CHEMICAL REACTIONS. represent energy (heat, light, energy) as either a product or a reactant by writing it on the appropriate side of the equation.

Size: px
Start display at page:

Download "CHEMICAL REACTIONS. represent energy (heat, light, energy) as either a product or a reactant by writing it on the appropriate side of the equation."

Transcription

1 Page1 CHEMICAL REACTIONS We have already discussed the fact that sometimes individual atoms (and in the case of polyatomic ions small groups of atoms) can join together to form compounds in order to increase stability and decrease the total amount of chemical potential energy. Sometimes compounds can come together and they can become more stable still by rearranging atoms. These changes are called chemical reactions, and are different from the nuclear reactions we studied earlier, which are when nuclei come together (or split apart) and create new atoms. Chemists represent chemical reactions with equations. Equations consist of a list of formulas for all of the reactants (compounds or elements added together to begin a chemical reaction) on the left side and a list of all of the products (compounds or elements which form during a chemical reaction) on the right side. Each formula may be followed by a subscript (solid (s), liquid (l), gas (g), aqueous (aq)) to show what state each compound is in. We may represent energy (heat, light, energy) as either a product or a reactant by writing it on the appropriate side of the equation. Forming A Compound Lab Objective: To observe and document the formation of a common compound 1. Label the test tubes TREATED and UNTREATED. Place the piece of steel wool into the test tubes. Push them all the way to the end. Check to make sure neither piece will fall out when the test tubes are inverted. Rubber band the two test tubes together and set aside for now. 2. Get 100 ml of water in the glass beaker. Place the test tubes in the water upside down and locate them next to the side of the beaker, NOT in the middle. Place the packing material around the test tubes so that they stay exactly upright. Try not to shake the table during the experiment. 3. Record the STARTING TIME on your lab sheet. Measure the height of the water in the two test tubes (use cm) and record that on the lab sheet. Measure from the bottom of the test tube up to water level in test tube minutes after the starting time, look for any differences in the two test tubes or the steel wool. Measure the water heights again. Record this on your lab sheet minutes after the starting time, record any differences you see between the two pieces of steel wool or the test tubes again. Measure the height of the water again. 6. After 25 minutes, record any differences you see in the two test tubes and measure the height of the water again. 1

2 Page2 7. Remove the test tubes from the beaker and add water from the beaker to each test tube until they are ½ full. Cover tops and shake the test tubes. Record any differences you see between the water in the test tubes on the lab sheet. 8. Remove the two pieces of steel wool from the test tube and place them on a paper towel. Examine them carefully using all your senses (except taste!) Record ALL the differences between the two pieces. 9. CLEAN UP! Start time: Treated H 2 O level Untreated H 2 O level Observations List 3 ways you know that a chemical reaction took place minutes minutes 25 minutes 3. CONCLUSION: The chemical reaction for this experiment is: Iron +2 + water Iron (II) oxide + hydrogen (g) Rewrite the chemical reaction using your formula writing rules. Law of Conservation of Mass: In a chemical reaction the arrangement of atoms will change, but the total number of each type of atom, and therefore the total mass, will remain constant. All chemical reactions must obey this law and therefore all chemical equations must obey it also. In order to ensure that our chemical equations obey the law of cons. of mass, we balance all of our equations. To do this: 1. You must make sure that all of the individual compound s formulas are correct. (Hydrogen, oxygen, nitrogen, and the halogens are all diatomic elements, meaning that whenever they are not found in a compound they form a molecule with themselves and have a formula with a subscript 2). Counting Atoms Problem Solving 2

3 Page3 There are several rules to counting the numbers of atoms in a compound, your job is to look at the clues and figure out what those rules are. DO NOT work out the problems on the calculation sheet until you have all four rules filled in! Here are the clues to the first rule: CaCO calcium = 1 carbon = 1 oxygen =1 NaCl sodium = 1 chlorine = 1 KOH potassium = 1 oxygen = 1 hydrogen = 1 Write the first rule about counting atoms on the next page. Here are the clues to the second rule about subscripts: H 2 O hydrogen = 2 oxygen = 1 NH 3 nitrogen = 1 hydrogen = 3 PbCrO 4 lead = 1 chromium = 1 oxygen = 4 C 14 H 9 C l5 carbon = 14 hydrogen = 9 chlorine = 15 Write the second rule about subscript on the next page. Here are the clues to the third rule about parentheses: Fe(OH) 3 iron = 1 oxygen = 3 hydrogen = 3 Sn 3 (PO) 2 tin = 3 phosphorus = 2 oxygen = 2 Be(F 2 Li) 2 beryllium = 1 fluorine = 4 lithium = 2 Al 2 (SO 4 ) 2 aluminum = 2 sulfur = 2 oxygen = 8 (Sr 2 O) 3 Mg strontium = 6 oxygen =3 magnesium = 1 Write the third rule about parentheses on the next page. Here are the clues to the fourth rule about coefficients: 2Fe(OH) 3 iron = 2, oxygen = 6, hydrogen = 6 3Sn 3 (PO) 2 tin = 9, phosphorus = 6, oxygen = 6 6Be(F 2 Li) 2 beryllium = 6, fluorine = 24, lithium = 12 10Al 2 (SO 4 ) 2 aluminum = 20, sulfur = 20, oxygen = 80 4(Sr 2 O) 3 Mg strontium = 24, oxygen =12, magnesium = 4 Write the fourth rule about coefficients on the next page. Counting Atoms Calculations and Rule Sheet First rule of counting atoms: Yours: Mine: Practice with the first rule: 1. FeS 2. HCl 3

