Kinetic Monte Carlo: from transition probabilities to transition rates


 Edwin Copeland
 1 years ago
 Views:
Transcription
1 Kinetic Monte Carlo: from transition probabilities to transition rates With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot be modeled. Metropolis Monte Carlo samples configurational space and generates configurations according to the desired statisticalmechanics distribution. However, there is no time in Metropolis MC and the method cannot be used to study evolution of the system or kinetics. An alternative computational technique that can be used to study kinetics of slow processes is the kinetic Monte Carlo (kmc) method. Cartoon by Larry Gonick As compared to the Metropolis Monte Carlo method, kinetic Monte Carlo method has a different scheme for the generation of the next state. The main idea behind kmc is to use transition rates that depend on the energy barrier between the states, with time increments formulated so that they relate to the microscopic kinetics of the system. In Metropolis MC methods we decide whether to accept a move by considering the energy difference between the states. In kmc methods we use rates that depend on the energy barrier between the states.
2 Kinetic Monte Carlo: kinetics of atomic rearrangements Before starting kmc simulation we have to make a list of all possible events that can be realized during the simulation and calculate rates for each event. Input to KMC: Fast processes MD simulations Slow processes transition state theory, experiments For example, diffusion on the surface is determined by the energy barriers for the breaking the adatomsubstrate bonds, E a = E saddle E min, and the rate constant for diffusion can be calculated using a simplified transition state theory, e.g. [A. Voter, Phys. Rev. B 34, 6819 (1986)]: Energy E a Distance E = ν a n p exp kt For atoms adjacent to an island/step, additional (EhrlichSchwoebel) barriers/rates should be specified for breaking bonds with the atoms of the island. As the system becomes more complex, the number of possible events becomes larger k TST n p is the number of possible jump directions ν is the harmonic frequency. The assumptions are that the diffusion of an adatom is a result of random uncorrelated hops between neighboring binding sites and that the time between hops is much longer as compared to the time for the hop.
3 Kinetic Monte Carlo: kinetics of atomic rearrangements When the rate constants of all processes are known, we can perform kmc simulation in the time domain. In the case of a single process, the reciprocal of the rate of the process determines the time required for the reaction to occur. This quantity can be set equal to the kmc time. In the case of a manyparticle multiprocess system, however, introduction of time is less straightforward and several modifications of kmc exist. For example, we can use the following scheme [A. F. Voter, Phys. Rev. B 34, (1986)]: 1. The rate of all the allowed processes can be combined to obtain the total rate and the time step is calculated as inverse of the total rate. 2. At each time step one of all the possible processes is randomly selected with probability that is the product of the time step and the rate of the individual process. Other algorithms include: Assigning to each particle in the system independent time clock (and time step) and calculating the real time step as an average over all independent time steps [e.g. PeiLin Cao, Phys. Rev. Lett. 73, (1994)] Choosing a single constant time step that is less than the duration of the fastest process. The processes are chosen randomly and allowed to occur with probabilities based on individual rates [Dawnkaski, Srivastava, Garrison, J. Chem. Phys. 102, (1995)]
4 Example: kmc simulation of diamond {001} (2x1):H surface under CVD growth conditions [Dawnkaski, Srivastava, Garrison, Chem. Phys. Lett. 232, 524, 1994] First, the rates of all relevant surface reaction have to be evaluated (from molecular static or dynamics simulations υ i = υ 0 i E exp( a i k B ) T υ 0 i [s 1 ] a E i [ev] University of Virginia, MSE a 4270/6270: few Introduction more reactions to Atomistic Simulations, Leonid Zhigilei
