ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences


 Matthew Rodgers
 1 years ago
 Views:
Transcription
1 ! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COSMATH341 Advanced Linear Algebra 1.0 Course designations and approvals: Required Course Approvals: Approval Approval Request Date Grant Date Academic Unit Curriculum Committee College Curriculum Committee Optional Course Designations: Yes No General Education Writing Intensive Honors Approval Request Date Approval Grant Date 2.0 Course information: Course Title: Advanced Linear Algebra Credit Hours: 3 Prerequisite(s): COSMATH241 Corequisite(s): None Course proposed by: School of Mathematical Sciences Effective date: Fall 2013 Contact Hours Maximum Students/section Classroom 3 35 Lab Workshop Other (specify) 2.1 Course conversion designation: (Please check which applies to this course) Semester Equivalent (SE) to: Semester Replacement (SR) to: New 2.2 Semester(s) offered: Fall Spring Summer Offered every other year only Other Page 1 of 5
2 2.3 Student requirements: Students required to take this course: (by program and year, as appropriate) Thirdyear students Applied Mathematics, Computational Mathematics, and Applied Statistics majors Students who might elect to take the course: Students majoring Computer Science, Chemistry, Industrial Engineering, or doing a minor in Mathematics or Statistics 3.0 Goals of the course: (including rationale for the course, when appropriate) 3.1 To learn to develop and write mathematical proofs. 3.2 To develop the mathematical maturity. 3.3 To develop a conceptual grasp of the ideas of linear algebra in addition to numerical techniques. 4.0 Course description: (as it will appear in the RIT Catalog, including pre and corequisites, semesters offered) COSMATH341 Advanced Linear Algebra This course provides a further study of the fundamental concepts of linear algebra such as linear transformations, similarity, diagonalization, orthogonality, inner products, Gram Schmidt, QR and SV Decomposition, quadratic forms, and various numerical techniques. Several applications of these ideas are also presented. (COSMATH241) Class 3, Credit 3 (S) 5.0 Possible resources: (texts, references, computer packages, etc.) 5.1 David Poole, Linear Algebra: A Modern Introduction, Brooks/Cole, Pacific Grove, CA. 5.2 Howard Anton & Robert Busby, Contemporary Linear Algebra, John Wiley, Hoboken, NJ. 5.3 Nakos and Joyner, Linear Algebra and its Applications, Brooks/Cole, Pacific Grove, CA. 5.4 S. Leon, Linear Algebra with Applications, Macmillan, New York, NY. 5.5 David Lay, Linear Algebra and its Applications, AddisonWesley, Reading, MA. 5.6 Software such as Matlab, Maple or Mathematica 6.0 Topics: (outline) Topics with an asterisk(*) are at the instructor s discretion, as time permits 6.1 Review of Linear Independence, Basis, Rank, Vector Spaces 6.2 Linear Transformations Matrix transformations Kernel and range Matrix of a linear transformation Algebra of linear transformations Page 2 of 5
3 6.2.5 Applications 6.3 Eigenvalues and Diagonalization Review of eigenvalues and eigenvectors Diagonalization Eigenvalues of linear transformations Similarity Solving systems of differential equations with e At 6.4 Inner Product Spaces Definition and properties Orthonormal bases and GramSchmidt process Orthogonal subspaces Orthogonal projections and least squares solutions 6.5 Decompositions and Factorizations QR factorization Schur decomposition Singular value decomposition Spectral theorem* 6.6 Bilinear Forms Matrix representation x T Ay Quadratic forms x T Ax Positive definite quadratic forms 6.7 Optional Topics* A k and Applications Fourier series and orthogonal polynomials Fast Fourier transform 7.0 Intended learning outcomes and associated assessment methods of those outcomes: Assessment Methods Learning Outcomes 7.1 Construct and write mathematical proofs 7.2 Explain fundamental ideas of linear systems and describe methods for solving them 7.3 Compute eigenvalues and matrix decompositions Page 3 of 5
4 8.0 Program goals supported by this course: 8.1 To develop an understanding of the mathematical framework that supports engineering, science, and mathematics. 8.2 To develop critical and analytical thinking. 8.3 To develop an appropriate level of mathematical literacy and competency. 8.4 To provide an acquaintance with mathematical notation used to express physical and natural laws. 8.5 To produce graduates who can effectively use mathematics and/or statistics to model, analyze, and solve problems arising in science, engineering, business, and other disciplines. 9.0 General education learning outcomes and/or goals supported by this course: Assessment Methods General Education Learning Outcomes 9.1 Communication Express themselves effectively in common collegelevel written forms using standard American English Revise and improve written and visual content Express themselves effectively in presentations, either in spoken standard American English or sign language (American Sign Language or Englishbased Signing) Comprehend information accessed through reading and discussion 9.2 Intellectual Inquiry Review, assess, and draw conclusions about hypotheses and theories Analyze arguments, in relation to their premises, assumptions, contexts, and conclusions Construct logical and reasonable arguments that include anticipation of counterarguments Use relevant evidence gathered through accepted scholarly methods and properly acknowledge sources of information 9.3 Ethical, Social and Global Awareness Analyze similarities and differences in human experiences and consequent perspectives Examine connections among the world s populations Page 4 of 5