4 Page4 3. AgCl 4. NaOH Second rule of subscripts: Yours: Mine: Practice with the second rule: 1. Fe 2 O 3 2. C 12 H 22 O KNO 3 4. MgCl 2 Third rule of parentheses: Yours: Mine: Practice with the third rule: 1. Mg(OH) 2 2. Ca(CO 3 ) 3 3. Ag 2 (SO 4 ) 2 4. (Cu 3 Os) 2 Hg Fourth rule of coefficients: Yours: Mine: Practice with the fourth rule: 1. 3Mg(OH) Ca(CO 3 ) Ag 2 (SO 4 ) (Cu 3 Os) 2 Hg Now work out the problems on the next page, following the rules you have written and then we will check your answers. Counting Atoms Practice Count the number of atoms in each element represented in the molecule. N=1 H=4 Cl=1 Total = 6 4. CaCO 3 8. Ag 3 PO 4 1. CO 2 Ex. NH 4 Cl 12. Mg(OH) 2 2. HCl 5. NH 3 9. NaOH 13. Al(OH) 3 6. PbCrO KOH 14. Ni(NO 3 ) 2 3. CaCl 2 7. Ag 2 S 11. Fe(OH) Ca(OH) 2 4

5 Page5 16. Ni(NO 3 ) HNC(NH 2 ) C 5 H 2 OH 28. 2(NH 4 ) 2 CO Al 2 (SO 4 ) CaCl Fe(OH) C 7 H 6 O Sn 3 (PO 4 ) HCl 26. 4Ni(OH) C 55 H 72 MgN (NH 2 ) 2 CO 23. 3KNO Hg(NO 3 ) 2 The number of each atom on the reactants side must equal the number of each atom on the products side. This is called BALANCING which is adding coeffscients. Balancing Equations by the Element Inventory Method There are four easy steps that you need to follow to make this work. Here they are: 1. Get yourself an unbalanced equation. I might give this to you, or I might make you figure it out by giving you a word equation or a skeleton equation. Either way, if you don't have an equation with all the correct chemical formulas and the arrow and all that other stuff, then you're out of luck. 2. Draw boxes around all the chemical formulas. Never, ever, change anything inside the boxes. Ever! Really!! If you do, you're guaranteed to get the answer wrong. 3. Make an element inventory. How are you going to know if the equation is balanced if you don't actually make a list of how many of each atom you have? You won't. You have to make an inventory of how many atoms of each element you have, and then you have to keep it current throughout the whole problem. 4. Write numbers in front of each of the boxes until the inventory for each element is the same both before and after the reaction. Whenever you change a number, make sure to update the inventory - otherwise, you run the risk of balancing it incorrectly. When all the numbers in the inventory balance, then the equation can balance, and you can relax. Example #1 Balance the equation that takes place when sodium hydroxide reacts with sulfuric acid to form sodium sulfate and water." How do we solve this using the steps above? 1. Get yourself an unbalanced equation. Here's where you use your knowledge of formulas to help you out. If you know what the formula of sodium hydroxide, sulfuric acid, sodium sulfate, and water are, you'd be able to write the following skeleton (unbalanced) equation: 5

6 Page6 2. Draw boxes around all the chemical formulas. This is the step that people frequently don't do because they feel that it's a stupid thing to do. You're drawing those boxes so that you'll be sure not to mess around with the formulas to balance the equation. Never, ever change subscripts! 3. Make an element inventory. In this inventory, your job is to figure out how many atoms of each element you have on the left and right sides of the equation. Now, if you look at the equation, you should be able to see that on the left side of the equation there is one sodium atom, five oxygen atoms (one from the sodium hydroxide, four from the sulfuric acid), three hydrogen atoms (one from the sodium hydroxide, two from the sulfuric acid), and one sulfur atom. On the right side of the equation, there are two atoms of sodium, one atom of sulfur, five atoms of oxygen (four from the sodium sulfate and one from the water), and two atoms of hydrogen. Thus, your element inventory should look like this: 4. Write numbers in front of each of the boxes until the inventory for each element is the same both before and after the reaction. Now, what happens when we put a number in front of a formula? Basically, anything in that box is multiplied by that number, because we're saying that we have that many of that kind of molecule. So, looking at the inventory, what should we do? Well, we can see that on the left side of the inventory, there is one atom of sodium and on the right there are two. The solution: Stick a "2" in front of the sodium hydroxide on the left side of the equation so that the numbers of sodium atoms are the same on both sides of the equation. When we do this, the new atom inventory should look like this: (I'll let you figure out how this is done) Now what? Well, looking at the new inventory, we can see that we now have two sodium atoms on both the left and the right sides, but the others still don't match up. What to do? You can see from the inventory that on the right side of the equation, there are two hydrogen atoms and on the left there are four. Using your amazing powers of mathematics you can see that two multiplied by the number two becomes four. That's what you need to do. How? Put a "2" in front of the water on the right side of the equation to make the hydrogens balance out. Now that this is done, you should make a new inventory that looks something like this: Since both sides of the inventory match, the equation is now balanced! All other equations will balance in exactly the same way, though it might take a few more steps in some cases. Problems you might encounter: (1) What happens when you do the inventory, and you find that there are two atoms of element X on the left side of the equation and three atoms of element X on the right. How can you make those numbers match? When you run into this problem, find the lowest common denominator (LCD) of those two numbers, and then put the numbers in front of those two boxes which allow the inventory on both sides to match. In the element X example, the lowest common denominator of two and three is six, so you'd put a "3" in front of the molecule on the left, and a "2" in front of the one on the right. Element X will 6

