II. SOLUTIONS TO HOMEWORK PROBLEMS Unit 1 Problem Solutions

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "II. SOLUTIONS TO HOMEWORK PROBLEMS Unit 1 Problem Solutions"

Transcription

1 II. SOLUTIONS TO HOMEWORK PROLEMS Unit Prolem Solutions (). () r r5= 6 (4). r = = r 6 r7 (2).72 6 ().52 6 (8).32. () r4 6 6 r6 (4).24 r 6 (3).84 6 (3).44 6 (7) = 64.E3 6 = E = = () r r2 (8). r = = () E.6 6 = E () = = /6 = () 2 E = = /8 = = /6 = = = /8 = = () = = r r5 () r2 6 r3 () () (2) () = = r r= 6 ().76 r5 6 (2) = () 5. 6 =. 2 = () 5. 6 = () E. 6 = E = =

2 .5 () () (Su) + (Multiply).5 (, ) See L p. 625 for solution..6,.7,.8 See L p. 625 for solution.. (). () r9 6 5 r (6) = = r3 6 r2 ().92 6 (4).72. () r5 = 6 6 (5).28 6 (4) = = () r2 6 6 r6 (4). 3.2 = 2.E 8 =. 2 2 E = 66.E 6 = E. (). 2 = = = /8 = (). 2 = = = /8 = = /6 = = = = /6 = () = /8 + 4/64 = r r (2) r r ().2 3 r 3 r ().63 3 () = () r r (2) r 4 4 r2 (3).84 r 4 (3) =

3 .2 ().4 ().4 () 52.4 = / + 4/2 = r r5 (8).46 9 r6 9 r (4) = = /64 = r r4 (7) r6 8 r5 (6) /64 = (or ) =. 2 (or. 2) 9 3/ r r5 (7) r5 8 r3 (6) = se 3 se () r5 8 8 r3 (5).6 r 8 (4) = =. 2.4 () r5 8 8 r5 (2).4 r 8 (3).2 9 3/32 = = = =. 2.5 () () (Sutrt) (Multiply).5() () (Su) (Mult) 7

4 .5() () (Su) (Mult).6 () () ().7 () Quotient ) Reminer.7() Quotient ) Reminer.7().8 ().8() Quotient ) Reminer Quotient ) Reminer Quotient ) Reminer.8().9 Quotient ) Reminer =

5 is possile, ut is not, euse there is no wy to represent 3 or 9. lternte Solutions: is not possile, euse there is no wy to represent 3 or is possile: () () () () = 83 lternte Solutions: () () () ().23 lternte.24 lternte Solutions: Solutions: = 94 () () () () () () 49 = lt.: = " " " r4 6 r3 (3).52 6 (8) = E.38 6 = E r7 6 r (2).96 6 (5) = 7. 6 = 7. 9

6 .26 () In 2 s omplement In s omplement ( ) + ( ) ( ) + ( ) () ( 2) ( 2).26 () In 2 s omplement In s omplement ( ) + ( 6) ( ) + ( 6) () ( 6) ( 6).26 () ( 8) + ( ) ( 8) + ( ) () ( 9) ( 9).26 () (2) (2).26 (e) ( ) + ( 4) ( ) + ( 4) () ( 5) ( 5).27 () In 2 s omplement In s omplement () In 2 s omplement In s omplement + + ().27 () + + () overflow overflow.27 () + + ().27 (e) In 2 s omplement In s omplement + + ().28 () In 2 s omplement In s omplement + + ().28 () () + + () overflow overflow.28 () + +

7 Unit 2 Prolem Solutions 2. See L p. 626 for solution. 2.2 () In oth ses, if =, the trnsmission is, n if =, the trnsmission is. 2.2 () In oth ses, if =, the trnsmission is YZ, n if =, the trnsmission is. Y Y Z Y Z 2.3 or the nswer to 2.3, refer to L p () = [( ) + ( )] + E + = + E () Y = (' + ( + )) + = (' + ) + = ( + ) + = + + = () ( + ) ( + ) (' + ) (' + E) = ( + ) (' + ) (' + E) y Th. 8 = (' + ) (' + E) y Th. 8 = ' + E y Th () (' + + ') (' + ' + ) (' + ') = (' + ' + ) (' + ') {y Th. 8 with = ' + '} = '' + '' + ' + '' + '' + ' = '' + '' + '' + '' 2.6 () + '' = ( + ') ( + ') 2.6 () W + WY' + ZY = (W + WY' + ZY) = ( + ') ( + ') ( + ') ( + ') = (W + ZY) {y Th. } = (W +Z) (W + Y) 2.6 () ' + E + E' = ' + E( +') = ' + E( +) = (' + E) (' + + ) = (' + E) ( + E) ( + E) (' + + ) ( + + ) ( + + ) 2.6 () YZ + W'Z + Q'Z = Z(Y + W' + Q') = Z[W' + (Y + Q')] = Z(W' + ) (W' + Y + Q') y Th (e) ' + '' + ' = ' ( + ') + ' = ' ( + ') + ' y Th. = (' + ') ( + ' + ') = (' + ') (' + ) ( + ' + ') y Th. = (' + ') ( + ') 2.6 (f) + + E = ( + + ) ( + + E) = ( + + ) ( + + ) ( + + E) ( + + E) 2.7 () ( ) ( E) ( ) = E pply seon istriutive lw (Th. 8) twie 2.7 () WYZ + VYZ + UYZ = YZ (W + V + U) y first istriutive lw (Th. 8) U V W E Y Z 2.8 () [()' + ']' = (')' = ( + ') 2.8 () [ + (' + )]' = '((' + ))' = + ' = '(' + (' + )') = '(' + ') = '' + '' 2.8 () (( + ') )' ( + ) ( + )' = (' + ') ( + )'' = (' + ')'' = ''

8 2.9 () = [( + )' + ( + ( + )')'] ( + ( + )')' 2.9 () G = {[(R + S + T)' PT(R + S)']' T}' = ( + ( + )')' y Th. with =(+(+)')' = (R + S + T)' PT(R + S)' + T' = '( + ) = ' = T' + (R'S'T') P(R'S')T = T' + PR'S'T'T = T' 2. () Y 2. () Y Y Y' Y' 2. () ' Y Z Y Z 2. () ' 2. (e) 2. (f) Y Z Y Z Y Y 2. () '' + ('')' = y Th () ( + ') + + ' = + ' y Th. 2. () + + '( + )' = + + ' y Th. 2. () (' + ')(' + E) = ' + 'E y Th (e) [' + ()' +E'] = ' + E' y Th (f) (' + )('E + )' + ('E + ) = 'E + + ' + y Th. 2.2 () ( + Y'Z)( + Y'Z)' = y Th () (W + ' + YZ)(W' + ' + YZ) = '+ YZ y Th () (V'W + )' ( + Y + Z + V'W) = (V'W + )' (Y + Z) y Th. 2.2 () (V' + W')(V' + W' + Y'Z) = V' + W' y Th. 2.2 (e) (W' + )YZ' + (W' + )'YZ' = YZ' y Th (f) (V' + U + W)(W + Y + UZ') + (W + UZ' + Y) = W + UZ' + Y y Th. 2.3 () = ' + + ( + ) = + + = 2.3 () 2 = '' + ' = ' + ' = ' + ' 2.3 () 3 = [( + )'][( + ) + ] = ( + )' ( + ) + ( + )' = ( + )' y Th. 5 & Th () Z = [( + )]' + ( + ) = [( + )]' + y Th. with Y = [( + ) ]' = '' + ' + ' 2.4 () ( + E + ) 2.4 () W + Y + Z + VU 2

9 2.5 () 2.5 () 2.5 () 2.5 () 2.5 (e) 2.5 (f) H'I' + JK = (H'I' + J)(H'I' + K) = (H' + J)(I' + J)(H' + K)(I' + K) + '' + ' = ( + '' + ') = [(' + )( + ') + '] = (' + + ')( + ' + ') ' + + E' = (' + + E') = [' + ( + E')] = (' + )(' + + E') ' + '' + E' = ' + '' + E' = ' ( + ') + E' = (' + E') ( + ' + E') = (' + E) (' + ') ( + E) ( + ' ) ( + ' + E) ( + ' + ') W'Y + W'' + W'Y' = '(WY + W') + W'Y' = '(W' + Y) + W'Y' = (' + W') (' + Y') (W' + Y + W') (W' + Y + Y') = (' + W') (' + Y') (W' + Y) ' + (' + E) = ' + ( + E)(' + E) = (' + + E)(' + ' + E) = ( + + E)(' + + E)( + ' + E)(' + ' + E) 2.6 () W + 'YZ = (W + ')(W + Y) (W + Z) 2.6 () VW + Y' + Z = (V++Z)(V+Y'+Z)(W++Z)(W+Y'+Z) 2.6 () '' + '' + 'E' = '(' + ' + E') 2.6 () = '[E' + (' + ')] = '(E' + )(E' + ' + ') + E' + ' = ( + E' + ') = [E' + ( + ')] = (E' + )(E' + + ') = ( + )( + E')( + ' + )( + ' + E') 2.7 () [(Y)' + (' + Y')'Z] = ' + Y' + (' + Y')'Z 2.7 () ( + (Y(Z + W)')')' = 'Y(Z + W)' = 'YZ'W' = ' + Y' + Z y Th. with Y = (' + Y') 2.7 () [(' + ')' + ('')' + '']' = (' + ')''( + ) = '' 2.7 () ( + ) ' + ( + )' = ' + ( + )' {y Th. with Y = ( + )'} = ' + '' 2.8 () = [(' + )']' + = [' + + '] + = () G = [()'( + )]' = ( + '') = 2.8 () H = [W''(Y' + Z')]' = W + + YZ 2.9 = (V + + W) (V + + Y) (V + Z) = (V + + WY)(V + Z) = V + Z ( + WY) y Th. 8 with = V W 2.2 () = + ' + ' + ' = + ' + ' (y Th. 9) = ( + ') + ' = (+ ) + ' (y Th. ) = + + ' = + ( + ') = + ( + ) = () Y + Z V eginning with the nswer to (): = ( + ) lternte solutions: = + ( + ) + 3 = + ( + )

10 2.2 () W Y Z W'Y WZ W'Y+WZ W'+Z W+Y (W'+Z)(W+Y) 2.2 () + +' (+)(+') ' +' 2.2 () Y Z +Y '+Z (+Y)('+Z) Z 'Y Z+'Y 2-2 () Y Z Y YZ 'Z Y+YZ+'Z Y+'Z 4

11 2.2 (e) Y Z +Y Y+Z '+Z (+Y)(Y+Z)('+Z) (+Y)('+Z) 2.22 ( + ) =, = [(+Y')Y] = Y' + Y, (Y) = + Y Unit 3 Prolem Solutions 3.6 () (W + ' + Z') (W' + Y') (W' + + Z') (W + ') (W + Y + Z) = (W + ') (W' + Y') (W' + + Z') (W + Y + Z) = (W + ') [W' + Y' ( + Z')] (W + Y + Z ) = [W + ' (Y + Z)] [W' + Y'( + Z')] = WY' ( + Z') + W'' (Y + Z) {Using ( + Y) (' + Z) = 'Y +Z with =W} = WY' + WY'Z' + W''Y + W''Z 3.6 () ( ) (' + ' + + ') (' + ) ( + ) ( + + ) = ( + + ) (' + ) ( + ) = ( + + ) (' + ) {Using ( + Y) (' + Z) = 'Y + Z with = } = ' + ' + ' = ' () + '' + '' + = + '(' + ') = (' + ) [ + (' + ')] {Using ( + Y) (' + Z) = 'Y + Z with =} = (' + ) [ + (' + ') (' + )] = (' + ) ( + ' + ') 3.7 () ''' + ' + ' + ' 3.8 = ' ('' + ) + (' + ') = ' [(' + ) ( + ')] + [(' + ') (' + )] {Using Y + 'Z = (' + Y) ( + Z) twie insie the rkets} = [ + (' + ) ( + ')] [' + (' + ') (' + )] {Using Y + 'Z = (' + Y) ( + Z) with = } = ( + ' + ) ( + + ') (' + ' + ') ( ' + ' + ) {Using the istriutive Lw} = [( ) + ] = ( + '' + ) = ('' + ) = (' + ) = ()' (' + ) + (' + )' = (' + ') (' + ) + (') = ' + ' + ' {Using ( + Y) ( + Z) = + YZ} = ' + ' + ' {Using + 'Y = + Y} 3.9 = ( Β) (Α ) is not vli istriutive lw. PROO: Let =, =, =. LHS: = = =. RHS: ( ) ( ) = ( ) ( ) = =. 5