5 Assessment Methods General Education Learning Outcomes Identify contemporary ethical questions and relevant stakeholder positions 9.4 Scientific, Mathematical and Technological Literacy Explain basic principles and concepts of one of the natural sciences Apply methods of scientific inquiry and problem solving to contemporary issues Comprehend and evaluate mathematical and statistical information Perform collegelevel mathematical operations on quantitative data Describe the potential and the limitations of technology Use appropriate technology to achieve desired outcomes 9.5 Creativity, Innovation and Artistic Literacy Demonstrate creative/innovative approaches to coursebased assignments or projects Interpret and evaluate artistic expression considering the cultural context in which it was created 10.0 Other relevant information: (such as special classroom, studio, or lab needs, special scheduling, media requirements, etc.) 10.1 Smart classroom 10.2 Software: Mathematics, Maple, or MATLAB Page 5 of 5
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences
! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COSMATH101 College Algebra 1.0 Course designations and approvals: Required
More informationROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences
! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COSMATH252 Probability and Statistics II 1.0 Course designations and approvals:
More informationROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. School of Mathematical Sciences
! ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE School of Mathematical Sciences New Revised COURSE: COSMATH200 Discrete Mathematics and Introduction to Proofs 1.0 Course designations
More informationCOLLEGE OF SCIENCE. John D. Hromi Center for Quality and Applied Statistics. NEW (or REVISED) COURSE: COSSTAT701 Foundations of Experimental Design
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE: COSSTAT701 Foundations of Experimental Design
More informationCOLLEGE OF SCIENCE. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE: COSSTAT747 Principles of Statistical Data Mining
More informationKATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KCOECQAS 873  Time Series Analysis
More informationKATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics
ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KGCOE CQAS 747 Principles of
More informationSALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET. Action Taken (Please Check One) New Course Initiated
SALEM COMMUNITY COLLEGE Carneys Point, New Jersey 08069 COURSE SYLLABUS COVER SHEET Course Title Course Number Department Linear Algebra Mathematics MAT240 Action Taken (Please Check One) New Course Initiated
More informationNumerical Analysis Introduction. Student Audience. Prerequisites. Technology.
Numerical Analysis Douglas Faires, Youngstown State University, (Chair, 20122013) Elizabeth Yanik, Emporia State University, (Chair, 20132015) Graeme Fairweather, Executive Editor, Mathematical Reviews,
More informationChapter 6. Orthogonality
6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be
More informationInner Product Spaces and Orthogonality
Inner Product Spaces and Orthogonality week 34 Fall 2006 Dot product of R n The inner product or dot product of R n is a function, defined by u, v a b + a 2 b 2 + + a n b n for u a, a 2,, a n T, v b,
More informationApplied Linear Algebra I Review page 1
Applied Linear Algebra Review 1 I. Determinants A. Definition of a determinant 1. Using sum a. Permutations i. Sign of a permutation ii. Cycle 2. Uniqueness of the determinant function in terms of properties
More information1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
More informationThe TI92 and Linear Algebra: Less is More George Dorner William Rainey Harper College Palatine, Il
The TI92 and Linear Algebra: Less is More George Dorner William Rainey Harper College Palatine, Il gdorner@harper.cc.il.us This workshop was intended to provide participants with experiences parallel
More informationMATHEMATICS. Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Degree Requirements
MATHEMATICS Administered by the Department of Mathematical and Computing Sciences within the College of Arts and Sciences. Paul Feit, PhD Dr. Paul Feit is Professor of Mathematics and Coordinator for Mathematics.
More informationMathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 PreAlgebra 4 Hours
MAT 051 PreAlgebra Mathematics (MAT) MAT 051 is designed as a review of the basic operations of arithmetic and an introduction to algebra. The student must earn a grade of C or in order to enroll in MAT
More informationMean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and expressions. Permutations and Combinations.
More information[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
More informationInner product. Definition of inner product
Math 20F Linear Algebra Lecture 25 1 Inner product Review: Definition of inner product. Slide 1 Norm and distance. Orthogonal vectors. Orthogonal complement. Orthogonal basis. Definition of inner product
More informationOrthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
More information1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)
Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible
More informationSimilarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
More informationISU Department of Mathematics. Graduate Examination Policies and Procedures
ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated
More informationDiagonalisation. Chapter 3. Introduction. Eigenvalues and eigenvectors. Reading. Definitions
Chapter 3 Diagonalisation Eigenvalues and eigenvectors, diagonalisation of a matrix, orthogonal diagonalisation fo symmetric matrices Reading As in the previous chapter, there is no specific essential
More informationProposal for Undergraduate Certificate in Large Data Analysis
Proposal for Undergraduate Certificate in Large Data Analysis To: Helena Dettmer, Associate Dean for Undergraduate Programs and Curriculum From: Suely Oliveira (Computer Science), Kate Cowles (Statistics),
More informationAccelerated Undergraduate/Graduate (BS/MS) Dual Degree Program in Computer Science
Accelerated Undergraduate/Graduate (BS/MS) Dual Degree Program in The BS degree in requires 126 semester hours and the MS degree in Computer Science requires 30 semester hours. Undergraduate majors who
More informationMaster of Arts in Mathematics
Master of Arts in Mathematics Administrative Unit The program is administered by the Office of Graduate Studies and Research through the Faculty of Mathematics and Mathematics Education, Department of
More informationLinear Algebra Review. Vectors
Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka kosecka@cs.gmu.edu http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa Cogsci 8F Linear Algebra review UCSD Vectors The length
More informationMATHEMATICAL SCIENCES, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN APPLIED MATHEMATICS
VCU MATHEMATICAL SCIENCES, BACHELOR OF SCIENCE (B.S.) WITH A CONCENTRATION IN APPLIED MATHEMATICS The curriculum in mathematical sciences promotes understanding of the mathematical sciences and their structures,
More informationMath 550 Notes. Chapter 7. Jesse Crawford. Department of Mathematics Tarleton State University. Fall 2010
Math 550 Notes Chapter 7 Jesse Crawford Department of Mathematics Tarleton State University Fall 2010 (Tarleton State University) Math 550 Chapter 7 Fall 2010 1 / 34 Outline 1 SelfAdjoint and Normal Operators
More informationInner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
More informationStephanie A. Mungle TEACHING PHILOSOPHY STATEMENT
Stephanie A. Mungle TEACHING PHILOSOPHY STATEMENT I am a selfdirected, enthusiastic college mathematics educator with a strong commitment to student learning and excellence in teaching. I bring my passion
More informationFLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE. Calculus for Business and Social Sciences
Form 2A, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER MAC 2233 COURSE TITLE: PREREQUISITE(S): COREQUISITE(S): Calculus for Business and Social Sciences MAC 1105
More informationSolutions to Linear Algebra Practice Problems
Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the
More informationby the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the yaxis We observe that
More informationSection 6.1  Inner Products and Norms
Section 6.1  Inner Products and Norms Definition. Let V be a vector space over F {R, C}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar in F,
More informationIndiana University East Faculty Senate
Indiana University East Faculty Senate General Education Curriculum for Baccalaureate Degree Programs at Indiana University East The purpose of the General Education Curriculum is to ensure that every
More informationCabrillo College Catalog 20152016
MATHEMATICS Natural and Applied Sciences Division Wanda Garner, Division Dean Division Office, Room 701 Jennifer Cass, Department Chair, (831) 4796363 Aptos Counselor: (831) 4796274 for appointment Watsonville
More informationRANGER COLLEGE SYLLABUS
Course: Math 1314, College Algebra Credit Hours: 3 Instructor: Dr. Norman Fletcher Office Location: Science #1 Office Hours: Email: nfletcher@rangercollege.edu Office Phone: 254 647 3234, ext. 7031 RANGER
More informationProblem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday.