7 Page7 then match up, and you can use a new inventory to see what else needs to be done. This is sometimes called the criss-cross method because you are taking the subscript of the reactant and making it the coefficient of the product, and taking the subscript of the product and making it the coefficient of the reactant. (2) Another common problem: What do you do when the only way you can get a problem to work out is to make one of the numbers a decimal or fraction? This sometimes happens with combustion reactions: C 2 H 6 + O 2 CO 2 + H 2 O When this happens, find the largest molecule in the equation (in the example above: C 2 H 6 ) and stick a "2" in front of it. Then start the problem over. Will this work all the time? Well, no. But it will work sometimes, and give you a new strategy for hard problems. Most importantly: Always remember to keep the inventory of the elements current! If you try to keep it in your head, you'll screw it up. Nobody can keep a bunch of changing numbers in their head for very long. I certainly can't, and you can't either. In more difficult equations, trial and error is not effective so there are some additional rules to simplify the process. Additional Rule #1: Find the elements which appear in the fewest numbers of molecules and balance these first. Continue in sequence until you balance the element which appears in the most molecules last. For example in the following equation: NaOH + H 2 SO 4 Na 2 SO 4 + H 2 O Na and S appear in only 2 molecules, H in 3 molecules, and O in four. This is the order in which they should be balanced. The S is already balanced (1 on each side), and the Na may be balanced as follows: 2 NaOH + H 2 SO 4 Na 2 SO 4 + H 2 O The hydrogen is a little more difficult. There are two H atoms in 2 NaOH and another two in H 2 SO 4 so there are four H atoms on the reactant side of the equation. But there are only two H atoms on the product side of the equation. The H is then balanced by placing a two in front of the water: The equation is now balanced 2 NaOH + H 2 SO 4 Na 2 SO H 2 O Special hints: 1. Never change your subscripts 2. Balance elements that only appear in one formula on each side first 3. After your first free choice of a coefficient, you must only use coefficients that balance the elements 4. For polyatomic ions, balance them as though they are single groups Balance the following chemical equations. 3. Al + Fe 3 N 2 AlN + Fe 1. Cu 2 O + C Cu + CO 2 4. Ag 2 S Ag + S 8 2. H 2 O 2 H 2 O + O 2 5. ZnS + AlP Zn 3 P 2 + Al 2 S 3 7

8 Page8 16) CoBr 3 + CaSO 4 CaBr 2 + Co 2 (SO 4 ) 3 6. Fe(OH) 3 Fe 2 O 3 + H 2 O 17) Na 3 P + CaF 2 NaF + Ca 3 P 2 Given the two chemical equations, circle the one that is balanced. 7. a. 2Na + Cl 2 2NaCl 18) Mn + HI H 2 + MnI 3 b. 2Na + 2Cl 2 2NaCl 19) Li 3 PO 4 + NaBr Na 3 PO 4 + LiBr 8. a. C 3 H 8 + 5O 2 3CO 2 + 4H 2 O 20) CaF 2 + Li 2 SO 4 CaSO 4 + LiF b. 2C 3 H 8 + 5O 2 3CO 2 + 8H 2 O 21) HBr + Mg(OH) 2 MgBr 2 + H 2 O 9. a. 2NH 3 + 5O 2 2NO + 3H 2 O 22) LiNO 3 + CaBr 2 Ca(NO 3 ) 2 + LiBr b. 4NH 3 + 5O 2 4NO + 6H 2 O 23) AgNO 3 + Li LiNO 3 + Ag 10. a. Y(NO 3 ) 2 + GaPO 4 YPO 4 + Ga(NO 3 ) 2 24) Si(OH) 4 + NaBr SiBr 4 + NaOH b. 2Y(NO 3 ) 2 + 2GaPO 4 2YPO 4 + Ga(NO 3 ) 2 25) NaCN + CuCO 3 Na 2 CO 3 + Cu(CN) 2 Balance these equations! 11) AlBr 3 + K KBr + Al 12) FeO + PdF 2 FeF 2 + PdO 13) P 4 + Br 2 PBr 3 14) LiCl + Br 2 LiBr + Cl 2 15) PbBr 2 + HCl HBr + PbCl 2 8

9 Page9 Write the word equations below as chemical equations and balance them. 1) zinc and lead (II) acetate react to form zinc acetate and solid lead. 2) aluminum bromide and chlorine gas react to form aluminum chloride and bromine gas 3) sodium phosphate and calcium chloride combine to form calcium phosphate and sodium chloride 4) potassium metal and chlorine gas react to form potassium chloride 5) calcium hydroxide and hydrogen phosphate react to form calcium phosphate and water 6) water and carbon dioxide combine to yield heptacarbon octahydride and oxygen gas 7) tin (IV) sulfate and potassium phosphate react to form tin(iv) phosphate and potassium sulfate 8) tetraphosphorus solid reacts with bromine liquid to yield phosphorus pentabromide 9) potassium hydroxide reacts with calcium nitrate to produce potassium nitrate and calcium hydroxide 10) When you burn propane gas (aka tricarbon octahydride), it reacts with oxygen gas to form carbon dioxide and water vapor 9

Balancing Chemical Equations

Balancing Chemical Equations Balancing Chemical Equations Academic Success Center Science Tutoring Area Science Tutoring Area Law of Conservation of Mass Matter cannot be created nor destroyed Therefore the number of each type of

More information

Balancing Chemical Equations Worksheet

Balancing Chemical Equations Worksheet Balancing Chemical Equations Worksheet Student Instructions 1. Identify the reactants and products and write a word equation. 2. Write the correct chemical formula for each of the reactants and the products.