12 3. () ( + W) (Y Z) + W' = ( + W) (YZ' + Y'Z) + W' = YZ' + Y'Z + WYZ' + WY'Z + W' 3. () ( ) + + = ' + ()' + + = ' + (' + ') + + = ' + ' + ' + + Using onsensus Theorem WYZ' + WY'Z + W' = ' + ' + ' ( onsensus term, eliminte ) = ' + ' + ' + (Remove onsensus term ) 3. () (' + ' + ') (' + + ') ( + + ) ( + + ) = (' + ' + ') ( + ' + ) (' + + ') ( + + ) ( + + ) onsensus term = (' + + ') ( + + ) = (' + ' + ') ( + ' + ) ( + + ) Removing onsensus terms 3. ( + ' + + E') ( + ' +' + E) (' + ' + ' + E') = [ + ' + ( + E') (' + E)] (' + ' + ' + E') = ( + ' + 'E' + E) (' + ' + ' + E') = ' + ( + 'E' + E) (' + ' + E') ' { onsensus term} = ' + ' + ' + E' + ''E' + 'E' + 'E' + 'E = ' + ' + ' + E' + ' +'E + 'E' = ' + ' + E' + ' + 'E' 3.2 ''E + ''' + E + = ''' + + 'E Proof: LHS: ''E + 'E + ''' + E + onsensus term to left-hn sie n use it to eliminte two onsensus terms = 'E + ''' + This yiels the right-hn sie. LHS = RHS 3.3 () (' + ' + ) (' + ) ( + ' + ') (' + + ) ( + ) = (' + + '') ( + ') = ( + '') + ('') {Using Y + 'Z = ( + Z)(' + Y) with = } = + '' + '' 3.3 () (' + ' + ') ( + + ') ( + ) (' + ) (' + + ) = [' + (' + ')] [ + ( + ')] = (' + ') + ' ( + ') = ' + ' + ' + '' 3.3 () (' + ' + ) ( + ') (' + + ') ( + ) ( + + ') = [' + (' + ) ( + ')] ( + ') = (' + + '') ( + ') {y Th. 4 with = } = ( + '') + '' {y Th. 4 with = } = + '' + '' 3.3 () 3.3 (e) ( + + ) (' + ' + ') (' + ' + ') ( + + ) = ( + + ) (' + ' + '') = ( ' + '') + '( + ) {y Th. 4 with = } = ' + '' + ' + ' ( + + ) ( + + ) (' + ' + ') (' + ' + ') = ( + + ) (' + ' + '') = (' + '') + '( + ) = ' + '' + ' + ' lt. soln's: ' + ' + '' + ' (or) ' + ' + ' + '' (or) ' + ' + '' + ' 3.4 () ' + '' + ' = '' + ' = ('' + ') = (' + '') {y Th. with Y = '} = ' + '' 6

13 3.4 () '' + ' + '' = '' + '( + ') = '' + '( + ) = '' + ' + ' 3.4 () 3.4 () 3.5 () 3.5 () 3.5 () ( + ') (' + ' + ) (' + + ') = ' + (' + ) ( + ') = ' + ( + ') = ' + (' + + ' + ) (' + ' + + E) (' +' + + E') = [' + ' + ( + ) ( + E) ( + E')] {y Th. 8 twie with = ' + '} = [' + ' + ( + )] = [' + ' + ] = '' + ' + + '' = ' ( + ') + ('' + ) = ' [( + ') ( + )] + [(' + ) ( + ')] {y Th. 4 twie with = n = } = [ + ( + ') ( + ) ] [' + (' + ) ( + ')] {y Th. 4 with = } = ( + + ') ( + + ) (' + ' + ) (' + + ') {y istriutive Lw} + '' + ''' + ' = ' (' + '') + ( + ') = ( + ' + '') (' + + ') {y Th. 4 with = } = ( + ' + ') ( + ' + ') (' + + ) (' + + ') + '' + '' + '' = ' [' + '] + [ + ''] = ' [( + ) (' + ')] + [( + ') ( + ')] = [ + ( + ) (' + ')][' + ( + ') ( + ')] = ( + + ) ( + ' + ') (' + + ') (' + + ') 3.5 () '' + '' + '' + = ('' + ) + ' (' + ') = ( + ') ( + ') + ' (' + ') ( + ) = [' + ( + ') ( + ')] [ + (' + ') ( + )] = (' + + ') (' + + ') ( + ' + ') ( + + ) 3.5 (e) WY + W'Y + WYZ + YZ' = WY ( + ' + Z) + YZ' = WY + YZ' = Y (W + Z') = Y (W + ) (W + Z') 3.6 () ( ) + '' = ()' + ' + '' = (' + ') + ' + '' = (' + ') + ' ( + ') = (' + ' + ') ( + ' + ) = (' + ' + ') ( + ' + ) ( + ' + ) 3.6 () ' ( ') + + ' = ' ['' + ] + + ' = ''' + ' + + ' = ''' + ( + ' + ') = ''' + ( + ' + ') = ''' + = + '' = (' + ) (' + ) 3.7 () 3.7 () ( Y) Z = (Y Z) Proof: LHS: Let Y =. Z = Z' + 'Z = ( Y) Z' + ( Y)' Z = ( Y ) Z' + ( Y) Z {y (3-8) on L p. 6) = ('Y + Y') Z' + (Y + 'Y') Z = 'YZ' + Y'Z' + YZ + 'Y'Z RHS: Let Y Z =. = ' + ' = (Y Z)' + ' (Y Z) = (Y Z) + ' (Y Z) = [YZ + Y'Z'] + ' [YZ' + Y'Z] = YZ + Y'Z' + 'YZ' + 'Y'Z LHS = RHS ( Y) Z = (Y Z) Proof: LHS: Let Y =. ( Z) = Z + 'Z' = ( Y) Z + ( Y)' Z' = ( Y ) Z + ( Y) Z' = (Y + 'Y') Z + (Y' + 'Y) Z' = YZ + 'Y'Z + Y'Z' + 'YZ' RHS: Let Y Z =. ( ) = + '' = (Y Z) + ' (Y Z)' = (Y Z) + ' (Y Z) = [YZ + Y'Z'] + ' [Y'Z + YZ'] = YZ + Y'Z' + 'Y'Z + 'YZ' LHS = RHS 3.8 () '' + ' + ' + ' + '' = '' + ' + ' + '' = ' + ' + '' 3.8 () W'Y' + WYZ + Y'Z + W'Y + WZ = W'Y' + WYZ + Y'Z + W'Y + WZ = W'Y' + WYZ + W'Y + WZ = W'Y' + W'Y + WZ 7

14 3.8 () ( + + ) ( + + ) (' + + ) (' + ' + ') = ( + + ) (' + + ) (' + ' + ') 3.8 () W'Y + WZ + WY'Z + W'Z' = W'Y + WZ + WY'Z +W'Z' + YZ = WY'Z + W'Z' + YZ YZ ( onsensus term) 3.8 (e) '' + '' + ' + ' + ' = '' + ' + ' 3.8 (f) ( + + ) ( + ' + ) ( + + ) (' + ' + ') = ( + + ) ( + ' + ) (' + ' + ') 3.9 Z = + E + + ' + 'E' = ( + + ' + 'E') + E = ( + E) (E ' + 'E') {y Th. 8 with = E} = ( + ) ( + E) ( + + ' + E + 'E') = ( + ) ( + E) (' + E + ' + + ) {Sine E + 'E' = E + '} = ( + ) ( + E) (' + E + ' + + ) {Sine ' + = ' + } = ( + ) ( + E) (' + E + ' +) {Sine + = } = ( + E) (' + E + ' + ) = ' + E + ' + + E + E' + E {eliminte onsensus term E; use + Y = where = E} 3.2 = ' + ' + + E = ' + + '' + E + = ( + ) (' + ) + ('' + E + ) = [( + ) (' + ) + ] [( + ) (' + ) + '' + E + ] = ( + ) (' + + ) ( + + '' + E + ) (' + + '' + E + ) + + ' = ( + ) (' + + ) ( + ) ( + + '' + E + ) (' + + ' + E + ) = ( + ) ( + ) (' + + ' + E + ) = ( + ) ( + ) (' + + ' + + E) = ( + ) ( + ) (' + + ' + ) = ( + ) (' + + ' + ) = (' + + ' ' + = ' + ' + + use onsensus, + Y = where = 3.2 'Y'Z' + YZ = ( + Y'Z') (' + YZ) = ( + Y') ( + Z') (' + Y) (' + Z) (Y + Z') = ( + Y') ( + Z') (' + Y) (' + Z) (Y + Z') = ( + Y') ( + Z') (' + Z) (Y + Z') = ( + Y') (' + Z) (Y + Z') lt.: (' + Y) (Y' + Z) ( + Z') y ing (Y' + Z) s onsensus in 3r step 3.22 () y + 'yz' + yz = y ( + 'z') + yz = y + yz' + yz = y + y = y lternte Solution: y + 'yz' + yz = y ( + 'z' + z) = y ( + z' + z) = y ( + ) = y 3.22 () 3.22 () y' + z + (' + y) z' = 'y + (' + y) {y Th. with Y = z} = y' + ' + y = + ' + y = + y = lt.: y' + z + (' + y) z' = (y' + z) + (y' + z)' = () (y' + z) ( + y') z = (y' + z + y'z) z = y'z + z + y'z = z + y'z lternte Solution: (y' + z) (+y') z = z ( + y') = z + zy' ' (' + ) + '' ( + ') +(' + ) ( + ') = '' + ' + '' + ''' + '' + = '' + '' + '' + ' Other Solutions: '' + + ''' + '' '' + + ''' + ' '' + + '' + '

15 3.22 (e) w'' + 'y' + yz + w'z' + 'z reunnt term = w'' + 'y' + yz + w'z' + 'z = 'y' + yz + w'z' + 'z Remove reunnt term = 'y' + yz + w'z' 3.22 (g) [(' + ' + ') ( + + ')]' + ''' + '' = ( + ') + '' (' + ) +''' + '' = + '+ ''' + '' + ''' + '' ' '' = + ''' + '' + ' = + '' + ' 3.22 (f) ' + ''+ 'E+ E'G+'E+''E = ' + 'E + E'G + 'E (onsensus) = ' + 'E + E'G 3.23 () ''' + ' + + '' + ' + '' 3.23 () = '' + ' + + ' onsensus = '' + ' WY' + (W'Y' ) + (Y WZ) 3.25 () = WY' + W'Y' + (W'Y')' ' + Y (WZ)' + Y'WZ = WY' + W'Y' + (W + Y) ' + Y (W' + Z') + Y'WZ = Y' + W' + 'Y + W'Y + YZ' + WY'Z + WY' = Y' + W' + 'Y + W'Y + YZ' + WY'Z + WY' = Y' + W' + W'Y + YZ' + WY' = + W' + W'Y + YZ' lternte Solutions: = W'Y + W' + WZ' + Y' = YZ' + W' + Y' + WY' = W' + 'Y + Z' + WY' = W' + Y' + WZ' + WY' ''' + + ' + '' + ' + '' = '' + + ' + ' = '' + + ' VLI: ' + ' + ' = ' ( + ') + ( + ') ' + ( + ') ' = ' + '' + ' + '' + ' + '' = ' + ' + ' lternte Solution: ' + ' + ' ll onsensus terms: ', ', ' We get = ' + ' + ' + ' + ' + ' = ' + ' + ' 3.25 () NOT VLI. ounteremple: =, =, =. LHS =, RHS =. This eqution is not lwys vli. In ft, the two sies of the eqution re omplements: [( + ) ( + ) ( + )]' = [( + ) ( + )]' = [ + + ]' = (' + ') (' + ') (' + ') 3.25 () VLI. Strting with the right sie, onsensus terms RHS = + '' + ' + ' + + ' = + '' + ' + ' + + ' = + '' + ' + ' + = LHS 3.25 () VLI: LHS = y' + 'z + yz' onsensus terms: y'z, z', 'y = y' + 'z + yz' + y'z + z' + 'y = y'z + z' + 'y = RHS 3.25 (e) NOT VLI. ounteremple: =, y =, z =, then LHS =, RHS =. This eqution is not lwys vli. In ft, the two sies of the equtions re omplements. LHS = ( + y) (y + z) ( + z) = [( + y)' + (y + z)' + ( + z)']' = ('y' + y'z' + 'z')' = [' (y' + z') + y'z']' =[(' + y'z') (y' + z' + y'z')]' = [(' + y') (' + z') (y' + z')]' (' + y') (y' + z') (' + z') 9