Math 312, Fall 2012 Jerry L. Kazdan Problem Set 5 Due: In class Thursday, Oct. 18 Late papers will be accepted until 1:00 PM Friday. In addition to the problems below, you should also know how to solve
More informationMathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015. 866.Macomb1 (866.622.6621) www.macomb.edu
Mathematics INDIVIDUAL PROGRAM INFORMATION 2014 2015 866.Macomb1 (866.622.6621) www.macomb.edu Mathematics PROGRAM OPTIONS CREDENTIAL TITLE CREDIT HOURS REQUIRED NOTES Associate of Arts Mathematics 62
More informationx + y + z = 1 2x + 3y + 4z = 0 5x + 6y + 7z = 3
Math 24 FINAL EXAM (2/9/9  SOLUTIONS ( Find the general solution to the system of equations 2 4 5 6 7 ( r 2 2r r 2 r 5r r x + y + z 2x + y + 4z 5x + 6y + 7z 2 2 2 2 So x z + y 2z 2 and z is free. ( r
More informationRequisite Approval must be attached
Requisite Approval must be attached CITRUS COMMUNITY COLLEGE DISTRICT DEPARTMENT Mathematics COURSE NUMBER MATH 148 TITLE Intermediate Algebra I THIS COURSE IS CLASSIFIED AS: DEGREE APPLICABLE UNIT VALUE
More informationClackamas Community College Online Course/Outline Submission System
Page 1 of 6 Clackamas Community College Online Course/Outline Submission System Show changes since last approval in red Print Edit Delete Back Reject Publish Section #1 General Course Information Department:Mathematics
More informationMichigan State University Department of Electrical and Computer Engineering. ECE 280: ELECTRICAL ENGINEERING ANALYSIS (Spring 2008) Overview
Michigan State University Department of Electrical and Computer Engineering ECE 280: ELECTRICAL ENGINEERING ANALYSIS (Spring 2008) Overview Staff Lectures Instructor (First Half of Course: 01/07/08 02/22/08)
More informationExamples from University of San Diego, College of Arts and Sciences Student Learning Outcomes
Examples from University of San Diego, College of Arts and Sciences Student Learning Outcomes Example: Math Major Learning Outcomes 1. Students will demonstrate a working knowledge of selected topics from
More informationWashtenaw Community College Comprehensive Report. MTH 295 Differential Equations Effective Term: Fall 2011
Page 1 of 6 Washtenaw Community College Comprehensive Report MTH 295 Differential Equations Effective Term: Fall 2011 Course Cover Division: Math, Natural and Behavioral Sciences Department: Mathematics
More informationFLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE
Form 2A, Page 1 FLORIDA STATE COLLEGE AT JACKSONVILLE COLLEGE CREDIT COURSE OUTLINE COURSE NUMBER: MAT 0028 COURSE TITLE: PREREQUISITE(S): COREQUISITE(S): STUDENT ADVISING NOTE: Elementary Algebra Appropriate
More informationACADEMIC POLICY AND PLANNING COMMITTEE REQUEST FOR AHC GENERAL EDUCATION CONSIDERATION
ACADEMIC POLICY AND PLANNING COMMITTEE REQUEST FOR AHC GENERAL EDUCATION CONSIDERATION Allan Hancock College General Education Philosophy General education is a pattern of courses designed to develop in
More informationLINEAR ALGEBRA. September 23, 2010
LINEAR ALGEBRA September 3, 00 Contents 0. LUdecomposition.................................... 0. Inverses and Transposes................................. 0.3 Column Spaces and NullSpaces.............................