More information

Writing and Balancing Chemical Equations

Writing and Balancing Chemical Equations Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

More information

Steps for balancing a chemical equation

Steps for balancing a chemical equation The Chemical Equation: A Chemical Recipe Dr. Gergens - SD Mesa College A. Learn the meaning of these arrows. B. The chemical equation is the shorthand notation for a chemical reaction. A chemical equation

More information

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is:

NET IONIC EQUATIONS. A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NET IONIC EQUATIONS A balanced chemical equation can describe all chemical reactions, an example of such an equation is: NaCl + AgNO 3 AgCl + NaNO 3 In this case, the simple formulas of the various reactants

More information

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g)

1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) 3 (s) + H 2 (g) 1. When the following equation is balanced, the coefficient of Al is. Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) A) 1 B) 2 C) 4 D) 5 E) Al (s) + H 2 O (l)? Al(OH) (s) + H 2 (g) Al (s) + H 2 O (l)? Al(OH)

More information

Chapter 8: Chemical Equations and Reactions

Chapter 8: Chemical Equations and Reactions Chapter 8: Chemical Equations and Reactions I. Describing Chemical Reactions A. A chemical reaction is the process by which one or more substances are changed into one or more different substances. A chemical

More information

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses

Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses Chem 1100 Chapter Three Study Guide Answers Outline I. Molar Mass and Moles A. Calculations of Molar Masses B. Calculations of moles C. Calculations of number of atoms from moles/molar masses 1. Avagadro

More information

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole

Topic 4 National Chemistry Summary Notes. Formulae, Equations, Balancing Equations and The Mole Topic 4 National Chemistry Summary Notes Formulae, Equations, Balancing Equations and The Mole LI 1 The chemical formula of a covalent molecular compound tells us the number of atoms of each element present

More information

Chapter 7: Chemical Reactions

Chapter 7: Chemical Reactions Chapter 7 Page 1 Chapter 7: Chemical Reactions A chemical reaction: a process in which at least one new substance is formed as the result of a chemical change. A + B C + D Reactants Products Evidence that

More information

Molar Mass Worksheet Answer Key

Molar Mass Worksheet Answer Key Molar Mass Worksheet Answer Key Calculate the molar masses of the following chemicals: 1) Cl 2 71 g/mol 2) KOH 56.1 g/mol 3) BeCl 2 80 g/mol 4) FeCl 3 162.3 g/mol 5) BF 3 67.8 g/mol 6) CCl 2 F 2 121 g/mol

More information

Unit 10A Stoichiometry Notes

Unit 10A Stoichiometry Notes Unit 10A Stoichiometry Notes Stoichiometry is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

Moles, Molecules, and Grams Worksheet Answer Key

Moles, Molecules, and Grams Worksheet Answer Key Moles, Molecules, and Grams Worksheet Answer Key 1) How many are there in 24 grams of FeF 3? 1.28 x 10 23 2) How many are there in 450 grams of Na 2 SO 4? 1.91 x 10 24 3) How many grams are there in 2.3

More information

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction

Chapter 5. Chemical Reactions and Equations. Introduction. Chapter 5 Topics. 5.1 What is a Chemical Reaction Introduction Chapter 5 Chemical Reactions and Equations Chemical reactions occur all around us. How do we make sense of these changes? What patterns can we find? 1 2 Copyright The McGraw-Hill Companies,

More information

Word Equations and Balancing Equations. Video Notes

Word Equations and Balancing Equations. Video Notes Word Equations and Balancing Equations Video Notes In this lesson, you will: Use the law of conservation of mass and provide standard rules for writing and balancing equations. Write and balance equations

More information

Chemical Equations and Chemical Reactions. Chapter 8.1

Chemical Equations and Chemical Reactions. Chapter 8.1 Chemical Equations and Chemical Reactions Chapter 8.1 Objectives List observations that suggest that a chemical reaction has taken place List the requirements for a correctly written chemical equation.

More information

Stoichiometry Review

Stoichiometry Review Stoichiometry Review There are 20 problems in this review set. Answers, including problem set-up, can be found in the second half of this document. 1. N 2 (g) + 3H 2 (g) --------> 2NH 3 (g) a. nitrogen

More information

Chemistry Themed. Types of Reactions

Chemistry Themed. Types of Reactions Chemistry Themed Types of Reactions 1 2 Chemistry in the Community-2015-2016 Types of Reactions Date In-Class Assignment Homework T 10/20 TEST on Reactivity of Metals and Redox None W 10/21 Late Start

More information

Writing, Balancing and Predicting Products of Chemical Reactions.