5 Example: kmc simulation of diamond {001} (2x1):H surface under CVD growth conditions Given the rate of each individual process in a system, the probability of a process occurring within any specified time period or timestep is simply the product of the timestep and the rate of the process. A single constant timestep can be chosen so that it is less than the duration of the fastest process considered. The probabilities of all the considered processes are thus between 0 and 1. The timestep is chosen such that the acceptance probability of the fastest process is about 0.5. This gives values of Δt = 105 s for 1200 K, 107 s for 1500 K, and 108 s for 1800 K. Topographical snapshots of a growing diamond surface. The surface area is a square of side 25 A and the plots is shaded by layer number with the highest layer being the lightest in shade. [Dawnkaski, Srivastava, Garrison, Chem. Phys. Lett. 232, 524, 1994]
6 Example: Growth of fractal structures in fullerene layers MD and kinetic Monte Carlo simulations by Hui Liu (term project for MSE 6270) All possible thermallyactivated events have to be considered STM images of C 60 film growing on graphite ν i = ν o exp(e i /k B T) Ln (V j ) 5.5 MD simulations finding the 6.0 energy barriers, attempt frequencies, and probabilities of x10 University of Virginia, MSE 4270/6270: Introduction to Atomistic 3 Simulations, diffusion Leonid jump Zhigilei events 1/kT (1/meV)
7 Example: Growth of fractal structures in fullerene layers MD and kinetic Monte Carlo simulations by Hui Liu (term project for MSE 627) STM images of C 60 film growing on graphite
8 Example: Diffusion of Ge adatoms on a reconstructed Si(001) substrate MD and kinetic Monte Carlo simulations by Avinash Dongare Calculation of the potential energy surface for a Ge adatom using procedure described by Roland and Gilmer in Phys. Rev. B 46, (1992)
9 Example: Diffusion of Ge adatoms on a reconstructed Si(001) substrate MD and kinetic Monte Carlo simulations by Avinash Dongare MD simulations of Ge adatom diffusion on a Au covered Si(001) substrate Ge adatom trajectories on a Au covered Si(001) substrate Mean square displacements for Ge adatoms on a Aucovered Si(001) substrate, and logarithmic plot of the diffusion coefficient from MD simulations r 2 Δ ( t) ~ 4Dt Ln (D [cm 2 /sec]) D = D0 exp( Ed / kbt ) DMD /k B T
10 Example: Diffusion of Ge adatoms on a reconstructed Si(001) substrate MD and kinetic Monte Carlo simulations by Avinash Dongare kmc Surface structures after deposition of 0.07 ML of Si on a Si(001) substrate at 400 K with a deposition rate of 0.1 ML/min STM, Mo et al., Phys. Rev. Lett. 66, 1998 (1991) Surface structures predicted in kmc simulations of the deposition of 0.10 ML of Ge on a Au patterned Si(001) substrate (76 nm x 76 nm) at 600 K with deposition rate of 9 ML/min.
11 Kinetic Monte Carlo: limitations One (main?) problem in kmc is that we have to specify all the barriers/rates in advance, before the simulation. But what if we have a continuous variation of the activation energies in the system? What if the activation energies are changing during the simulation? r E (, t) k ( E, T ) = k 0 exp kt Example: strain on the surface can affect the diffusion of adatoms and nucleation of islands. There could be many possible origins of strain, e. g. buried islands, mesas, dislocation patterns in heteroepitaxial systems. One can try to introduce the effect of strain on the activation energies for the diffusion of adatoms. For example, Nurminen et al., Phys. Rev. B 63, , 2000, tried several approaches. In one approach, they introduced a spatial dependence of the adatomsubstrate interaction on a patterned surface, E = E S (x,y) + ne N, where E is the diffusion activation energy, E S is the contribution due to the interaction with substrate, and E N is the energy of interaction with other adatoms. In another approach, an additional hopdirection dependent diffusion barrier E D is introduced to describe the longrange interaction between adatom and domain boundaries: University of Virginia, MSE 4270/6270: Introduction E = to EAtomistic S +ne N + Simulations, E D Leonid Zhigilei
12 Kinetic Monte Carlo: example Kinetic Monte Carlo simulation of island growth on a homogeneous substrate and a substrate with nanoscale patterning (by Nurminen, Kuronen, Kaski, Helsinki University of Technology) islands on a homogeneous substrate Blue denotes the substrate and green the deposited atoms. islands on a substrate with nanoscale patterning (a checkerboard structure) The growing heteroepitaxial islands by themselves can locally modify diffusion barriers. Relaxation of nanostructures introduces local strains that constantly change the energy landscape and corresponding probabilities of Monte Carlo events. Modified approach based on the locally activated Monte Carlo techniques (Kaukonen et al. Phys. Rev. B, 61, 980, 2000) has been proposed to account for local strains.