More informationNEOSHO COUNTY COMMUNITY COLLEGE MASTER COURSE SYLLABUS
NEOSHO COUNTY COMMUNITY COLLEGE MASTER COURSE SYLLABUS COURSE IDENTIFICATION Course Code/Number: MATH 113 Course Title: College Algebra Division: Applied Science (AS) Liberal Arts (LA) Workforce Development
More informationAPPLICATION FOR PARTTIME EMPLOYMENT AS A TUTOR TUTOR IN THE DOLCIANI MATHEMATICS LEARNING CENTER
APPLICATION FOR PARTTIME EMPLOYMENT AS A TUTOR TUTOR IN THE DOLCIANI MATHEMATICS LEARNING CENTER Dear Applicant, As you consider applying for a position in the Dolciani Mathematics Learning Center, there
More informationCATALOG CHANGES  F13. The Department of Ocean and Mechanical Engineering offers programs of study leading to the following degrees:
CATALOG CHANGES  F13 Ocean and Mechanical Engineering Department: The following changes are necessary to update the catalog. The first change is to include the combined BSME to MS degree program in the
More informationGeneralized Inverse of Matrices and its Applications
Generalized Inverse of Matrices and its Applications C. RADHAKRISHNA RAO, Sc.D., F.N.A., F.R.S. Director, Research and Training School Indian Statistical Institute SUJIT KUMAR MITRA, Ph.D. Professor of
More informationLecture 5: Singular Value Decomposition SVD (1)
EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25Sep02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system
More informationMATH 1324 Mathematics for Business & Social Sciences Frank Phillips College
MATH 1324 Mathematics for Business & Social Sciences Frank Phillips College General Course Information Credit Hours: 3 General Education Core Curriculum Course Prerequisite Placement by an approved TSI
More informationEL CAMINO COLLEGE COURSE OUTLINE OF RECORD. Grading Method: Letter Credit/No Credit Both No Grade
EL CAMINO COLLEGE COURSE OUTLINE OF RECORD I. COURSE DESCRIPTION Course Title and Number: Mathematics 43 Descriptive Title: Extended Elementary Algebra, Part II Discipline: Mathematics Division: Mathematical
More informationThe MoorePenrose Inverse and Least Squares
University of Puget Sound MATH 420: Advanced Topics in Linear Algebra The MoorePenrose Inverse and Least Squares April 16, 2014 Creative Commons License c 2014 Permission is granted to others to copy,
More informationCOURSE SYLLABUS. TEXTS *The official list of textbooks and materials for this course are found on Inside NC.
COURSE SYLLABUS COURSE IDENTIFICATION Course Prefix/Number MATH110 Course Title College Algebra with Review Division Applied Science Division Program Mathematics Credit Hours 5 Initiation/Revised Date
More informationPHILOSOPHY OF THE MATHEMATICS DEPARTMENT
PHILOSOPHY OF THE MATHEMATICS DEPARTMENT The Lemont High School Mathematics Department believes that students should develop the following characteristics: Understanding of concepts and procedures Building
More informationSequence of Mathematics Courses
Sequence of ematics Courses Where do I begin? Associates Degree and Nontransferable Courses (For math course below prealgebra, see the Learning Skills section of the catalog) MATH M09 PREALGEBRA 3 UNITS
More informationSimilar matrices and Jordan form
Similar matrices and Jordan form We ve nearly covered the entire heart of linear algebra once we ve finished singular value decompositions we ll have seen all the most central topics. A T A is positive
More informationProgramme Specification (Undergraduate) Date amended: 27 February 2012
Programme Specification (Undergraduate) Date amended: 27 February 2012 1. Programme Title(s) and UCAS code(s): BSc/BA/MMath Mathematics (Including year abroad) (G100/G102/G105) 2. Awarding body or institution:
More informationMathematics Courses. (All Math courses not used to fulfill core requirements count as academic electives.)
(All Math courses not used to fulfill core requirements count as academic electives.) Course Number Course Name Grade Level Course Description Prerequisites Who Signs for Course 27.04810 GSE Foundations
More informationNotes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
More informationMATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
More informationCode: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS
Code: MATH 274 Title: ELEMENTARY DIFFERENTIAL EQUATIONS Institute: STEM Department: MATHEMATICS Course Description: This is an introductory course in concepts and applications of differential equations.