Writing, Balancing and Predicting Products of Chemical Reactions. Writing, Balancing and Predicting Products of Chemical Reactions. A chemical equation is a concise shorthand expression which represents the relative amount of reactants and products involved in a chemical

More information

Chemical Reactions 2 The Chemical Equation

Chemical Reactions 2 The Chemical Equation Chemical Reactions 2 The Chemical Equation INFORMATION Chemical equations are symbolic devices used to represent actual chemical reactions. The left side of the equation, called the reactants, is separated

More information

YIELD YIELD REACTANTS PRODUCTS

YIELD YIELD REACTANTS PRODUCTS Balancing Chemical Equations A Chemical Equation: is a representation of a chemical reaction in terms of chemical formulas Example: 1. Word Description of a Chemical Reaction When methane gas (CH 4 ) burns

More information

Balancing Chemical Equations Practice

Balancing Chemical Equations Practice Science Objectives Students will describe what reactants and products in a chemical equation mean. Students will explain the difference between coefficients and subscripts in chemical equations. Students

More information

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ

Experiment 5. Chemical Reactions A + X AX AX A + X A + BX AX + B AZ + BX AX + BZ Experiment 5 Chemical Reactions OBJECTIVES 1. To observe the various criteria that are used to indicate that a chemical reaction has occurred. 2. To convert word equations into balanced inorganic chemical

More information

W1 WORKSHOP ON STOICHIOMETRY

W1 WORKSHOP ON STOICHIOMETRY INTRODUCTION W1 WORKSHOP ON STOICHIOMETRY These notes and exercises are designed to introduce you to the basic concepts required to understand a chemical formula or equation. Relative atomic masses of

More information

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, Chemistry 11, McGraw-Hill Ryerson, 2001 SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001 1. A small pin contains 0.0178 mol of iron. How many atoms of iron are in the pin? 2. A sample

More information

20.2 Chemical Equations

20.2 Chemical Equations All of the chemical changes you observed in the last Investigation were the result of chemical reactions. A chemical reaction involves a rearrangement of atoms in one or more reactants to form one or more

More information

David A. Katz Chemist, Educator, Science Communicator, and Consultant Department of Chemistry, Pima Community College

David A. Katz Chemist, Educator, Science Communicator, and Consultant Department of Chemistry, Pima Community College WRITING CHEMICAL EQUATIONS 2004, 2002, 1989 by David A. Katz. All rights reserved. Permission for classroom used provided original copyright is included. David A. Katz Chemist, Educator, Science Communicator,

More information

Name: Class: Date: 2 4 (aq)

Name: Class: Date: 2 4 (aq) Name: Class: Date: Unit 4 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The balanced molecular equation for complete neutralization of

More information

Description of the Mole Concept:

Description of the Mole Concept: Description of the Mole Concept: Suppose you were sent into the store to buy 36 eggs. When you picked them up you would get 3 boxes, each containing 12 eggs. You just used a mathematical device, called

More information

Decomposition. Composition

Decomposition. Composition Decomposition 1. Solid ammonium carbonate is heated. 2. Solid calcium carbonate is heated. 3. Solid calcium sulfite is heated in a vacuum. Composition 1. Barium oxide is added to distilled water. 2. Phosphorus

More information

Chapter 6 Notes Science 10 Name:

Chapter 6 Notes Science 10 Name: 6.1 Types of Chemical Reactions a) Synthesis (A + B AB) Synthesis reactions are also known as reactions. When this occurs two or more reactants (usually elements) join to form a. A + B AB, where A and

More information

Name: Teacher: Pd. Date:

Name: Teacher: Pd. Date: Name: Teacher: Pd. Date: STAAR Tutorial : Energy and Matter: Elements, Compounds, and Chemical Equations: 6.5C Differentiate between elements and compounds on the most basic level. 8.5F Recognize whether

More information

Answers and Solutions to Text Problems

Answers and Solutions to Text Problems Chapter 7 Answers and Solutions 7 Answers and Solutions to Text Problems 7.1 A mole is the amount of a substance that contains 6.02 x 10 23 items. For example, one mole of water contains 6.02 10 23 molecules

More information

Stoichiometry. Lecture Examples Answer Key

Stoichiometry. Lecture Examples Answer Key Stoichiometry Lecture Examples Answer Key Ex. 1 Balance the following chemical equations: 3 NaBr + 1 H 3 PO 4 3 HBr + 1 Na 3 PO 4 2 C 3 H 5 N 3 O 9 6 CO 2 + 3 N 2 + 5 H 2 O + 9 O 2 2 Ca(OH) 2 + 2 SO 2

More information

CHEMICAL FORMULAS AND FORMULA WEIGHT CALCULATIONS

CHEMICAL FORMULAS AND FORMULA WEIGHT CALCULATIONS CHEMICAL FORMULAS AND FORMULA WEIGHT CALCULATIONS 1. THE MEANING OF A CHEMICAL FORMULA A chemical formula is a shorthand method of representing the elements in a compound. The formula shows the formulas

More information

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation.

H 2 + O 2 H 2 O. - Note there is not enough hydrogen to react with oxygen - It is necessary to balance equation. CEMICAL REACTIONS 1 ydrogen + Oxygen Water 2 + O 2 2 O reactants product(s) reactant substance before chemical change product substance after chemical change Conservation of Mass During a chemical reaction,

More information

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe: Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)

More information

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution.