13 Example: kmc in simulations of dislocation dynamics [Karin Lin and D. C. Chrzan, Phys. Rev. B 60, 3799 (1999)] Simulation of evolution of the collective behavior of a large number of dislocations requires velocity vs. stress law. Typically, in Dislocation Dynamics simulations an empirical law involving a damping term is assumed. Kinetic Monte Carlo can provide the needed velocity vs. stress relationship. In particular, the simulations may reflect the stochastic aspects associated with overcoming the Peierls barrier, interactions with vacancies, etc. in a natural way. Dislocation dynamics method can be used (potentially) to connect atomic scale calculations with macroscopic continuum description of plasticity. Kinetic Monte Carlo simulations can be parameterized based on atomic scale MD studies of the properties of dislocation cores, kinks, etc. The model discussed in this paper includes dislocation segment interactions in the isotropic elasticity theory limit. The Peierls potential is also included and free surface boundary conditions are used (all image forces and surface tractions are reflected in the energetics governing the dynamics). Dislocations are assumed to be composed entirely of screw and edge segments. The algorithm involves cataloging all of the possible kinetic events, and calculating the rates associated with these processes. Kinetic events include the production/annihilation of double kink pairs, as well as the University of Virginia, MSE 4270/6270: Introduction lateral motion to of Atomistic the existing Simulations, kinks. Leonid Zhigilei
14 Summary: MD, Metropolis MC and kinetic MC With MD we can only reproduce the dynamics of the system for 100 ns. Slow thermallyactivated processes, such as diffusion, cannot be modeled. An alternative computational techniques for slow processes are Monte Carlo methods. Monte Carlo method is a common name for a wide variety of stochastic techniques. These techniques are based on the use of random numbers and probability statistics to investigate problems in areas as diverse as economics, nuclear physics, and flow of traffic. There are many variations of Monte Carlo methods. In this lecture we will briefly discuss two methods that are often used in materials science  classical Metropolis Monte Carlo and kinetic Monte Carlo. Metropolis Monte Carlo generates configurations according to the desired statisticalmechanics distribution. There is no time, the method cannot be used to study evolution of the system. Equilibrium properties can be studied. Cartoon by Larry Gonick Kinetic Monte Carlo can address kinetics. The main idea behind KMC is to use transition rates that depend on the energy barrier between the states, with time increments formulated so that they relate to the microscopic kinetics of the system.
15 Summary: MD, Metropolis MC and kinetic MC Molecular Dynamics based on the solution of the equations of motion for all particles in the system. Complete information on atomic trajectories can be obtained, but time of the simulations is limited (up to nanoseconds) appropriate for fast processes (e.g. FIB local surface modification, sputtering, implantation) or for quasistatic simulations (e.g. stress distribution in nanostructures). Metropolis Monte Carlo generates random configurations with probability of each configuration defined by the desired distribution P(r N ). This is accomplished by setting up a random walk through the configurational space with specially designed choice of probabilities of going from one state to another. Equilibrium properties can be found/studied (e.g. surface reconstruction and segregation, composition variations in the surface region due to the surface or substrate induced strains, stability of nanostructures). Kinetic Monte Carlo when the rate constants of all processes are known, we can perform kmc simulation in the time domain. Time increments are defined by the rates of all processes and are formulated so that they relate to the microscopic kinetics of the system. This method should be used when kinetics rather than equilibrium thermodynamics dominates the structural and/or compositional changes in the system. Kinetic Monte Carlo vs Metropolis Monte Carlo: in MMC we decide whether to accept a move by considering the energy difference between the states, whereas in kmc methods we use rates that depend on the energy barrier between the states. The main advantages of kinetic Monte Carlo is that time is defined and only a small number of elementary reactions are considered, so the calculations are fast.
