2001) Pr8487 EDP Sciences, Les Ulis High temperature CuAINb based shape memory alloys J. Lelatko and H. Morawiec Institute of Physics and Chemistry of Metals, University of Silesia,

More information

High and Low Bandgap Polyfluorene Copolymers for Organic Solar Cells Xiwen Chen

High and Low Bandgap Polyfluorene Copolymers for Organic Solar Cells Xiwen Chen High and Low Bandgap Polyfluorene Copolymers for Organic Solar Cells Xiwen Chen Senior Research Scientist Commonwealth Scientific and Industrial Research Organsation (CSIRO) Outlines Electron Transport

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

Chemistry 122 Mines, Spring 2014

Chemistry 122 Mines, Spring 2014 Chemistry 122 Mines, Spring 2014 Answer Key, Problem Set 9 1. 18.44(c) (Also indicate the sign on each electrode, and show the flow of ions in the salt bridge.); 2. 18.46 (do this for all cells in 18.44

More information