More informationMATH. ALGEBRA I HONORS 9 th Grade 12003200 ALGEBRA I HONORS
* Students who scored a Level 3 or above on the Florida Assessment Test Math Florida Standards (FSAMAFS) are strongly encouraged to make Advanced Placement and/or dual enrollment courses their first choices
More informationLiberal Arts Mathematics 561723 (MA), Summer 2015
Liberal Arts Mathematics 561723 (MA), Summer 2015 Department of Science & Mathematics Columbia College Chicago 600 South Michigan Avenue Chicago, Illinois 60605 Course Title: Liberal Arts Mathematics
More informationFlorida State College at Jacksonville MAC 1105: College Algebra Summer Term 2011 Reference: 346846 MW 12:00 PM 1:45 PM, South Campus Rm: G314
Florida State College at Jacksonville MAC 1105: College Algebra Summer Term 2011 Reference: 346846 MW 12:00 PM 1:45 PM, South Campus Rm: G314 General Information: Instructor: Ronald H. Moore Office Hours:
More informationMATHEMATICS Department Chair: Michael Cordova  mccordova@dcsdk12.org
MATHEMATICS Department Chair: Michael Cordova  mccordova@dcsdk12.org Course Offerings Grade 9 Algebra I Algebra II/Trig Honors Geometry Honors Geometry Grade 10 Integrated Math II (20142015 only) Algebra
More informationCIS 270. Systems Analysis and Design
CIS 270 Systems Analysis and Design Approved: May 6, 2011 EFFECTIVE DATE: Fall 2011 COURSE PACKAGE FORM Team Leader and Members Andra Goldberg, Matt Butcher, Steve Sorden, Dave White Date of proposal to
More informationHANDBOOK FOR THE APPLIED AND COMPUTATIONAL MATHEMATICS OPTION. Department of Mathematics Virginia Polytechnic Institute & State University
HANDBOOK FOR THE APPLIED AND COMPUTATIONAL MATHEMATICS OPTION Department of Mathematics Virginia Polytechnic Institute & State University Revised June 2013 2 THE APPLIED AND COMPUTATIONAL MATHEMATICS OPTION
More informationα = u v. In other words, Orthogonal Projection
Orthogonal Projection Given any nonzero vector v, it is possible to decompose an arbitrary vector u into a component that points in the direction of v and one that points in a direction orthogonal to v
More informationMATHEMATICS PLACEMENT
MATHEMATICS PLACEMENT Am I required to take the Math Placement Exam? Students are not required to take the placement exam. Your mathematics placement is determined by your Math subscore on the ACT or SAT
More informationLinear Algebra Done Wrong. Sergei Treil. Department of Mathematics, Brown University
Linear Algebra Done Wrong Sergei Treil Department of Mathematics, Brown University Copyright c Sergei Treil, 2004, 2009, 2011, 2014 Preface The title of the book sounds a bit mysterious. Why should anyone
More informationNonlinear Iterative Partial Least Squares Method
Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., RichardPlouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for
More informationHigh School Mathematics Program. High School Math Sequences
or High School Mathematics Program High School Math Sequences 9 th Grade 10 th Grade 11 th Grade 12 th Grade *Algebra I Pre Calculus Personal Finance 9 th Grade 10 th Grade 11 th Grade 12 th Grade Calculus
More informationEASTERN ARIZONA COLLEGE Differential Equations
EASTERN ARIZONA COLLEGE Differential Equations Course Design 20152016 Course Information Division Mathematics Course Number MAT 260 (SUN# MAT 2262) Title Differential Equations Credits 3 Developed by
More informationMathematics. Mathematics MATHEMATICS. 298 201516 Sacramento City College Catalog. Degree: A.S. Mathematics AST Mathematics for Transfer
MATH Degree: A.S. AST for Transfer Division of /Statistics & Engineering Anne E. Licciardi, Dean South Gym 220 9165582202 Associate in Science Degree Program Information The mathematics program provides
More informationProposal for a BA in Applied Computing
Proposal for a BA in Applied Computing Introduction One of the challenges in designing Computer Science curricula is the fast pace of growth of the field of Computer Science. While the curriculum should
More informationBasic Math Course Map through algebra and calculus
Basic Math Course Map through algebra and calculus This map shows the most common and recommended transitions between courses. A grade of C or higher is required to move from one course to the next. For
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationThe Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression
The Singular Value Decomposition in Symmetric (Löwdin) Orthogonalization and Data Compression The SVD is the most generally applicable of the orthogonaldiagonalorthogonal type matrix decompositions Every
More informationThe University of Connecticut. School of Engineering COMPUTER SCIENCE GUIDE TO COURSE SELECTION AY 20152016. Revised July 27, 2015.