Tutorial 4 SOLUTION STOICHIOMETRY. Solution stoichiometry calculations involve chemical reactions taking place in solution. T-27 Tutorial 4 SOLUTION STOICHIOMETRY Solution stoichiometry calculations involve chemical reactions taking place in solution. Of the various methods of expressing solution concentration the most convenient

More information

Monatomic Ions. A. Monatomic Ions In order to determine the charge of monatomic ions, you can use the periodic table as a guide:

Monatomic Ions. A. Monatomic Ions In order to determine the charge of monatomic ions, you can use the periodic table as a guide: Monatomic Ions Ions are atoms that have either lost or gained electrons. While atoms are neutral, ions are charged particles. A loss of electrons results in a positive ion or cation (pronounced cat-eye-on

More information

HOMEWORK 4A. Definitions. Oxidation-Reduction Reactions. Questions

HOMEWORK 4A. Definitions. Oxidation-Reduction Reactions. Questions HOMEWORK 4A Oxidation-Reduction Reactions 1. Indicate whether a reaction will occur or not in each of following. Wtiring a balcnced equation is not necessary. (a) Magnesium metal is added to hydrochloric

More information

Stoichiometry. What is the atomic mass for carbon? For zinc?

Stoichiometry. What is the atomic mass for carbon? For zinc? Stoichiometry Atomic Mass (atomic weight) Atoms are so small, it is difficult to discuss how much they weigh in grams We use atomic mass units an atomic mass unit (AMU) is one twelfth the mass of the catbon-12

More information

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: 7-5.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen

More information

Chemistry: Chemical Equations

Chemistry: Chemical Equations Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

More information

CHEMICAL NAMES AND FORMULAS

CHEMICAL NAMES AND FORMULAS 9 CHEMICAL NAMES AND FORMULAS SECTION 9.1 NAMING IONS (pages 253 258) This section explains the use of the periodic table to determine the charge of an ion. It also defines polyatomic ion and gives the

More information

Chapter 16: Tests for ions and gases

Chapter 16: Tests for ions and gases The position of hydrogen in the reactivity series Hydrogen, although not a metal, is included in the reactivity series because it, like metals, can be displaced from aqueous solution, only this time the

More information

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points)

PART I: MULTIPLE CHOICE (30 multiple choice questions. Each multiple choice question is worth 2 points) CHEMISTRY 123-07 Midterm #1 Answer key October 14, 2010 Statistics: Average: 74 p (74%); Highest: 97 p (95%); Lowest: 33 p (33%) Number of students performing at or above average: 67 (57%) Number of students

More information

= 11.0 g (assuming 100 washers is exact).

= 11.0 g (assuming 100 washers is exact). CHAPTER 8 1. 100 washers 0.110 g 1 washer 100. g 1 washer 0.110 g = 11.0 g (assuming 100 washers is exact). = 909 washers 2. The empirical formula is CFH from the structure given. The empirical formula

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Equations Micro World atoms & molecules Macro World grams Atomic mass is the mass of an

More information

Solution. Practice Exercise. Concept Exercise

Solution. Practice Exercise. Concept Exercise Example Exercise 8.1 Evidence for a Reaction Which of the following is experimental evidence for a chemical reaction? (a) Pouring vinegar on baking soda gives foamy bubbles. (b) Mixing two solutions produces

More information

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions.

Aqueous Solutions. Water is the dissolving medium, or solvent. Some Properties of Water. A Solute. Types of Chemical Reactions. Aqueous Solutions and Solution Stoichiometry Water is the dissolving medium, or solvent. Some Properties of Water Water is bent or V-shaped. The O-H bonds are covalent. Water is a polar molecule. Hydration

More information

Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

More information

Unit 9 Stoichiometry Notes (The Mole Continues)

Unit 9 Stoichiometry Notes (The Mole Continues) Unit 9 Stoichiometry Notes (The Mole Continues) is a big word for a process that chemist s use to calculate amounts in reactions. It makes use of the coefficient ratio set up by balanced reaction equations

More information

NAMING QUIZ 3 - Part A Name: 1. Zinc (II) Nitrate. 5. Silver (I) carbonate. 6. Aluminum acetate. 8. Iron (III) hydroxide

NAMING QUIZ 3 - Part A Name: 1. Zinc (II) Nitrate. 5. Silver (I) carbonate. 6. Aluminum acetate. 8. Iron (III) hydroxide NAMING QUIZ 3 - Part A Name: Write the formulas for the following compounds: 1. Zinc (II) Nitrate 2. Manganese (IV) sulfide 3. Barium permanganate 4. Sulfuric acid 5. Silver (I) carbonate 6. Aluminum acetate

More information

Molarity of Ions in Solution

Molarity of Ions in Solution APPENDIX A Molarity of Ions in Solution ften it is necessary to calculate not only the concentration (in molarity) of a compound in aqueous solution but also the concentration of each ion in aqueous solution.