16 3.25 (f) VLI: LHS = ' + ' + '' () VLI: onsensus terms: ', = ' + ' + '' + + ' + ' + ' '' = RHS LHS = (' + Y') ( Z) + ( + Y) ( Z) = (' + Y') ('Z' + Z) + ( + Y) ('Z + Z') = 'Z' + 'YZ' + Y'Z + 'YZ + Z' + YZ' = 'Z' + (Y' + 'Y)Z + Z' = Z' + Z( Y) = Z' + ( Y) = RHS 3.26 () LHS = (W' + + Y') (W + ' + Y) (W + Y' + Z) = (W' + + Y') (W + (' + Y) (Y' + Z)) = (W' + + Y') (W + ('Y' + YZ)) = (W' ('Y' + YZ) + W ( + Y ')) = W''Y' + W'YZ + W + WY' onsensus terms: 'Y' YZ = W''Y' + W'YZ + W + WY' + YZ + 'Y' = W''Y' + W''Z + W'YZ + YZ + W + WY' + 'Y' = W''Z + W'YZ + YZ + W + 'Y' = W'YZ + YZ + W + 'Y' 3.26 () LHS = + ''' + '' + = ( + ) + '' ( + ') = ( + ' ( + ')) (' + ( + )) = ( + ') ( + + ') (' + ) (' + + ) = ( + ') ( + + ') (' + ) (' + + ) ( + ' + ) onsensus: + ' + = ( + ') ( + + ') (' + ) ( + ' + ) = ( + ') (' + ) ( + ' + ) = RHS 3.27 () VLI. [ + = ] [' ( + ) = '()] [ + = ] [' + ' = '] 3.27 () NOT VLI. ounteremple: =, = = n = then LHS = + = RHS = = = LHS ut + = + = ; = + The sttement is flse () VLI. [ + = ] [( + ) + = () + ] [ + = ] [ + + = + ] 3.27 () NOT VLI. ounteremple: =, = = n = then LHS = + + = RHS = + = = LHS ut + = + = The sttement is flse () '' + + ' + ' + ''' + ' onsensus terms: () '' using '' + ' (2) ' using '' + (3) using ' + (4) '' using ''' + ' Using, 2, 3: '' + + ' + ' + ''' + ' + '' + ' + = '' + + ' (Using the onsensus theorem to remove the e terms sine the terms tht generte them re still present.) 3.28 () ''' + ' + '' + ' onsensus terms: () '' using ''' + ' (2) ' using '' + ' (3) ''' using ''' + '' (4) '' using ''' + ' (5) ' using ' + ' Using : ''' + ' + '' + ' + ', whih is the minimum solution. 2

17 Unit 4 Prolem Solutions See L p. 628 for solution. E y z 4.2 () Y = ''''E' + '''E' + ''E' (less thn gpm) + (t lest gpm) () Z = ''E' + 'E' + E' (t lest 2 gpm) + + (t lest 3 gpm) + (t lest 4 gpm) + (t lest 5 gpm) 4.3 = m(, 4, 5, 6); 2 = m(, 3, 4, 6, 7); + 2 = m(, 3, 4, 5, 6, 7) Generl rule: + 2 is the sum of ll minterms tht re present in either or 2. 2 n Proof: Let = i m i ; 2 = j m j ; + 2 = i m i + j m j = m + m + 2 m Σi = 2 n Σj = 2 n Σi = 2 n Σj = 2 n + m + m + 2 m = ( + ) m + ( + ) m + ( ) m = ( i + i ) m i Σi = 4.4 () 4.4 () 2 2n = 2 22 = 2 4 = 6 y z z z 2 z 3 z 4 z 5 z 6 z 7 z 8 z 9 z z z 2 z 3 z 4 z 5 'y' 'y ' y' y' 'y+y' '+y' y 'y'+y y '+y +y' +y 4.5 E Z lternte Solutions E Z 3 4 These truth tle entries were me on't res euse = n = n never our 2 These truth tle entries were me on't res euse when is, the output Z of the OR gte will e regrless of its other input. So hnging n E nnot ffet Z. 3 These truth tle entries were me on't res euse when n E re oth, the output Z of the OR gte will e regrless of the vlue of. 4 These truth tle entries were me on't res euse when one input of the N gte is, the output will e regrless of the vlue of its other input. 4.6 () Of the four possile omintions of & 5, = n 5 = gives the est solution: = ''' + '' + ' + = '' () y inspetion, G = when oth on t res re set to. 2

18 4.7 () Etly one vrile not omplemente: = '' + '' + '' = m(, 2, 4) 4.8 () (,,, ) = m(,, 2, 3, 4, 5, 6, 8, 9, 2) Refer to L for full term epnsion 4.7 () Remining terms re mterms: = M(, 3, 5, 6, 7) = ( + + ) ( + ' + ') (' + + ') (' + ' + ) (' + ' + ') 4.8 () (,,, ) = Π M(7,,, 3, 4, 5) Refer to L for full term epnsion 4.8 = 2 = 2 2 = 2 3 = 2 = 2 = 2 2 = = 3 > 2 2 = 2 2 = = 4 > = 6 > 2 3 = 2 3 = 3 > = 6 > = 9 > () 4.9 () 4.9 () 4.9 () = ' + ' ( + ') ( + ') = ' + ' + '' + '' + '''; = m(,, 4, 5, 6) Remining terms re mterms: = M(2, 3, 7) Mterms of re minterms of ': ' = m(2, 3, 7) Minterms of re mterms of ': ' = M(,, 4, 5, 6) 4. (,,, ) = ( + + ) (' + ) (' + ' + ') ( + + ' + ') = ( ) ( + + ' + ) (' + + ' + ') (' + ' + ' + ) (' + ' + ' + ') ( + + ' + ') = ( ) ( + + ' + ) (' ) (' ') (' + ' + + ) (' + ' + + ') (' + ' + ' + ) (' + ' + ' + ') ( + + ' + ') 4. () = m(, 4, 5, 6, 7,, ) 4. () = M(, 2, 3, 8, 9, 2, 3, 4, 5) 4. () ' = m(, 2, 3, 8, 9, 2, 3, 4, 5) 4. () ' = M(, 4, 5, 6, 7,, ) 4. () ifferene, i = i y i i ; i+ = i i ' + i 'y i + i y i 4. () i = s i ; i+ is the sme s i+ with i reple y i ' i y i i i+ i 4.2 See L p. 629 for solution. 22

19 4.3 Z Z = '''' + ''' + ''' + ' + + ' = ''' + + ''' + ' = ''' + + ''' + ' + + ''' (e onsensus terms) Z = ''' ''' ' ' ' ' ' ' Z 4.4 Z Z = '' + '' + ' + ''' + '' + '' + ' = ' + '' + ' + '' = ' + ' + '' + ' (e onsensus terms) Z = ' + ' + ' ' ' ' Z 4.5 () The uzzer will soun if the key is in the ignition swith n the r oor is open, or the set elts re not fstene. K S' The two possile interprettions re: = K + S' n = K( + S') 4.5 () You will gin weight if you et too muh, or you o not eerise enough n your metolism rte is too low. W E' M The two possile interprettions re: W = ( + E') M n W = + E'M 4.5 () The speker will e mge if the volume is set too high n lou musi is plye or the stereo is too powerful. V M S The two possile interprettions re: = VM + S n = V (M + S) 4.5 () The ros will e very slippery if it snows or it rins n there is oil on the ro. V S R O The two possile interprettions re: V = (S + R) O n V = S + RO 4.6 Z = Z = (E + ''''E')'; Y = '''E 4.8 () 3 = 6 = ; = '''E'G 4.8 () = ; Y = '''E'G' 4.8 () = 2 ; 64 = 2 ; 3 = 2 ; 27 = 2 ; 32 = 2 ; Z = ('')' = + 23

20 4.9 2 = M(, 3, 4, 5, 6, 7). Generl rule: 2 is the prout of ll mterms tht re present in either or 2. Proof: 2 n Let = ( i + M i ); 2 = ( j + M j ); 2 = ( i + M i ) ( j + M j ) Πi = 2 n Πj = 2 n Πi = 2 n Πj = = ( + M ) ( + M ) ( + M ) ( + M ) ( 2 + M 2 ) ( 2 + M 2 )... = ( + M ) ( + M ) ( M 2 )... 3 n = ( i i + M i ) Πi = Mterm M i is present in 2 iff i i =. Mterm M i is present in iff i =. Mterm M i is present in 2 iff j =. Therefore, mterm M i is present in 2 iff it is present in or G H J () (,,, ) = m(5, 6, 7,,, 3, 4, 5) = M(,, 2, 3, 4, 8, 9, 2) () G (,,, ) = m(, 2, 4, 6) = M(, 3, 5, 7, 8, 9,,, 2, 3, 4, 5) () H (,,, ) = m(7,, 3, 4, 5) = M(,, 2, 3, 4, 5, 6, 8, 9,, 2) () J (,,, ) = m(4, 8, 2, 3, 4) = M(,, 2, 3, 5, 6, 7, 9,,, 5) 4.22 f () f = m(, 2, 4, 5, 6,,, 2, 4, 5) () f = M(, 3, 7, 8, 9, 3) () f ' = m(, 3, 7, 8, 9, 3) () f '= M(, 2, 4, 5, 6,,, 2, 4, 5) You n lso work this prolem lgerilly, s in prolem You n lso work this prolem using truth tle, s in prolem f(,, ) = ' ( + ') = ' + '' = ' ( + ') + ' ( + ') ' = ' + '' + '' + ''' m 3 m 2 m 2 m 4.2 () f = m(, 2, 3) 4.2 () f = M(, 4, 5, 6, 7) 4.2 () f ' = m(, 4, 5, 6, 7) 4.2 () f ' = M(, 2, 3) 4.23 () (,,, ) = m(3, 4, 5, 8, 9,,, 2, 4) 4.23 () = '' + ''' + '' + ''' + '' + '' + ' + '' + ' (,,, ) = M(,, 2, 6, 7, 3, 5) = ( ) ( ') ( + + ' + ) ( + ' + ' + ) ( + ' + ' + ') (' + ' + + ') (' + ' + ' + ') 4.24 () (,,, ) = m(, 3, 4, 7, 8, 9,, 2, 3, 4) = '''' + '' + ''' + ' + ''' + '' m m 3 m 4 m 7 m 8 m 9 + ' + '' + ' + ' m m 2 m 3 m () (,,, ) = M(, 2, 5, 6,, 5) = ( ') ( + + ' + ) ( + ' + + ') ( + ' + ' + ) M M 2 M 5 M 6 (' + + ' + ) (' + ' + ' + ') M M 5 24

21 4.25 () If on't res re hnge to (, ), respetively, = ''' + + '' + ' = '' +, 4.25 () If on't res re hnge to (, ), respetively 3 = ( + + ) ( + + ') = () If on't res re hnge to (, ), respetively 2 = '''+ '' + '' + ' = ' 4.25 () If on't res re hnge to (, ), respetively 4 = ''' + ' + '' + = '' E Z These truth tle entries were me on't res 2 euse = n 2 = n never 2 our. 2 These truth tle entries were me on't res 2 euse when one input 2 of the OR gte is, the output will e regrless of the vlue of its other 2 input () G (,, ) = m(, 7) = M(, 2, 3, 4, 5, 6) 4.27 () G 2 (,, ) = m(,, 6, 7) = M(2, 3, 4, 5) 4.28 's Y Z () = Y = '' + '' + '' + ' + '' + '' + ' + '' + ' + ' Z = ''' + ''' + ''' + ' + ''' + ' + ' + ' 4.29 W Y Z () = ''' + ''' + '' + ''' + '' + '' + ' + ''' + '' + '' + ' + '' + ' + ' + Y = '''' + ' + ' + ' + Z = '''' + '' + '' + '' + '' + '' + ' + '' () Y = ( ) ( ') 4.29 () Y = ( ') ( + + ' + ) ( + + ' + ) ( + ' + + ) ( + + ' + ') ( + ' + + ) (' ) (' + ' + ' + ') ( + ' + + ') ( + ' + ' + ) (' ) (' ') (' + + ' + ) (' + + ' + ') (' + ' + + ) Z = ( ) ( + ' + + ') ( + ' + ' + ) (' ') (' + + ' + ) (' + ' + + ) (' + ' + ' + ') Z = ( ') ( + + ' + ) ( + ' + + ) ( + ' + ' + ) (' ) (' + ' + + ') (' + ' + ' + ) 25

22 4.3 S T U V W Y Z 4.3 S T U V W Y Z 5 = 4 + = 5 = = = = = = = = = = = = = = = = = =37 Note: Rows through hve on't re outputs. Note: Rows through hve on't re outputs. S =, T =, U =, V =, W =, =, Y =, Z = S =, T =, U = + +, V = ' + '' +, W = '' +, = '' + ', Y = ' + '' +, Z = 4.32 Notie tht the sign it 3 of the 4-it numer is etene to the leftmost full er s well. S 4 S 3 S 2 S S Y 4 Y 3 Y Y Y 4.33 Y Sum out Y Sum out S 3 S 2 S S H.. 2 H.. H.. H

23 Unit 5 Prolem Solutions 5.3 () f 5.3 () 5.3 () f2 f3 r e f s t 5.3 () f4 y z f = '' + ' + ' f2 = 'e' + 'f + e'f f3 = r' + t' f4 = 'z + y + z' 5.4 () 5.4 () 5.4 () = ' + ' + + ' + '' = ' + ' + = ( + '+ ') ( + + ') 5.5 () 5.5 () See L p. 63 for solution. 2 2 lt: Z = ' ' 2 + ' 2 ' + 2 ' 2 ' ' 2 ' 2 Z = ' ' 2 + ' 2 ' + 2 ' 2 ' ' 2 ' Z = ' ' 2 + ' 2 ' + 2 ' 2 ' ' () * * * * 5.6 () * * * lt: = ''' + ' + ' + ' + ' = ''' + ' + ' + ' + ' (*) inites minterm tht mkes the orresponing prime implint essentil. lt: = ' + '' + + '' = ' + '' + + ' (*) Inites minterm tht mkes the orresponing prime implint essentil. ' m 5 ; ''' m ; ' m ;' m 2 m 3 or m 5 ; ' m 3 ; '' m 8 or m 27