Chapter Outline. Diffusion  how do atoms move through solids?
Chapter Outline iffusion  how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steadystate diffusion (Fick s first law)
More informationStudy on the early stage of thin filmgrowth in pulsed beamdeposition by kinetic Monte Carlo simulation
Surface and Coatings Technology 158 159 (2002) 247 252 Study on the early stage of thin filmgrowth in pulsed beamdeposition by kinetic Monte Carlo simulation a, b Q.Y. Zhang *, P.K. Chu a State Key Laboratory
More informationChapter 5: Diffusion. 5.1 SteadyState Diffusion
: Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process
More informationDefects Introduction. Bonding + Structure + Defects. Properties
Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of
More information8. Kinetic Monte Carlo
8. Kinetic Monte Carlo [Duane Johnsons notes in web; Per Stoltze: Simulation methods in atomicscale physics; Fichthorn, Weinberg: J. Chem. Phys. 95 (1991) 1090; Bortz, Kalos, Lebowitz, J. Computational
More informationIntroduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5
Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion  how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion
More informationThin Film Mechanics. Joost Vlassak. DEAS Harvard University
Thin Film Mechanics Joost Vlassak DEAS Harvard University AP 298r Spring 2004 OVERVIEW 1. Origin of residual stresses in thin films Epitaxial stresses Thermal stresses Intrinsic or growth stresses  surface
More informationMolecular Dynamics Simulations
Molecular Dynamics Simulations Yaoquan Tu Division of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) 201106 1 Outline I. Introduction II. Molecular Mechanics Force Field III. Molecular
More informationMOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THINFILM METALLIC NANOSTRUCTURES UNDER HEATING
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2011, 2 (2), P. 76 83 UDC 538.97 MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THINFILM METALLIC NANOSTRUCTURES UNDER HEATING I. S. Konovalenko
More informationChemical Sputtering. von Kohlenstoff durch Wasserstoff. W. Jacob
Chemical Sputtering von Kohlenstoff durch Wasserstoff W. Jacob Centre for Interdisciplinary Plasma Science MaxPlanckInstitut für Plasmaphysik, 85748 Garching Content: Definitions: Chemical erosion, physical
More informationWhat is molecular dynamics (MD) simulation and how does it work?
What is molecular dynamics (MD) simulation and how does it work? A lecture for CHM425/525 Fall 2011 The underlying physical laws necessary for the mathematical theory of a large part of physics and the
More informationLecture 1: Kinetics vs. Thermodynamics: different but related
Lecture 1: Kinetics vs. Thermodynamics: different but related Today s topics The basic concepts of Kinetics and Thermodynamics, and how to understand the difference and interrelationship between the two
More informationTDS. Dirk Rosenthal Department of Inorganic Chemistry FritzHaberInstitut der MPG Faradayweg 46, DE 14195 Berlin dirkrose@fhiberlin.mpg.