More information

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions

Chapter 11. Electrochemistry Oxidation and Reduction Reactions. Oxidation-Reduction Reactions. Oxidation-Reduction Reactions Oxidation-Reduction Reactions Chapter 11 Electrochemistry Oxidation and Reduction Reactions An oxidation and reduction reaction occurs in both aqueous solutions and in reactions where substances are burned

More information

CHEMICAL REACTIONS. Chemistry 51 Chapter 6

CHEMICAL REACTIONS. Chemistry 51 Chapter 6 CHEMICAL REACTIONS A chemical reaction is a rearrangement of atoms in which some of the original bonds are broken and new bonds are formed to give different chemical structures. In a chemical reaction,

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

Chapter 5, Calculations and the Chemical Equation

Chapter 5, Calculations and the Chemical Equation 1. How many iron atoms are present in one mole of iron? Ans. 6.02 1023 atoms 2. How many grams of sulfur are found in 0.150 mol of sulfur? [Use atomic weight: S, 32.06 amu] Ans. 4.81 g 3. How many moles

More information

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS 4.1 Formula Masses Recall that the decimal number written under the symbol of the element in the periodic table is the atomic mass of the element. 1 7 8 12

More information

11-1 Stoichiometry. Represents

11-1 Stoichiometry. Represents 11-1 Stoichiometry What is stoichiometry? Calculations that relate the quantities of substances. It is the study of quantitative (measurable amounts) relationships in chemical reactions and equations.

More information

Balancing Chemical Equations

Balancing Chemical Equations Why? Balancing Chemical Equations Atoms are neither created nor destroyed in a chemical reaction, they are just rearranged. In other words, in a chemical reaction, what goes into the reaction must come

More information

19.2 Chemical Formulas

19.2 Chemical Formulas In the previous section, you learned how and why atoms form chemical bonds with one another. You also know that atoms combine in certain ratios with other atoms. These ratios determine the chemical formula

More information

Chapter 6: Writing and Balancing Chemical Equations. AB A + B. CaCO3 CaO + CO2 A + B C. AB + C AC + B (or AB + C CB + A)

Chapter 6: Writing and Balancing Chemical Equations. AB A + B. CaCO3 CaO + CO2 A + B C. AB + C AC + B (or AB + C CB + A) 78 Chapter 6: Writing and Balancing Chemical Equations. It is convenient to classify chemical reactions into one of several general types. Some of the more common, important, reactions are shown below.

More information

Naming Compounds Handout Key

Naming Compounds Handout Key Naming Compounds Handout Key p. 2 Name each of the following monatomic cations: Li + = lithium ion Ag + = silver ion Cd +2 = cadmium ion Cu +2 = copper (II) ion Al +3 = aluminum ion Mg +2 = magnesium ion

More information

General Chemistry Lab Experiment 6 Types of Chemical Reaction

General Chemistry Lab Experiment 6 Types of Chemical Reaction General Chemistry Lab Experiment 6 Types of Chemical Reaction Introduction Most ordinary chemical reactions can be classified as one of five basic types. The first type of reaction occurs when two or more

More information

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change

Chemical Equations. Chemical Equations. Chemical reactions describe processes involving chemical change Chemical Reactions Chemical Equations Chemical reactions describe processes involving chemical change The chemical change involves rearranging matter Converting one or more pure substances into new pure

More information

Chemical Calculations: Formula Masses, Moles, and Chemical Equations

Chemical Calculations: Formula Masses, Moles, and Chemical Equations Chemical Calculations: Formula Masses, Moles, and Chemical Equations Atomic Mass & Formula Mass Recall from Chapter Three that the average mass of an atom of a given element can be found on the periodic

More information

Types of Reactions. CHM 130LL: Chemical Reactions. Introduction. General Information

Types of Reactions. CHM 130LL: Chemical Reactions. Introduction. General Information Introduction CHM 130LL: Chemical Reactions We often study chemistry to understand how and why chemicals (reactants) can be transformed into different chemicals (products) via a chemical reaction: Reactants

More information

Chemistry Post-Enrolment Worksheet

Chemistry Post-Enrolment Worksheet Name: Chemistry Post-Enrolment Worksheet The purpose of this worksheet is to get you to recap some of the fundamental concepts that you studied at GCSE and introduce some of the concepts that will be part

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Chapter 8 - Chemical Equations and Reactions

Chapter 8 - Chemical Equations and Reactions Chapter 8 - Chemical Equations and Reactions 8-1 Describing Chemical Reactions I. Introduction A. Reactants 1. Original substances entering into a chemical rxn B. Products 1. The resulting substances from

More information

Name: Block: Date: Test Review: Chapter 8 Ionic Bonding

Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Name: Block: Date: Test Review: Chapter 8 Ionic Bonding Part 1: Fill-in-the-blank. Choose the word from the word bank below. Each word may be used only 1 time. electron dot structure metallic electronegativity

More information

Formulae, stoichiometry and the mole concept

Formulae, stoichiometry and the mole concept 3 Formulae, stoichiometry and the mole concept Content 3.1 Symbols, Formulae and Chemical equations 3.2 Concept of Relative Mass 3.3 Mole Concept and Stoichiometry Learning Outcomes Candidates should be

More information

Periodic Table, Valency and Formula

Periodic Table, Valency and Formula Periodic Table, Valency and Formula Origins of the Periodic Table Mendelѐѐv in 1869 proposed that a relationship existed between the chemical properties of elements and their atomic masses. He noticed

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

CHAPTER 5: MOLECULES AND COMPOUNDS

CHAPTER 5: MOLECULES AND COMPOUNDS CHAPTER 5: MOLECULES AND COMPOUNDS Problems: 1-6, 9-13, 16, 20, 31-40, 43-64, 65 (a,b,c,e), 66(a-d,f), 69(a-d,f), 70(a-e), 71-78, 81-82, 87-96 A compound will display the same properties (e.g. melting