24 5.6 () * 5.7 () * * * = '' + ' + '' (*) Inites minterm tht mkes the orresponing prime implint essentil. lt: = ''' + ' + ''' + ' + ''' = ''' + ' + ''' + ' + '' '' m 2 ; '' m 6 ; ' m or m 5.7 () 5.7 () 5.7 () = '' + ''' + = ''' + ' + ' + ' + ' = () = ('+ ') ('+ ') ( + + ) ('+ + ) = ' ' + ' + ' ' 5.8 () lt: = ('+ ) ('+ ') ( + ) ('+ ) = ('+ ) ('+ ') ( + ) ('+ ') = '' + '' + 28

25 5.9 () E = (' + ' + + E) (' + + ' + ') ( + ' + ' + E) (' + + E) ( + ' + ) (' E') (' + ' + ' + E') E lt: = ''E + '' + ' E + ' ' + ' E + E' + ''E' + '' = ''E + '' + ' E + ' ' + ' E + E' + ''E' + ''E' 5.9 () E E = (' + ' + E) (' + ' + + E) ( + ' + E') ( + + ' + E) ( + + ) (' + + E') lt: = ' ' + ' E' + E + ''' + ' E' + ' E = ' ' + ' E' + E + ''E' + ' + ''E = ' ' + ' E' + E + ''' + ' E' + ''E = ' ' + ' E' + E + ''E' + ' E' + ''E 29

26 5. () e 5. () e Essentil prime implints: ''E' (m 6, m 24 ), 'E' (m 4 ), E (m 3 ), ''E (m 3 ) Prime implints: ''E, ''E', 'E, 'E', E, '', 'E, ''E', '' 5. E = ('+ + ') ('+ '+ E ) ( + '+ E') ( + + E') ( ) ('+'+ + ) ( + + E') 5.2 () = '' + ' + ' + = M(,, 9, 2, 3, 4) = ( ) ( ') (' + ' + + ) (' + ' + + ') (' + ' + ' + ) (' ') lt: = ('+ + ') ('+ '+ E ) ( + '+ E') ( + + E') ( ) ('+'+ + E ) ( + + E') ' 5.2 () () ' = ''' + ' + ' = ' + ' + ' + '' Minterms m, m, m 2, m 3, m 4, m, n m n e me on t res, iniviully, without hnging the given epression. However, if m 3 or m 4 is me on t re, the term ' or the term ' (respetively) is not neee in the epression. = ('+ '+ ) ( + + ) ('+ + ') 3

27 5.4 () 5.4 () () R E S T 5.4 () 5.4 (e) N P Q = ' + ' 2 = E' + E' + = T' + R = + ' = N'P + N Q 5.4 (f) 5.5 () f Y Z 5.5 () G E 5.5 () p q r 5.5 () s t u = Y' + 'Z' + Z f = '' + + ' f = '' + + G = E ' + 'E' G = E ' + ' G = E ' + E' = p'r + q'r' + p q = p'q' + p r' + q r = s' 5.5 (e) 5.5 (f) e f 5.6 () 5.6 () = '' + ' + = '' + ' + g = 'e' + f ' 5.6 () = '' + ' + = ('+ ) ( + '+ ') ('+ ) ('+ + ') 5.7 (), () 5.7 () = ' + ' + ' ' lt: = ('+ + ) ('+ '+ ') ('+ '+ ) = ('+ + ) ('+ '+ ') ('+ '+ ') 3

28 5.8 () 5.8 () 2 2 Z 2 2 = ( + 2+ ) ( + + 2) ( + 2'+ '+ 2') ( '+ 2'+ + 2') ( '+ '+ 2 ) ( ) 5.9 () 5.9 () = ' + ' + ' + ''' + ' = ''' + ''' + ''' lt: = ' + ' + ' + ''' + ' lt: = ''' + ''' + '' 5.9 () 5.9 () W Y Z 5.9 (e) = '' + ' + ' lt: = 'Y' + W'Z + Y'Z + W Z' = 'Y' + W Y' + W'Z + W Z' = 'Y' + W Y' + W'Z + W ' = '' + ' + ' () 5.2 () 5.2 () = ' + ' ' + ' + = '' + ' + ' + + = '' + ' + ' 32

29 5.2 () 5.2 () 5.2 () = ' ' + '' + = ('+ ) ('+ + ') ( + '+ ) ( + ) = ('+ ) ('+ + ') ( + ) ('+ ) 5.22 () lt: = ('+ ) ('+ + ') ( + ) ('+ ) 5.22 () = ('+ '+ ) ('+ ') ( + + ) w y z = ' + '' + ' + ' w y z = 'y' + w'z + y'z + w z' = (w + '+ z ) (w + y'+ z ) (w'+ y'+ z') lt: = 'y' + w y' + w'z + w z' = 'y' + w y' + w'z + w ' lt: = (w + '+ z ) (w + y'+ z ) (w'+ '+ y') () = '' + ' + ' Notie tht = n never our, so minterms 5 n 5 re on t res. = '' + ' + ' + = M(,, 9, 2, 3, 4) = ( ) ( ') (' ' ) (' + ' + + ) (' + ' + + ') (' + ' + ' + ) 33

30 5.24 () 5.24 () ' = ' + ''' + ' = ('+ '+ ) ( + + ) ('+ + ') Prime implints for f ': 'e, '', 'e', 'e, ''e', ''e, ''e Prime implints for f: ''e', e, 'e', e',, e', ''e, ''e, '', 'e 5.27 or : ''e', 'e, 'e', '', 'e, ''e, ''e 5.28 () = + E * * * (*) Inites minterm tht mkes the orresponing prime implint essentil. ''' m ; 'e' m 28 ; ''e m 25 ; '' m 2 * or G: 'e, ', 'e', e, 'e, ''', ''e' 5.28 () E ''', 'e', ''e, '', 'e', 'e', 'e', '''e, ''e, '', 'e', 'e', 'e' 5.29 () E = '' + ' ' + '' + ''E' + ' + E + ''E lt: = '' + ' ' + '' + ''E' + ' + E + ''E 34

31 5.29 () E lt: = '''E + ' '' + E + ''E' + E + 'E' + '''E + ' E = '''E + ' '' + E + ''E' + E + 'E' + ' 'E + ' E = '''E + ' '' + E + ''E' + E + 'E' + ' 'E + E 5.3 E = '''' + 'E + ' + 'E' + ' + ''E + 'E 5.3 E = ''E' + '' + E' + '''E' + ''E + ''E 5.32 () w y z v = v' y'z' + 'y'z + v z + w 'y z' + v w 5.32 () w 5.33 () y z E v = ( + y + z) (v + y' + z') (v + ' + z') (v + ' + y') (v' + w + z) lt: = ( + + E ) ('+ ) ( + ') ( + '+ '+ E') = ( + + E ) ('+ ) ( + ') ( + '+ '+ E') 35

32 5.33 () E lt: = ( + ') ( + '+ E') ('+ + E') ('+ '+ '+ ) ( + + E ) ( + '+ E ) = ( + ') ( + '+ E') ( + '+ ) ('+ + E') ('+ '+ '+ ) ( + '+ E ) 5.34 () w y z v lt: = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ + y + z ) (w'+ + y') = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ w'+ + z ) (w'+ + y') = (v'+ w'+ '+ y + z') (w + y'+ z') (v + y') (w + + y ) (v'+ w'+ + z ) ( + y'+ z') 5.34 () 5.35 () E = ( + + E) (' + ' + ') (' ) ( + ' + ) ( + ' + E) ( + + E) = ' + + ' hnging m to on't re removes ' from the solution () 5.36 () w y z v m 4 = v' y' + v'w z' + y z + v w''y' + v w'y z' + w' z m 8 = ' + ' + ' + '' m 4, m 3, or m4 hnge the minimum sum of prouts, removing '', ', or ', respetively. m 3 = v' y' + v'w z' + y z + v w''z' + v w' y + w'y'z = v' y' + v'w z' + y z + v w''y' + v w'y z' + w'y'z = v' y' + v'w z' + y z + v w''z' + v w'y z' + w'y'z 5.36 () 36 v'wz' m 8 ; yz m 3 ; v'y' m 4

33 Unit 6 Prolem Solutions 6.2 () ü, 5 - '' 5 ü, 9 - '' 9 ü 5, 7 - ' 2 ü 9, - ' 7 ü 2, 4 - ' ü 7, 5-4 ü, 5-5 ü 4, 5 - Prime implints: '', '', ', ', ',,, 6.2 () ü, - ''', 3, 5, 7 -- ' ü, 8 - ''', 5, 3, ü, 3 -ü 6, 7, 4, ü, 5 -ü 6, 4, 7, ü 8, - '' 6 ü 3, 7 -ü ü 5, 7 -ü 7 ü 6, 7 -ü 4 ü 6, 4 -ü 5 ü, 4 - ' 7, 5 -ü 4, 5 -ü Prime implints: ''', ''', '', ', ', 6.3 () , 5 '', 9 '' 5, 7 ' 9, ' 2, 4 ' 7, 5, 5 4, 5 f = ' + '' + ' + f = ' + '' + ' () , 3, 5, 7 ' 6, 7, 4, 5, ''', 8 ''' 8, '', 4 ' f = ' + + ''' + '' f = ' + + ''' + '' f = ' + + ''' + ' 37

34 6.4 ü, 3 -ü, 3, 5, 7 -- ' 2 ü, 5 -ü, 5, 3, ü, 9 -ü, 5, 9, 3 -- ' 3 ü 2, 3 -ü, 9, 5, ü 2, 6 -ü 2, 3, 6, 7 -- ' 6 ü 2, - '' 2, 6, 3, ü 4, 5 -ü 4, 5, 6, 7 -- ' ü 4, 6 -ü 4, 5, 2, 3 -- ' 2 ü 4, 2 -ü 4, 6, 5, ü 3, 7 -ü 4, 2, 5, ü 5, 7 -ü 5, 7, 3, ü 5, 3 -ü 5, 3, 7, , 7 -ü 9, 3 -ü 2, 3 -ü 7, 5 -ü 3, 5 -ü 3, 5 -ü Prime implints: '', ', ', ', ', ', , 3, 5, 7 ', 5, 9, 3 ' 2, 3, 6, 7 ' 4, 5, 6, 7 ' 4, 5, 2, 3 ' 5, 7, 3, 5 2, '' f = ' + '' + ' + ' f = ' + '' + ' + ' f = ' + '' + ' + ' 6.5 ü, 5 -ü, 5, 9, 3 -- ' 4 ü, 9 -ü, 9, 5, ü 4, 5 -ü 4, 5, 2, 3 -- ' 5 ü 4, 2 -ü 4, 2, 5, ü 8, 9 -ü 5, 7, 3, ü 8, 2 -ü 5, 3, 7, ü 5, 7 -ü 8, 9, 2, 3 -- ' ü 5, 3 -ü 8, 2, 9, ü 9, -ü 9,, 3, ü 9, 3 -ü 9, 3,, ü 2, 3 -ü 2, 3, 4, , 4 -ü 2, 4, 3, , 5 -ü, 5 -ü 3, 5 -ü 4, 5 -ü Prime implints: ', ',, ',, 38

35 6.5 (ont) P (, 5, 9, 3) ' P2 (4, 5, 2, 3) ' P3 (5, 7, 3, 5) P4 (8, 9, 2, 3) ' P5 (9,, 3, 5) P6 (2, 3, 4, 5) (P + P4 + P5) (P2 + P4 + P6) (P + P2 + P3 + P4 + P5 + P6) (P3 + P5 + P6) = (P4 + PP2 + PP6 + P2P5 + P5P6) (P3 + P5 + P6) = P3P4 + P4P5 + P4P6 + PP2P3 + PP2P5 + PP2P6 + PP3P6 + PP5P6 + PP6 + P2P3P5 + P2P5 + P2P5P6 + P3P5P6 + P5P6 = = (' + ) or ( + ') or ( + ') or ( + ) or ( + ') or ( + ') P4 P3 P5 P2 P5 P4 P6 P5 P6 P4 P6 P 6.6 () E = E = E E = MS + EMS = ' + ''' + ' + E ('' + ) or E ('' + ) MS = ''' + ' + ' 6.6 () E = = G = E = ; = G = E MS = '' + MS = '' + G E MS = '' = ; E = G = G = ; E = = MS = '' + ' MS = '' + Z = '' + + E ('' + ') + () + G (') MS = 2 MS 3 = ' or ' or 39