The University of Connecticut School of Engineering COMPUTER SCIENCE GUIDE TO COURSE SELECTION AY 20152016 Revised July 27, 2015 for Computer Science (CSci) Majors in the School of Engineering Table of
More information17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function
17. Inner product spaces Definition 17.1. Let V be a real vector space. An inner product on V is a function, : V V R, which is symmetric, that is u, v = v, u. bilinear, that is linear (in both factors):
More informationGraduation Requirements
Graduation Requirements PROGRAMS OF INSTRUCTION The Lone Star College System offers courses and programs to suit the needs of individual students. In keeping with the mission of a community college, the
More informationAN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS
AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS Revised Edition James Epperson Mathematical Reviews BICENTENNIAL 0, 1 8 0 7 z ewiley wu 2007 r71 BICENTENNIAL WILEYINTERSCIENCE A John Wiley & Sons, Inc.,
More informationASU College of Education Course Syllabus ED 4972, ED 4973, ED 4974, ED 4975 or EDG 5660 Clinical Teaching
ASU College of Education Course Syllabus ED 4972, ED 4973, ED 4974, ED 4975 or EDG 5660 Clinical Teaching Course: ED 4972, ED 4973, ED 4974, ED 4975 or EDG 5660 Credit: 9 Semester Credit Hours (Undergraduate),
More informationNorth Central Michigan College Master Course Syllabus
PART 1: Course Name: Practicum/Seminar Course Number: ECE 282 Credit Hrs. 7 Lecture Hrs. 3 Lab Hrs. 0 Clinical Hrs. 12hrs/week (192hrs) Variable Hrs. 0 Total Hours of Instruction: 48 Total Contact Hours:
More informationAu = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
More informationMATHEMATICS (MATH) 3. Provides experiences that enable graduates to find employment in sciencerelated
194 / Department of Natural Sciences and Mathematics MATHEMATICS (MATH) The Mathematics Program: 1. Provides challenging experiences in Mathematics, Physics, and Physical Science, which prepare graduates
More informationCredit Number Lecture Lab / Shop Clinic / Coop Hours. MAC 224 Advanced CNC Milling 1 3 0 2. MAC 229 CNC Programming 2 0 0 2
MAC 224 Advanced CNC Milling 1 3 0 2 This course covers advanced methods in setup and operation of CNC machining centers. Emphasis is placed on programming and production of complex parts. Upon completion,
More informationMAT 242 Test 3 SOLUTIONS, FORM A
MAT Test SOLUTIONS, FORM A. Let v =, v =, and v =. Note that B = { v, v, v } is an orthogonal set. Also, let W be the subspace spanned by { v, v, v }. A = 8 a. [5 points] Find the orthogonal projection
More informationUnion County College Faculty Curriculum Committee. New Program Proposal Form
Union County College Faculty Curriculum Committee New Program Proposal Form To all faculty members seeking to introduce a new program (including degree and certificate programs and options to existing
More informationBAŞKENT UNIVERSITY INSTITUTE OF EDUCATIONAL SCIENCES MASTER S PROGRAM IN ELEMENTARY SCHOOL MATHEMATICS EDUCATION REQUIRING THESIS
BAŞKENT UNIVERSITY INSTITUTE OF EDUCATIONAL SCIENCES MASTER S PROGRAM IN ELEMENTARY SCHOOL MATHEMATICS EDUCATION REQUIRING THESIS INFORMATION ABOUT THE PROGRAM General Description: The program prepares
More informationThe Hadamard Product
The Hadamard Product Elizabeth Million April 12, 2007 1 Introduction and Basic Results As inexperienced mathematicians we may have once thought that the natural definition for matrix multiplication would
More informationSYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr.
SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 111 2. NAME OF ORIGINATOR /REVISOR: Dr. Neil Basescu NAME OF COURSE: College Physics 1 with Lab 3. CURRENT DATE: 4/24/13
More informationAdministrative  Master Syllabus COVER SHEET
Administrative  Master Syllabus COVER SHEET Purpose: It is the intention of this to provide a general description of the course, outline the required elements of the course and to lay the foundation for
More informationLinear algebra and the geometry of quadratic equations. Similarity transformations and orthogonal matrices
MATH 30 Differential Equations Spring 006 Linear algebra and the geometry of quadratic equations Similarity transformations and orthogonal matrices First, some things to recall from linear algebra Two
More information