More information

Study Guide For Chapter 7

Study Guide For Chapter 7 Name: Class: Date: ID: A Study Guide For Chapter 7 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The number of atoms in a mole of any pure substance

More information

Stoichiometry. Unit Outline

Stoichiometry. Unit Outline 3 Stoichiometry Unit Outline 3.1 The Mole and Molar Mass 3.2 Stoichiometry and Compound Formulas 3.3 Stoichiometry and Chemical Reactions 3.4 Stoichiometry and Limiting Reactants 3.5 Chemical Analysis

More information

CP Chemistry Review for Stoichiometry Test

CP Chemistry Review for Stoichiometry Test CP Chemistry Review for Stoichiometry Test Stoichiometry Problems (one given reactant): 1. Make sure you have a balanced chemical equation 2. Convert to moles of the known substance. (Use the periodic

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Stoichiometry 3-1 Chapter 3 Stoichiometry In This Chapter As you have learned in previous chapters, much of chemistry involves using macroscopic measurements to deduce what happens between atoms

More information

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula

Nomenclature and Formulas of Ionic Compounds. Section I: Writing the Name from the Formula Purpose: Theory: Nomenclature and Formulas of Ionic Compounds 1. To become familiar with the rules of chemical nomenclature, based on the classification of compounds. 2. To write the proper name of the

More information

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11 SCH3U- R.H.KING ACADEMY SOLUTION & ACID/BASE WORKSHEET Name: The importance of water - MAKING CONNECTION READING 1. Read P. 368-375, P. 382-387 & P. 429-436; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436

More information

Periodic Table Questions

Periodic Table Questions Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is

More information

Reactions in Aqueous Solution

Reactions in Aqueous Solution CHAPTER 7 1. Water is the most universal of all liquids. Water has a relatively large heat capacity and a relatively large liquid range, which means it can absorb the heat liberated by many reactions while

More information

Balancing chemical equations

Balancing chemical equations Balancing chemical equations The law of conservation of mass In order to balance a chemical equation, it is important to understand the law of conservation of mass. Definition 1: The law of conservation

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked.

Instructions Answer all questions in the spaces provided. Do all rough work in this book. Cross through any work you do not want to be marked. GCSE CHEMISTRY Higher Tier Chemistry 1H H Specimen 2018 Time allowed: 1 hour 45 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed). Instructions Answer all

More information

Formulas, Equations and Moles

Formulas, Equations and Moles Chapter 3 Formulas, Equations and Moles Interpreting Chemical Equations You can interpret a balanced chemical equation in many ways. On a microscopic level, two molecules of H 2 react with one molecule

More information

Chapter 1: Moles and equations. Learning outcomes. you should be able to:

Chapter 1: Moles and equations. Learning outcomes. you should be able to: Chapter 1: Moles and equations 1 Learning outcomes you should be able to: define and use the terms: relative atomic mass, isotopic mass and formula mass based on the 12 C scale perform calculations, including

More information

6 Reactions in Aqueous Solutions

6 Reactions in Aqueous Solutions 6 Reactions in Aqueous Solutions Water is by far the most common medium in which chemical reactions occur naturally. It is not hard to see this: 70% of our body mass is water and about 70% of the surface

More information

ATOMS. Multiple Choice Questions

ATOMS. Multiple Choice Questions Chapter 3 ATOMS AND MOLECULES Multiple Choice Questions 1. Which of the following correctly represents 360 g of water? (i) 2 moles of H 2 0 (ii) 20 moles of water (iii) 6.022 10 23 molecules of water (iv)

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

CHEMISTRY COMPUTING FORMULA MASS WORKSHEET

CHEMISTRY COMPUTING FORMULA MASS WORKSHEET CHEMISTRY COMPUTING FORMULA MASS WORKSHEET Directions: Find the formula mass of the following compounds. Round atomic masses to the tenth of a decimal place. Place your final answer in the FORMULA MASS

More information

Santa Monica College Chemistry 11

Santa Monica College Chemistry 11 Types of Reactions Objectives The objectives of this laboratory are as follows: To perform and observe the results of a variety of chemical reactions. To become familiar with the observable signs of chemical

More information

MOLES AND MOLE CALCULATIONS

MOLES AND MOLE CALCULATIONS 35 MOLES ND MOLE CLCULTIONS INTRODUCTION The purpose of this section is to present some methods for calculating both how much of each reactant is used in a chemical reaction, and how much of each product

More information

Experiment 1 Chemical Reactions and Net Ionic Equations

Experiment 1 Chemical Reactions and Net Ionic Equations Experiment 1 Chemical Reactions and Net Ionic Equations I. Objective: To predict the products of some displacement reactions and write net ionic equations. II. Chemical Principles: A. Reaction Types. Chemical

More information

Sample Exercise 3.1 Interpreting and Balancing Chemical Equations

Sample Exercise 3.1 Interpreting and Balancing Chemical Equations Sample Exercise 3.1 Interpreting and Balancing Chemical Equations The following diagram represents a chemical reaction in which the red spheres are oxygen atoms and the blue spheres are nitrogen atoms.

More information

Chemical Proportions in Compounds

Chemical Proportions in Compounds Chapter 6 Chemical Proportions in Compounds Solutions for Practice Problems Student Textbook page 201 1. Problem A sample of a compound is analyzed and found to contain 0.90 g of calcium and 1.60 g of

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information