36 6.7 () ü, 4 - ''' 4 ü 4, 5 - '' 3 ü 3, 7 - ' 5 ü 3, - ' 9 ü 5, 7 - ' 7 ü 5, 3 - ' ü 9, - ' 3 ü 9, 3 - ' Prime implints: ''', '', ', ', ', ', ', ' 6.7 () 2 ü 2, 6 - '' 4, 5, 2, 3 -- ' 4 ü 2, - '' 4, 2, 5, ü 4, 5 -ü 9,, 3, ü 4, 6 - '' 9, 3,, ü 4, 2 -ü ü 5, 3 -ü 2 ü 9, -ü ü 9, 3 -ü 3 ü, - ' 5 ü 2, 3 -ü, 5 -ü 3, 5 -ü Prime implints:, ', '', '', '', ' 6.8 () , 4 ''' 4, 5 '' 3, 7 ' 3, ' 5, 7 ' 5, 3 ' 9, ' 9, 3 ' f = ''' + ' + ' + ' f = ''' + ' + ' + ' 6.8 () , 6 '' 2, '' 4, 6 '', ' 4, 5, 2, 3 ' 9,, 3, 5 f = ' + + '' + '' f = ' + + '' + ' f = ' + + '' + '' 6.9 () ü, 3 -ü, 3, 9, -- ' 2 ü, 9 -ü, 9, 3, -- 4 ü 2, 3 -ü 2, 3,, -- ' 3 ü 2, -ü 2,, 3, -- 9 ü 4, 2 - '' 3, 7,, 5 -- ü 3, 7 -ü 3,, 7, ü 3, -ü 9,, 3, ü 9, -ü 9, 3,, 5 -- ü 9, 3 -ü,, 4, ü, -ü, 4,, ü, 4 -ü 2, 3, 4, ü 2, 3 -ü 2, 4, 3, , 4 -ü 7, 5 -ü, 5 -ü 3, 5 -ü 4, 5 -ü 4 Prime implints: '', ', ',,,,

37 6.9 () (ont) , 2 '', 3, 9, ' 2, 3,, ' 3, 7,, 5 9,, 3, 5,, 4, 5 2, 3, 4, 5 f = ' + '' + + ' + f = ' + '' f = ' + '' () ü, -ü,, 8, 9 -- '' ü, 8 -ü, 8,, ü, 5 -ü, 5, 9, 3 -- ' 5 ü, 9 -ü, 9, 5, ü 8, 9 -ü 8, 9,, -- ' 9 ü 8, -ü 8,, 9, -- ü 8, 2 -ü 8, 9, 2, 3 -- ' 2 ü 5, 7 - ' 8, 2, 9, ü 5, 3 -ü ü 6, 7 - ' 3 ü 9, -ü 9, 3 -ü, -ü 2, 3 -ü Prime implints: ', ', '', ', ', ' , 7 ' 6, 7 ',, 8, 9 '', 5, 9, 3 ' 8, 9,, ' 8, 9, 2, 3 ' f = ' + '' + ' + ' 6.9 () f = ' + + '' + + f = ' + + '' + + f = ' + + '' + + ' 6. Prime implints: ', ', ', ', ', ''' f = ' + ' + ' + ''' + ' f = ' + ' + ' + ''' + ' 4

38 6. ü, 2 -ü, 2, 4, 6 --ü, 2, 4, 6, 8,, 2, 'E' 2 ü, 4 -ü, 2, 8, --ü, 2, 8,, 4, 6, 2, ü, 8 -ü, 2, 6, 8 -- ''E', 4, 8, 2, 2, 6,, ü, 6 -ü, 4, 2, ü 2, 6 -ü, 4, 8, 2 --ü 6 ü 2, -ü, 8, 2, -- 9 ü 2, 8 -ü, 8, 4, 2 -- ü 4, 6 -ü, 6, 2, ü 4, 2 -ü 2, 6,, 4 --ü 8 ü 8, 9 -ü 2,, 6, ü 8, -ü 4, 6, 2, 4 --ü ü 8, 2 -ü 4, 2, 6, ü 6, 8 -ü 8, 9,, -- '' 4 ü 6, 7 - '' 8, 9, 2, 3 -- '' 9 ü 6, 4 -ü 8,, 9, -- 2 ü 9, -ü 8,, 2, 4 --ü 29 ü 9, 3 -ü 8, 2, 9, ü, -ü 8, 2,, 4 --, 4 -ü 2, 3 -ü 2, 4 -ü 8, 9 - '' 3, 29 - 'E 4, 3 - E' 2, 29 - 'E , 7 '' 8, 9 '' 3, 29 'E 4, 3 E' 2, 29 'E, 2, 6, 8 ''E' 8, 9,, '' 8, 9, 2, 3 '', 2, 4, 6, 8,, 2, 4 'E' = E' + '' + ''E' + '' + '' + 'E + 'E' 42

39 6.2 () ü, -ü,, 2, 3 --ü,, 2, 3, 8, 9,, --- '' ü, 2 -ü,, 8, 9 --ü,, 8, 9, 2, 3,, ü, 8 -ü, 2,, 3 --, 2, 8,,, 3, 9, ü, 3 -ü, 2, 8, --ü 3 ü, 9 -ü, 8,, ü, 7 -ü, 8, 2, -- 9 ü 2, 3 -ü, 3, 9, --ü ü 2, 6 - ''E', 9, 3, -- 7 ü 2, -ü, 9, 7, ''E 2 ü 8, 9 -ü, 7, 9, ü 8, -ü 2, 3,, --ü 2 ü 3, -ü 2,, 3, ü 9, -ü 8, 9,, --ü 28 ü 9, 25 -ü 8,, 9, ü, -ü 3 ü 7, 2 - ''E 3 ü 7, 25 -ü 2, 2 - '' 2, 28 - 'E' 2, 23 - 'E 28, 3 - E' 23, 3 - E 3, , 6 ''E' 7, 2 ''E 2, 2 '' 2, 28 'E' 2, 23 'E 28, 3 E' 23, 3 E 3, 3, 9, 7, 25 ''E,, 2, 3, 8, 9,, '' f = '' + ''E + ''E' + E + E' + '' f = '' + ''E + ''E' + 'E' + 'E () f = + E' + ''E + ''' +''E + '''E' f = + E' + ''E + ''E + ''' + '''E' 6.3 = ' + ' + ' + '' + ' = ' + ' + ' + '' + ' = ' + ' + ' + ' + '' 6.4 Prime implints: e, 'e, 'e, 'e', '', '', ''e, ''e', ''e' Essentil prime implints re unerline: = e + ''e' + 'e' + ''e + '' = e + ''e' + 'e' + ''e + 'e 43

40 6.5 ü, 3 -ü, 3, 7, 9 -- ''' 2 ü, 7 -ü, 7, 3, ü 2, 3 -ü 2, 3, 8, 9 -- '''E 32 ü 2, 8 -ü 2, 8, 3, ü 6, 7 -ü 6, 7, 8, 9 -- ''' 7 ü 6, 8 -ü 6, 8, 7, ü 6, 48 - ''E'' 48 ü 32, 48 - ''E'' 9 ü 3, 9 -ü 26 ü 7, 9 -ü 28 ü 8, 9 -ü 5 ''E 8, 26 - ''E' 29 ü 26, 3 - 'E' 3 ü 28, 29 - 'E' 39 ''E 28, 3 - '' 63 E ''E 39 ''E 63 E 6, 48 ''E'' 32, 48 ''E'' 8, 26 ''E' 26, 3 'E' 28, 29 'E' 28, 3 '', 3, 7, 9 ''' 2, 3, 8, 9 '''E 6, 7, 8, 9 ''' 6.5 () 6.5 () 6.5 () G = ''E + E + ''' + '''E +''E'' +''' +''E' G = ''E + E + ''' + '''E +''E'' +''' + 'E' Essentil prime implints re unerline in 6.5 (). If there were no on't res, prime implints 5, (26, 3), (28, 29), n (28, 3) re omitte. There is only one minimum solution. Sme s (), eept elete the seon eqution. 6.6 () Prime implints: 'E, '', 'E'', 'E, 'E'', E, 'E, ''E', ''E, ''E', ''E', ''E' G = E + 'E'' + 'E'' + 'E + ''E' + 'E + 'E G = E + 'E'' + 'E'' + 'E + ''E' + 'E + ''E G = E + 'E'' + 'E'' + 'E + ''E' + '' + 'E G = E + 'E'' + 'E'' + 'E + ''E' + '' + ''E 44

41 6.6 () Essentil prime implints re unerline in 6.6(). 6.7 Prime implints:, ',,,, ' Minimum solutions: (' + ); (' + ); ( + ); ( + ); ( + ') 6.6 () If there re no on t res, the prime implints re: 'E, '', 'E'', 'E, 'E'', E, 'E, ''E' G = E + 'E'' + 'E + 'E'' +'E + ''E' + '' G = E + 'E'' + 'E + 'E'' +'E + ''E' + 'E 6.8 () E 6.8 () G E E E = ' + ' + '' + E (''' + ') MS MS Z = ' + '' + E (' + ') + (') + G ('') MS MS MS 2 MS () Eh minterm of the four vriles,,, epns to two minterms of the five vriles,,,, E. or emple, m 4 (,,,) = ''' = '''E' + '''E = m 8 (,,,,E) + m 9 (,,,,E) 6.9 () Prime implints: ''', ', ', ''E, E, E, ''E = ''' + ' + ' + ''E + E = ''' + ' + ' + ''E + E E = ''' + ' + ' + ''E + E = ''' + ' + ' + ''E + E 6.2 E * * This squre ontins +, whih reues to. G = 'E' + E + ('') + () MS MS MS 2 45

42 7. () f Unit 7 Prolem Solutions f f = '' + '' + ' + ' ' Sum of prouts solution requires 5 gtes, 6 inputs f = ('+ ') ( + ) ( + + ') ( + '+ ') f = ('+ ') ( + ) ( + '+ ') ('+ + ') f = ('+ ') ( + ) ( + + ') ('+ '+ ') f = ('+ ') ( + ) ('+ + ') ('+ '+ ') Prout of sums solution requires 5 gtes, 4 inputs, so prout of sums solution is minimum. 7. () eginning with the minimum sum of prouts solution, we n get f = ' ( + ') + ' (' + ') 5 gtes, 2 inputs So sum of prouts solution is minimum. 2 eginning with minimum prout of sums solution, we n get f = ( + ) (' + ') (' + ' + ')) gtes, 4 inputs () ' + E' + E' + ' + ''E' = E' ( + ) + ''E' + ' ( + ) = ( + ) (E' + ') + ''E' levels, 6 gtes, 3 inputs 7.2 () E + E + E + G + G + G = E + G + E ( + ) + G ( + ) = (E + G) [ + ( + )] levels, 6 gtes, 2 inputs

43 7.3 (,,, )n = ' + ' or (' + ') = ( + ) (' + ') You n otin this eqution in the prout of sums form using Krnugh mp, s shown elow: ' ' N-OR ' ' NN-NN OR-NN ' ' ' ' NOR-OR ='+' (')'=[(')'(')']' (')'=[(+'+')('++')]' (')'=(+'+')'+('++')' (')'=[('+')']' ' ' ' ' ' ' OR-N ' ' NOR-NOR ' ' =(+)('+') (')'=['+(+)'+('+')']' (')'=['+''+]' (')'=('')'()' (')'=[[(+)('+'))']' ' ' N-NOR ' ' NN-N = ' + ' = ( + ) ( ) ('+ ') 7.4 (,,, ) = m(5,,, 2, 3) = ' + ' + ' = ' ( + ) + ' = ' ( + ) + ' gtes, inputs = ' + ' + ' ' ' ' ' 47

44 7.5 Z = ( + + ) ('+ ') ('+ ') ('+ ') Z = ( + + ) (' + ''') gtes, inputs ' 2 3 Z 7.6 Z = + + '' = ( + ) + '' ' ' ' Z 7.7 Z = E + E + E = E ( + + ) = E [ + ( + )] ' ' ' E' Z 7.8 or the solution to 7.8, see L P = ' + + '' 6 gtes 2 = '' + '' + ' 7. f (,,, ) = m(3, 4, 6, 9, ) f 2 (,,, ) = m(2, 4, 8,,, 2) f 3 (,,, ) = m(3, 6, 7,, ) = ' + ' + ' ' 2 = ' + ' ' + '' + '' 2 = ' + ' ' + '' + '' gtes 48 3 = ' + ' + '

45 7. = ( + ) ( + ') ('+'+)('++') 8 gtes 2 2 = ('++)('+'+)(+')('++') 2 = (+'+)('+'+)(+')('++') = (++)('+) 2 = (++)('++)('+) 9 gtes 3 = ('++)(+)(+') 7.3 () Using = (')' from Equtions (7-23()), p. 94: f = [(')' ()' ('')' (')']'; f 2 = [' (')']'; f 3 = [()' ('')' ()']' ' ' ' ' f ' f 2 ' ' ' f () Using = (')' from Equtions erive in prolem 7.2: f = [( + + )' + (' + )']' f 2 = [( + + )' + (' + + )' + (' + )']' f 3 = [(' + + )' + ( + )' + ( + ')']' ' f ' ' f 2 ' ' f 3 49

46 7.4 () f = ( + + ) ( + + ') ('+ '+ ') ('+ '+ ') 5 gtes, 6 inputs 7.4 () eginning with the sum of prouts solution, we get f = ' + ' + ' (' + ') = ' + ' + ' (' + ') ( + ) 6 gtes, 4 inputs ut, eginning with the prout of sums solution ove, we get f = ( + + ') (' + ' + '') 5 gtes, 2 inputs, whih is minimum n f = ' + ' + '' + '' f = ' + ' + '' + '' (two other minimun solutions) 5 gtes, 4 inputs miniml ' ' ' ' ' ' ' ' ' ' ' 7.5 () rom K-mps: = ' + ' + ' 4 gtes, inputs = ( + + ) ( + ) (' + ') 4 gtes, inputs, miniml 7.5 () rom K-mps: = + + '' 4 gtes, 9 inputs = (' + ) ( + ' + ) 3 gtes, 7 inputs, miniml ' ' ' ' 7.5 () rom K-mps: = + '' + = + '' + ' 4 gtes, inputs = ( + ) ( ' + ) ( + + ') 4 gtes, inputs, miniml ' ' 7.5 () rom K-mps: = ' + + ' 4 gtes, 9 inputs, miniml = ( + ) (' + + ') (' + + ) = ( + ) (' + + ') ( + + ) 4 gtes, inputs ' ' 5

47 7.6 () In this se, multi-level iruits o not improve the solution. rom K-mps: = ' + + ' + '' 5 gtes, 6 inputs, miniml = (' + + ) ( + + ) (' + ' + ) ( + + ') 5 gtes, 6 inputs, lso miniml Either nswer is orret. ' ' ' ' 7.6 () Too mny vriles to use K-mp; use lger. E y onsensus, then use + Y = E + E + ' + EG + E + E G E ' = E + ' + EG + E = E ( + G) + (' + E) gtes, 3 inputs, miniml E () = M(,, 2, 4, 8) () = ( + + ) ( + + ) ( + + ) ( + + ) = ( + + )( + + ) or = ( + + )( + + ) or = ( + + )( + + ) This solution hs 5 gtes, 2 inputs. eginning with the sum of prouts requires 6 gtes. 5

48 7.8 () (w,, y, z) = ( + y' + z) (' + y + z) w y' z ' y z OR-N w y' z ' y z NOR-NOR w' ' y z' y' z' N-NOR w' ' y z' y' z' NN-N w rom Krnugh mp: = wy + w'y' + wz w y w ' y' w z N-OR w y w ' y' w z NN-NN w' ' y' w' y w' z' OR-NN w' ' y' w' y w' z' NOR-OR 7.8 () (,,, ) = m(4, 5, 8, 9, 3) rom Kmp: = '' + '' + ' = '' + '' + ' = ' ( + ) (' + ' + ) ' ' ' ' ' N-OR ' ' ' ' ' NN-NN ' ' ' ' OR-NN ' ' ' ' NOR-OR ' ' OR-N ' ' ' NOR-NOR ' ' ' N-NOR ' ' ' NN-N ' 52

49 7.9 () y z = (y'+ z ) ('+ y + z') rom Kmp: = (y' + z) (' + y + z') y z' y' z f y z' y' z f 7.9 () y z ' z ( ) or ' y' y' z' f ' z ( ) or ' y' y' z' f = y z + y'z' + 'y' y z y z = y z + y'z' + 'z 7.2 () Using OR n NOR gtes: ' ' f ' ' f = '' () Using NOR gtes only: ' ' ' f ' ' ' f = ('+ ) ('+ ) ('+ ) ('+ ) ' ' 53

50 7.2 () NN gtes: = ' + ' + (Refer to prolem 5.4 for K-mp) NOR gtes: = ( + ' + ') ( + + ') 7.2 () NN gtes: = '' + '' + (Refer to prolem 5.8() for K-mp) NOR gtes: = ( + ) (' + ') (' + ) (' + ') = ( + ) (' + ') (' + ) (' + ) 7.2 (e) NN gtes: =''+'E'+E+'''+''E+'E' =''+'E'+E+''E'+'+''E =''+'E'+E+'E'+''E'+''E =''+'E'+E+'E'+''E+'E (Refer to prolem 5.9() for K-mp) NOR gtes: = (' + ' + + E) ( + ' + E') (' + ' + E) ( + + ' + E) ( + + ) (' + + E') 7.2 (g) NN gtes: f = 'y' + wy' + w'z+ wz' f = 'y' + wy' + w' + w'z f = 'y' + wy' + y'z+ wz' (Refer to prolem 5.22() for K-mp) NOR gtes: f = (w + ' + z) (w + y' + z) (w' + y' + z') f = (w + ' + z) (w + y' + z) (w' + ' + y') 7.2 () NN gtes: = '' + ' + '' (Refer to prolem 5.8() for K-mp) NOR gtes: = (' + ') (' + ') ( + + ) (' + + ) 7.2 () NN gtes: = '' + ''E + 'E + 'E + E' + '' + ''E' + '' = '' + ''E + 'E + 'E + E' + '' + ''E' + ''E' (Refer to prolem 5.9() for K-mp) NOR gtes: = (' + + E) ( + ' + ) (' + + ' + ') (' + ' + + E ) ( + ' + ' + E) (' E') (' + ' + ' + E') 7.2 (f) NN gtes: = ' + ' + ' + '' (Refer to prolem 5.22() for K-mp) NOR gtes: = ( + + ) (' + ' + ) (' + ') 7.22 () 7.22 () f = (' + ' + e) ( + ' + e') ( + + ) E ' e' e ' ' ' ' f = ( + ' + ) ( + ' + e') (' + ' + e) ( + + ) ( + ' + ') 54

51 7.23 ' ' ' ' ' ' f f = (' + ) (' + + ) ( + ') = ( + ') [' + ( + )] = ( + ') (' + + ) 7.24 () Z = e'f + 'e'f + 'e'f + gh = e'f ( + ' + ') + gh 7.24 () Z= (' + +e + f)(' + ' + )(' + ' + )(g+h) = [' + + '' (e + f)] (g + h) g h e' f z e f g h ' z 7.25 = e' + '' + = ( + ') (' + e') + = ( + ' + ) (' + + e') ' ' ' e ' lternte: = (' + + ) (' + + e') 7.26 f = 'yz + vy'w' + vy'z' = 'yz + vy' (z' + w') w z ' y z v y' f 7.27 () 7.27 () = ' + ' + ''' + ' = ' + ' + ''' + ' rw N-OR iruit n reple ll gtes with NNs. = ( + + ') ('+ ) ('+ ) ('+ '+ ') rw OR-N iruit n reple ll gtes with NORs. 55

52 7.27 () = (' + ') + ' ('' + ) ' ' ' ' ' lterntive: = ' ('' + ) + (' + ') = (' + ') + ' ('' + ) = ' ('' + ) + (' + ') = (' + ') + ' ('' + ) 7.28 () 7.28 () = + '' + '' + '' + '' + '''' = ( + + ') ( + ' + ) ( + ' + ) ( + ' + ') (' + + ) (' + + ') (' + + ') (' + ' + ) 7.28 () Mny solutions eist. Here is one, rwn with lternte gte symols. = ' (''' + ' + ') + ('' + '' + ) = ' ('('' + ) + ') + (('' + ) + '') ' ' ' ' ' ' ' 56

53 7.29 () = '' '' = ( + '') + ( + '') Mny NOR solutions eist. Here is one. = ( + ) (' + + ) ( + + ') ( + ' + ' + ) = ( + ) [ + ( + ') (' + ' + )] (' + + ) = ( + ) [ ( + ) + ' ( + ') (' + ' + )] = ( + ) [ ( + ) + ' ((' + ) + '')] ' ' ' 7.29 () = ' + + '' + ' = ( + ') + ('' + ') = ( + ') + [(' + ') ( + ')] = ( + ) ( + ) ('+ + ') ('+ + ') ' ' ' ' ' ' ' ' ' ' = (' + + ') (' + + ') ( + ) ( + ) = ( + (' + ')) ( + (' + ')) 7.3 = m(,, 2, 3, 4, 5, 7, 9,, 3, 4, 5) = + '' + '' + = + ' (' + ') + lternte solution: = + (' + ) ( + ' + ') = '' + ''

54 7.3 () 7.3 () ' ' ' ' ' ' 7.3 () ' ' ' ' ' ' ' ' ' ' 7.3 Z = [' + + E(' + GH)] G H ' E ' G' H' ' E' ' ' 58

55 7.32 f f2 f3 f = '' + f 2 = '' + '' 8 gtes f 3 = + + '' 7.33 = ' + ' + '' 6 gtes = '' + ' + '' 7.34 f y z f2 y z f3 y z f = 'y z + ' y z' + y' f 2 = y' z + 'y z + y z' 8 gtes f 3 = y' + y'z + 'y z' + y z' 7.35 () f f2 f = (' + + ) (' + ' + ') (' + ) 6 gtes f 2 = (' + + ) (' + ' + ') ( + ') 59

56 7.35 () f irle 's to get sum-of-prouts epressions: f = ' + ''' + ' 6 gtes f 2 = ' + ''' + ' Then onvert iretly to NN gtes. f () irle s 2 f = ( + + ) ('+ ') ('+ ) 7 gtes f 2 = ( + + ) (' + ) (' + ' + ') 7.36 () irle 's to get sum-of-prouts epressions: 2 Then onvert iretly to NN gtes f = ' + ' + ' 7 gtes f 2 = ' + ' + ' 6

57 7.37 () f = + ' + ' 2 f 2 = ' + ' + ' ' ' ' f f () f = ( + ) ( + ) ( + ) ( + + ') 2 f 2 = ( + ) ( + ) ( + + ') ('+'+') ' f f 2 ' ' ' 7.38 () f f = '' + ' + ' f 2 = '' + ' + ' 7.38 () f2 f = ('+ ) ('+ ') ( + ') ( + '+ ') f 2 = ('+ ) ('+ ') ( + '+ ') ( + ' + ) 6

58 7.39 () The iruit onsisting of levels 2, 3, n 4 hs OR gte outputs. onvert this iruit to NN gtes in the usul wy, leving the N gtes t level unhnge. The result is: ' ' e f ' g h () One solution woul e to reple the two N gtes in () with NN gtes, n then inverters t the output. However, the following solution vois ing inverters t the outputs: = [( + ') + ] (e' + f) = e' + 'e' + e' + f + 'f + f = e' ( + ') + (e' + f) + f ( + ') 2 = [( + ') + g'] (e' + f) h = h (e' + 'e' + f + 'f) + g'h (e' + f) = h [e' ( + ') + f ( + ')] + g'h (e' + f) ' e' e f ' f g' h h 2 62

59 Unit 8 Prolem Solutions 8. W Y V Z t (ns) 8.2 () = ''' + + ' 8.2 () (ont) Stti -hzrs re: n = ( + ') ('+ + ) ( + + ') Stti -hzrs re: n 8.2 () 8.2 () t = ( + ') (' + + ) ( + + ') (' + + ) ( + + ') 8.3 () t = ''' + + ' + '' + E G t (ns) Glith (stti '' hzr) 8.3 () Moifie iruit (to voi hzrs) 8.4 G = '' + + ' = ; = Z; = Z = ; = + Z = ; E = ' = ; = ' = ; G = = ; H = + = See L Tle 8-, P = =, = = So = ' + '' + = ut in the figure, gte 4 outputs =, initing something is wrong. or the lst NN gte, = only when ll its inputs re. ut the output of gte 3 is. Therefore, gte 4 is working properly, ut gte 3 is onnete inorretly or is mlfuntioning. 63

60 W Y V Z t (ns) = Z; = ; = Z' = ; = Z = ; E = Z; = + + = ; G = ( Z)' = ' = ; H = ( + )' = ' = = = =, so = ( + ' + ') (' + + ') (' + ' + ) = ut, in the figure, gte 4 outputs =, initing something is wrong. or the lst NOR gte, = only when ll its inputs re. ut the output of gte is. Therefore, gte 4 is working properly, ut gte is onnete inorretly or is mlfuntioning. 8.7 Z = ' + '' + ' ' Stti -hzrs lie etween n Without hzrs: Z t = '' + ' + '' + '' + '' 8. () (,,, ) = m(, 2, 5, 6, 7, 8, 9, 2, 3, 5) There re 3 ifferent minimum N-OR solutions to this prolem. The prolem sks for ny two of these. 8. () = + ' + ' ' + ''' Solution : -hzrs re etween n = ( + + ') ( + ' + + ) (' + ' + ) (' + + ') -hzr is etween Either wy, without hzr: t = ( + + ') ( + ' + + ) (' + ' + ) ( + ' + ') (' + + ') = + ' + ''' + ' Solution 2: -hzrs re etween n 64 = + ' + ''' + ' ' Solution 3: -hzrs re etween n Without hzrs: t = + ' + ''' + '' + ''' + ' = ( + + ') ( + ' + + ) (' + ' + ) ( + ' + ') -hzr is etween

61 Unit 9 Prolem Solutions 9. See L p. 636 for solution. 9.2 See L p. 636 for solution. 9.3 See L p. 637 for solution. 9.4 See L p. 637 n igure 4-4 on L p y y y 2 y 3 y y y y 2 3 y y y y 2 3 y y y y 2 3 = y 3 + y 2 = y 3 + y 2' y = y 3 + y 2+ y + y 9.6 See L p. 638 for solution. 9.7 See L p. 638 for solution. 9.8 See L p for solution. 9.9 The equtions erive from Tle 4-6 on L p. re: 9. Note: 6 = 4 ' n 5 = 4. Equtions for 4 through n e foun using Krnugh mps. See L p for nswers. = 'y' in + 'y in ' + y' in ' + y in out = ' in + 'y + y in See L p. 639 for PL igrm. 9. () = '' + ' + ' Use 3 N gtes ' = ['' + ' + ']' = [' ( +') + ']' = [( + + ') (' + ')]' = '' + Use 2 N gtes 9. () = '' + '' Use 2 N gtes ' = ('' + '')' = [(' +') (' + ') (' + ') (' + ')]' = Use 4 N gtes 9.2 () See L p. 64, use the nswer for 9.2 (), ut leve off ll onnetions to n '. 9.2 () See L p. 64 for solution. 9.3 Using Shnnon s epnsion theorem: = 'e' + ''e + ''e + 'e' = ' (e' + ''e + 'e') + (''e + ''e + 'e') = ' [e' ( + ') + ''e] + [(' + ') 'e + 'e'] = ' (e' + ''e) + (''e + ''e + 'e') The sme result n e otine y splitting Krnugh mp, s shown to the right. E = = 65

Words Symbols Diagram. abcde. a + b + c + d + e

Words Symbols Diagram. abcde. a + b + c + d + e Logi Gtes nd Properties We will e using logil opertions to uild mhines tht n do rithmeti lultions. It s useful to think of these opertions s si omponents tht n e hooked together into omplex networks. To

More information

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example

Angles 2.1. Exercise 2.1... Find the size of the lettered angles. Give reasons for your answers. a) b) c) Example 2.1 Angles Reognise lternte n orresponing ngles Key wors prllel lternte orresponing vertilly opposite Rememer, prllel lines re stright lines whih never meet or ross. The rrows show tht the lines re prllel

More information

1. Area under a curve region bounded by the given function, vertical lines and the x axis.

1. Area under a curve region bounded by the given function, vertical lines and the x axis. Ares y Integrtion. Are uner urve region oune y the given funtion, vertil lines n the is.. Are uner urve region oune y the given funtion, horizontl lines n the y is.. Are etween urves efine y two given

More information

Lesson 2.1 Inductive Reasoning

Lesson 2.1 Inductive Reasoning Lesson.1 Inutive Resoning Nme Perio Dte For Eerises 1 7, use inutive resoning to fin the net two terms in eh sequene. 1. 4, 8, 1, 16,,. 400, 00, 100, 0,,,. 1 8, 7, 1, 4,, 4.,,, 1, 1, 0,,. 60, 180, 10,

More information

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127

State the size of angle x. Sometimes the fact that the angle sum of a triangle is 180 and other angle facts are needed. b y 127 ngles 2 CHTER 2.1 Tringles Drw tringle on pper nd lel its ngles, nd. Ter off its orners. Fit ngles, nd together. They mke stright line. This shows tht the ngles in this tringle dd up to 180 ut it is not

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

GRADE 4. Fractions WORKSHEETS

GRADE 4. Fractions WORKSHEETS GRADE Frtions WORKSHEETS Types of frtions equivlent frtions This frtion wll shows frtions tht re equivlent. Equivlent frtions re frtions tht re the sme mount. How mny equivlent frtions n you fin? Lel eh

More information

Maximum area of polygon

Maximum area of polygon Mimum re of polygon Suppose I give you n stiks. They might e of ifferent lengths, or the sme length, or some the sme s others, et. Now there re lots of polygons you n form with those stiks. Your jo is

More information

1 Fractions from an advanced point of view

1 Fractions from an advanced point of view 1 Frtions from n vne point of view We re going to stuy frtions from the viewpoint of moern lger, or strt lger. Our gol is to evelop eeper unerstning of wht n men. One onsequene of our eeper unerstning

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

CS 316: Gates and Logic

CS 316: Gates and Logic CS 36: Gtes nd Logi Kvit Bl Fll 27 Computer Siene Cornell University Announements Clss newsgroup reted Posted on we-pge Use it for prtner finding First ssignment is to find prtners P nd N Trnsistors PNP

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

MATH PLACEMENT REVIEW GUIDE

MATH PLACEMENT REVIEW GUIDE MATH PLACEMENT REVIEW GUIDE This guie is intene s fous for your review efore tking the plement test. The questions presente here my not e on the plement test. Although si skills lultor is provie for your

More information

Tallahassee Community College. Simplifying Radicals

Tallahassee Community College. Simplifying Radicals Tllhssee Communit College Simplifing Rdils The squre root of n positive numer is the numer tht n e squred to get the numer whose squre root we re seeking. For emple, 1 euse if we squre we get 1, whih is

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS

50 MATHCOUNTS LECTURES (10) RATIOS, RATES, AND PROPORTIONS 0 MATHCOUNTS LECTURES (0) RATIOS, RATES, AND PROPORTIONS BASIC KNOWLEDGE () RATIOS: Rtios re use to ompre two or more numers For n two numers n ( 0), the rtio is written s : = / Emple : If 4 stuents in

More information

www.mohandesyar.com SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D.

www.mohandesyar.com SOLUTIONS MANUAL DIGITAL DESIGN FOURTH EDITION M. MORRIS MANO California State University, Los Angeles MICHAEL D. 27 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This publication is protected by opyright and written permission should be obtained or likewise. For information regarding permission(s),

More information

PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions

PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * challenge questions PROJECTILE MOTION PRACTICE QUESTIONS (WITH ANSWERS) * hllenge questions e The ll will strike the ground 1.0 s fter it is struk. Then v x = 20 m s 1 nd v y = 0 + (9.8 m s 2 )(1.0 s) = 9.8 m s 1 The speed

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

Lec 2: Gates and Logic

Lec 2: Gates and Logic Lec 2: Gtes nd Logic Kvit Bl CS 34, Fll 28 Computer Science Cornell University Announcements Clss newsgroup creted Posted on we-pge Use it for prtner finding First ssignment is to find prtners Due this

More information

Volumes by Cylindrical Shells: the Shell Method

Volumes by Cylindrical Shells: the Shell Method olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.

More information

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5.

1. Definition, Basic concepts, Types 2. Addition and Subtraction of Matrices 3. Scalar Multiplication 4. Assignment and answer key 5. . Definition, Bsi onepts, Types. Addition nd Sutrtion of Mtries. Slr Multiplition. Assignment nd nswer key. Mtrix Multiplition. Assignment nd nswer key. Determinnt x x (digonl, minors, properties) summry

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

Square Roots Teacher Notes

Square Roots Teacher Notes Henri Picciotto Squre Roots Techer Notes This unit is intended to help students develop n understnding of squre roots from visul / geometric point of view, nd lso to develop their numer sense round this

More information

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C;

Assuming all values are initially zero, what are the values of A and B after executing this Verilog code inside an always block? C=1; A <= C; B = C; B-26 Appendix B The Bsics of Logic Design Check Yourself ALU n [Arthritic Logic Unit or (rre) Arithmetic Logic Unit] A rndom-numer genertor supplied s stndrd with ll computer systems Stn Kelly-Bootle,

More information

If two triangles are perspective from a point, then they are also perspective from a line.

If two triangles are perspective from a point, then they are also perspective from a line. Mth 487 hter 4 Prtie Prolem Solutions 1. Give the definition of eh of the following terms: () omlete qudrngle omlete qudrngle is set of four oints, no three of whih re olliner, nd the six lines inident

More information

Interior and exterior angles add up to 180. Level 5 exterior angle

Interior and exterior angles add up to 180. Level 5 exterior angle 22 ngles n proof Ientify interior n exterior ngles in tringles n qurilterls lulte interior n exterior ngles of tringles n qurilterls Unerstn the ie of proof Reognise the ifferene etween onventions, efinitions

More information

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 5. Three-phase AC Circuits. Version 2 EE IIT, Kharagpur Module 5 Three-hse A iruits Version EE IIT, Khrgur esson 8 Three-hse Blned Suly Version EE IIT, Khrgur In the module, ontining six lessons (-7), the study of iruits, onsisting of the liner elements resistne,

More information

and thus, they are similar. If k = 3 then the Jordan form of both matrices is

and thus, they are similar. If k = 3 then the Jordan form of both matrices is Homework ssignment 11 Section 7. pp. 249-25 Exercise 1. Let N 1 nd N 2 be nilpotent mtrices over the field F. Prove tht N 1 nd N 2 re similr if nd only if they hve the sme miniml polynomil. Solution: If

More information

CHAPTER 31 CAPACITOR

CHAPTER 31 CAPACITOR . Given tht Numer of eletron HPTER PITOR Net hrge Q.6 9.6 7 The net potentil ifferene L..6 pitne v 7.6 8 F.. r 5 m. m 8.854 5.4 6.95 5 F... Let the rius of the is R re R D mm m 8.85 r r 8.85 4. 5 m.5 m

More information

Introduction to Logic Gates. ESD-I Lesson 2. Logic Gates. Logic Gates: The Inverter. Logic Gates. Gate Symbols. The Inverter

Introduction to Logic Gates. ESD-I Lesson 2. Logic Gates. Logic Gates: The Inverter. Logic Gates. Gate Symbols. The Inverter Introduction to Logic Gtes S-I Lesson 2 Logic Gtes Logic gtes rwing Logic ircuit nlzing Logic ircuit oolen lger Universl Gtes: NN nd NOR Implementtion using NN or NOR Gtes Positive nd Negtive Logic Implementtion

More information

Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn

Practice Test 2. a. 12 kn b. 17 kn c. 13 kn d. 5.0 kn e. 49 kn Prtie Test 2 1. A highwy urve hs rdius of 0.14 km nd is unnked. A r weighing 12 kn goes round the urve t speed of 24 m/s without slipping. Wht is the mgnitude of the horizontl fore of the rod on the r?

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. Basic Algebra SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mthemtics Bsic Alger. Opertions nd Epressions. Common Mistkes. Division of Algeric Epressions. Eponentil Functions nd Logrithms. Opertions nd their Inverses. Mnipulting

More information

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m

Vectors Summary. Projection vector AC = ( Shortest distance from B to line A C D [OR = where m1. and m . Slr prout (ot prout): = osθ Vetors Summry Lws of ot prout: (i) = (ii) ( ) = = (iii) = (ngle etween two ientil vetors is egrees) (iv) = n re perpeniulr Applitions: (i) Projetion vetor: B Length of projetion

More information

Angles and Triangles

Angles and Triangles nges nd Tringes n nge is formed when two rys hve ommon strting point or vertex. The mesure of n nge is given in degrees, with ompete revoution representing 360 degrees. Some fmiir nges inude nother fmiir

More information

CSE 1400 Applied Discrete Mathematics Sets

CSE 1400 Applied Discrete Mathematics Sets CSE 1400 Applie Disrete Mthemtis Sets Deprtment of Computer Sienes College of Engineering Flori Teh Fll 2011 Set Bsis 1 Common Sets 3 Opertions On Sets 3 Preeene of Set Opertions 4 Crtesin Prouts 4 Suset

More information

MATH 150 HOMEWORK 4 SOLUTIONS

MATH 150 HOMEWORK 4 SOLUTIONS MATH 150 HOMEWORK 4 SOLUTIONS Section 1.8 Show tht the product of two of the numbers 65 1000 8 2001 + 3 177, 79 1212 9 2399 + 2 2001, nd 24 4493 5 8192 + 7 1777 is nonnegtive. Is your proof constructive

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below.

End of term: TEST A. Year 4. Name Class Date. Complete the missing numbers in the sequences below. End of term: TEST A You will need penil nd ruler. Yer Nme Clss Dte Complete the missing numers in the sequenes elow. 8 30 3 28 2 9 25 00 75 25 2 Put irle round ll of the following shpes whih hve 3 shded.

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Boğaziçi University Department of Economics Spring 2016 EC 102 PRINCIPLES of MACROECONOMICS Problem Set 5 Answer Key

Boğaziçi University Department of Economics Spring 2016 EC 102 PRINCIPLES of MACROECONOMICS Problem Set 5 Answer Key Boğziçi University Deprtment of Eonomis Spring 2016 EC 102 PRINCIPLES of MACROECONOMICS Prolem Set 5 Answer Key 1. One yer ountry hs negtive net exports. The next yer it still hs negtive net exports n

More information

SECTION 7-2 Law of Cosines

SECTION 7-2 Law of Cosines 516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Orthopoles and the Pappus Theorem

Orthopoles and the Pappus Theorem Forum Geometriorum Volume 4 (2004) 53 59. FORUM GEOM ISSN 1534-1178 Orthopoles n the Pppus Theorem tul Dixit n Drij Grinerg strt. If the verties of tringle re projete onto given line, the perpeniulrs from

More information

The art of Paperarchitecture (PA). MANUAL

The art of Paperarchitecture (PA). MANUAL The rt of Pperrhiteture (PA). MANUAL Introution Pperrhiteture (PA) is the rt of reting three-imensionl (3D) ojets out of plin piee of pper or ror. At first, esign is rwn (mnully or printe (using grphil

More information

National Firefighter Ability Tests And the National Firefighter Questionnaire

National Firefighter Ability Tests And the National Firefighter Questionnaire Ntionl Firefighter Aility Tests An the Ntionl Firefighter Questionnire PREPARATION AND PRACTICE BOOKLET Setion One: Introution There re three tests n questionnire tht mke up the NFA Tests session, these

More information

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00

c b 5.00 10 5 N/m 2 (0.120 m 3 0.200 m 3 ), = 4.00 10 4 J. W total = W a b + W b c 2.00 Chter 19, exmle rolems: (19.06) A gs undergoes two roesses. First: onstnt volume @ 0.200 m 3, isohori. Pressure inreses from 2.00 10 5 P to 5.00 10 5 P. Seond: Constnt ressure @ 5.00 10 5 P, isori. olume

More information

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method

A Note on Complement of Trapezoidal Fuzzy Numbers Using the α-cut Method Interntionl Journl of Applictions of Fuzzy Sets nd Artificil Intelligence ISSN - Vol. - A Note on Complement of Trpezoidl Fuzzy Numers Using the α-cut Method D. Stephen Dingr K. Jivgn PG nd Reserch Deprtment

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

SOLVING EQUATIONS BY FACTORING

SOLVING EQUATIONS BY FACTORING 316 (5-60) Chpter 5 Exponents nd Polynomils 5.9 SOLVING EQUATIONS BY FACTORING In this setion The Zero Ftor Property Applitions helpful hint Note tht the zero ftor property is our seond exmple of getting

More information

Lecture 15 - Curve Fitting Techniques

Lecture 15 - Curve Fitting Techniques Lecture 15 - Curve Fitting Techniques Topics curve fitting motivtion liner regression Curve fitting - motivtion For root finding, we used given function to identify where it crossed zero where does fx

More information

Ratio and Proportion

Ratio and Proportion Rtio nd Proportion Rtio: The onept of rtio ours frequently nd in wide vriety of wys For exmple: A newspper reports tht the rtio of Repulins to Demorts on ertin Congressionl ommittee is 3 to The student/fulty

More information

How to Graphically Interpret the Complex Roots of a Quadratic Equation

How to Graphically Interpret the Complex Roots of a Quadratic Equation Universit of Nersk - Linoln DigitlCommons@Universit of Nersk - Linoln MAT Em Epositor Ppers Mth in the Middle Institute Prtnership 7-007 How to Grphill Interpret the Comple Roots of Qudrti Eqution Crmen

More information

DiaGen: A Generator for Diagram Editors Based on a Hypergraph Model

DiaGen: A Generator for Diagram Editors Based on a Hypergraph Model DiGen: A Genertor for Digrm Eitors Bse on Hypergrph Moel G. Viehstet M. Mins Lehrstuhl für Progrmmiersprhen Universität Erlngen-Nürnerg Mrtensstr. 3, 91058 Erlngen, Germny Emil: fviehste,minsg@informtik.uni-erlngen.e

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

COMPLEX FRACTIONS. section. Simplifying Complex Fractions

COMPLEX FRACTIONS. section. Simplifying Complex Fractions 58 (6-6) Chpter 6 Rtionl Epressions undles tht they cn ttch while working together for 0 hours. 00 600 6 FIGURE FOR EXERCISE 9 95. Selling. George sells one gzine suscription every 0 inutes, wheres Theres

More information

Notes on Excess Burden (EB) most efficient lowest deadweight loss excess burden non-distorting tax system benchmark

Notes on Excess Burden (EB) most efficient lowest deadweight loss excess burden non-distorting tax system benchmark Notes on Exess Buren (EB) Our gol is to lulte the exess uren of tx system. This will llow us to juge one tx system ginst nother. All txes use inome effets simply euse they tke money wy tht oul hve een

More information

Sine and Cosine Ratios. For each triangle, find (a) the length of the leg opposite lb and (b) the length of the leg adjacent to lb.

Sine and Cosine Ratios. For each triangle, find (a) the length of the leg opposite lb and (b) the length of the leg adjacent to lb. - Wht You ll ern o use sine nd osine to determine side lengths in tringles... nd Wh o use the sine rtio to estimte stronomil distnes indiretl, s in Emple Sine nd osine tios hek Skills You ll Need for Help

More information

SPECIAL PRODUCTS AND FACTORIZATION

SPECIAL PRODUCTS AND FACTORIZATION MODULE - Specil Products nd Fctoriztion 4 SPECIAL PRODUCTS AND FACTORIZATION In n erlier lesson you hve lernt multipliction of lgebric epressions, prticulrly polynomils. In the study of lgebr, we come

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

Math Review for Algebra and Precalculus

Math Review for Algebra and Precalculus Copyrigt Jnury 00 y Stnley Oken. No prt of tis doument my e opied or reprodued in ny form wtsoever witout epress permission of te utor. Mt Review for Alger nd Prelulus Stnley Oken Deprtment of Mtemtis

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Section A-4 Rational Expressions: Basic Operations

Section A-4 Rational Expressions: Basic Operations A- Appendi A A BASIC ALGEBRA REVIEW 7. Construction. A rectngulr open-topped bo is to be constructed out of 9- by 6-inch sheets of thin crdbord by cutting -inch squres out of ech corner nd bending the

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 16 th May 2008. Time: 14:00 16:00 COMP20212 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Digitl Design Techniques Dte: Fridy 16 th My 2008 Time: 14:00 16:00 Plese nswer ny THREE Questions from the FOUR questions provided

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

Intersection Problems

Intersection Problems Intersetion Prolems Determine pirs of interseting ojets? C A B E D Complex shpes forme y oolen opertions: interset, union, iff. Collision etetion in rootis n motion plnning. Visiility, olusion, renering

More information

19. The Fermat-Euler Prime Number Theorem

19. The Fermat-Euler Prime Number Theorem 19. The Fermt-Euler Prime Number Theorem Every prime number of the form 4n 1 cn be written s sum of two squres in only one wy (side from the order of the summnds). This fmous theorem ws discovered bout

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

LISTENING COMPREHENSION

LISTENING COMPREHENSION PORG, přijímí zkoušky 2015 Angličtin B Reg. číslo: Inluded prts: Points (per prt) Points (totl) 1) Listening omprehension 2) Reding 3) Use of English 4) Writing 1 5) Writing 2 There re no extr nswersheets

More information

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

On Equivalence Between Network Topologies

On Equivalence Between Network Topologies On Equivlene Between Network Topologies Tre Ho Deprtment of Eletril Engineering Cliforni Institute of Tehnolog tho@lteh.eu; Mihelle Effros Deprtments of Eletril Engineering Cliforni Institute of Tehnolog

More information

Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010

Learning Outcomes. Computer Systems - Architecture Lecture 4 - Boolean Logic. What is Logic? Boolean Logic 10/28/2010 /28/2 Lerning Outcomes At the end of this lecture you should: Computer Systems - Architecture Lecture 4 - Boolen Logic Eddie Edwrds eedwrds@doc.ic.c.uk http://www.doc.ic.c.uk/~eedwrds/compsys (Hevily sed

More information

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes Rea Learning Goals, p. 17 text. Math 01 Unit 3: ute Triangle Trigonometry h. 3 Notes 3.1 Exploring Sie-ngle Relationships in ute Triangles (0.5 lass) Rea Goal p. 130 text. Outomes: 1. Define an aute triangle.

More information

Chapter. Fractions. Contents: A Representing fractions

Chapter. Fractions. Contents: A Representing fractions Chpter Frtions Contents: A Representing rtions B Frtions o regulr shpes C Equl rtions D Simpliying rtions E Frtions o quntities F Compring rtion sizes G Improper rtions nd mixed numers 08 FRACTIONS (Chpter

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Mathematics Higher Level

Mathematics Higher Level Mthemtics Higher Level Higher Mthemtics Exmintion Section : The Exmintion Mthemtics Higher Level. Structure of the exmintion pper The Higher Mthemtics Exmintion is divided into two ppers s detiled below:

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

Assign, Ten Homework 9 Due: Dec 11 2003, 2:00 pm Inst: Richard Saenz 1

Assign, Ten Homework 9 Due: Dec 11 2003, 2:00 pm Inst: Richard Saenz 1 Assign, Ten Homework 9 Due: De 11 2003, 2:00 pm Inst: ihr Senz 1 This print-out shoul he 34 questions. Multiple-hoie questions my ontinue on the next olumn or pge fin ll hoies efore mking your seletion.

More information

DATABASDESIGN FÖR INGENJÖRER - 1056F

DATABASDESIGN FÖR INGENJÖRER - 1056F DATABASDESIGN FÖR INGENJÖRER - 06F Sommr 00 En introuktionskurs i tssystem http://user.it.uu.se/~ul/t-sommr0/ lt. http://www.it.uu.se/eu/course/homepge/esign/st0/ Kjell Orsorn (Rusln Fomkin) Uppsl Dtse

More information

Further applications of area and volume

Further applications of area and volume 2 Further pplitions of re n volume 2A Are of prts of the irle 2B Are of omposite shpes 2C Simpson s rule 2D Surfe re of yliners n spheres 2E Volume of omposite solis 2F Error in mesurement Syllus referene

More information

4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS

4: RIEMANN SUMS, RIEMANN INTEGRALS, FUNDAMENTAL THEOREM OF CALCULUS 4: RIEMA SUMS, RIEMA ITEGRALS, FUDAMETAL THEOREM OF CALCULUS STEVE HEILMA Contents 1. Review 1 2. Riemnn Sums 2 3. Riemnn Integrl 3 4. Fundmentl Theorem of Clculus 7 5. Appendix: ottion 10 1. Review Theorem

More information

84 cm 30 cm. 12 in. 7 in. Proof. Proof of Theorem 7-4. Given: #QXY with 6 Prove: * RS * XY

84 cm 30 cm. 12 in. 7 in. Proof. Proof of Theorem 7-4. Given: #QXY with 6 Prove: * RS * XY -. Pln Ojetives o use the ie-plitter heorem o use the ringle-ngle- isetor heorem Emples Using the ie-plitter heorem el-worl onnetion Using the ringle-ngle- isetor heorem Mth kgroun - Wht ou ll Lern o use

More information

Forensic Engineering Techniques for VLSI CAD Tools

Forensic Engineering Techniques for VLSI CAD Tools Forensi Engineering Tehniques for VLSI CAD Tools Jennifer L. Wong, Drko Kirovski, Dvi Liu, Miorg Potkonjk UCLA Computer Siene Deprtment University of Cliforni, Los Angeles June 8, 2000 Computtionl Forensi

More information

0.1 Basic Set Theory and Interval Notation

0.1 Basic Set Theory and Interval Notation 0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

More information

Right-angled triangles

Right-angled triangles 13 13A Pythgors theorem 13B Clulting trigonometri rtios 13C Finding n unknown side 13D Finding ngles 13E Angles of elevtion nd depression Right-ngled tringles Syllus referene Mesurement 4 Right-ngled tringles

More information

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach

Firm Objectives. The Theory of the Firm II. Cost Minimization Mathematical Approach. First order conditions. Cost Minimization Graphical Approach Pro. Jy Bhttchry Spring 200 The Theory o the Firm II st lecture we covered: production unctions Tody: Cost minimiztion Firm s supply under cost minimiztion Short vs. long run cost curves Firm Ojectives

More information

Quick Guide to Lisp Implementation

Quick Guide to Lisp Implementation isp Implementtion Hndout Pge 1 o 10 Quik Guide to isp Implementtion Representtion o si dt strutures isp dt strutures re lled S-epressions. The representtion o n S-epression n e roken into two piees, the

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

The Stirling Engine: The Heat Engine

The Stirling Engine: The Heat Engine Memoril University of Newfounln Deprtment of Physis n Physil Oenogrphy Physis 2053 Lortory he Stirling Engine: he Het Engine Uner no irumstnes shoul you ttempt to operte the engine without supervision:

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Transcript. Measuring Risk in Epidemiology. b d. a c. Measuring Risk in Epidemiology. About this Module. Learning Objectives

Transcript. Measuring Risk in Epidemiology. b d. a c. Measuring Risk in Epidemiology. About this Module. Learning Objectives Mesuring Risk in Epiemiology Trnsript Mesuring Risk in Epiemiology Welome to Mesuring Assoition n Risk in Epiemiology. My nme is Jim Gle. I m professor emeritus in the Deprtment of Epiemiology t the University

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information