Modern Methods in Heterogeneous Catalysis Research TDS Dirk Rosenthal Department of Inorganic Chemistry FritzHaberInstitut der MPG Faradayweg 46, DE 14195 Berlin dirkrose@fhiberlin.mpg.de TDS = TPD
More informationFundamentals of grain boundaries and grain boundary migration
1. Fundamentals of grain boundaries and grain boundary migration 1.1. Introduction The properties of crystalline metallic materials are determined by their deviation from a perfect crystal lattice, which
More informationMechanisms of Diffusion in Materials 3.205 L4 11/7/06
Mechanisms of Diffusion in Materials 1 A final point on interdiffusion The composition profiles resulting from interdiffusion are generally constrained by phase equilibria. Consider the an Ir Re diffusion
More informationChemical Vapor Deposition
Chemical Vapor Deposition Physical Vapor Deposition (PVD) So far we have seen deposition techniques that physically transport material from a condensed phase source to a substrate. The material to be deposited
More informationPhysical Chemistry. Lecture 5 Theoretical chemical kinetics
Physical Chemistry Lecture 5 Theoretical chemical kinetics Chemical kinetics Understand the nature of reactions Predict reaction outcomes based on Reactants Conditions Requires integration of theory and
More informationTopic 2: Energy in Biological Systems
Topic 2: Energy in Biological Systems Outline: Types of energy inside cells Heat & Free Energy Energy and Equilibrium An Introduction to Entropy Types of energy in cells and the cost to build the parts
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationChapter Outline: Phase Transformations in Metals
Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations
More informationThe Kinetic Theory of Gases Sections Covered in the Text: Chapter 18
The Kinetic Theory of Gases Sections Covered in the Text: Chapter 18 In Note 15 we reviewed macroscopic properties of matter, in particular, temperature and pressure. Here we see how the temperature and
More information particle with kinetic energy E strikes a barrier with height U 0 > E and width L.  classically the particle cannot overcome the barrier
Tunnel Effect:  particle with kinetic energy E strikes a barrier with height U 0 > E and width L  classically the particle cannot overcome the barrier  quantum mechanically the particle can penetrated
More informationKinetics of nanoclusters on surfaces and in thin films
UNIVERSITY OF HELSINKI REPORT SERIES IN PHYSICS HUPD114 Kinetics of nanoclusters on surfaces and in thin films Jonas Frantz Accelerator Laboratory Department of Physical Sciences Faculty of Science University
More informationPathways of Li + ion mobility in superionic perovskites by ab initio simulations
Pathways of Li + ion mobility in superionic perovskites by ab initio simulations Michele Catti Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano, Italy (catti@mater.unimib.it)
More informationChapter 3: Kinetics of Electrode Reactions
Goal: To understand the observed behavior of electrode kinetics with respect to potential and concentration. = i/nfa (mol/scm 2 ) Rate = f(e) Dynamic Equilibrium A k f k b B s 1 f = k f C A (M/s) b =
More informationLecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip  the probe.
Lecture 6 Scanning Tunneling Microscopy (STM) General components of STM; Tunneling current; Feedback system; Tip  the probe. Brief Overview of STM Inventors of STM The Nobel Prize in Physics 1986 Nobel
More informationPhysical Vapor Deposition (PVD): SPUTTER DEPOSITION
We saw CVD PECVD Physical Vapor Deposition (PVD): SPUTTER DEPOSITION Gas phase reactants: P g 1 mtorr to 1 atm. Good step coverage, T > > RT Plasma enhanced surface diffusion without need for elevated
More informationScanning Tunneling Microscopy: Fundamentals and Applications
McGill University, Montreal, March 30 th 2007 Scanning Tunneling Microscopy: Fundamentals and Applications Federico Rosei Canada Research Chair in Nanostructured Organic and Inorganic Materials Énergie,
More informationData Visualization for Atomistic/Molecular Simulations. Douglas E. Spearot University of Arkansas
Data Visualization for Atomistic/Molecular Simulations Douglas E. Spearot University of Arkansas What is Atomistic Simulation? Molecular dynamics (MD) involves the explicit simulation of atomic scale particles
More informationFatigue :Failure under fluctuating / cyclic stress
Fatigue :Failure under fluctuating / cyclic stress Under fluctuating / cyclic stresses, failure can occur at loads considerably lower than tensile or yield strengths of material under a static load: Fatigue
More informationPhysical Chemistry. Lecture 4 Introduction to chemical kinetics
Physical Chemistry Lecture 4 Introduction to chemical kinetics Thermodynamics and kinetics Thermodynamics Observe relative stability of states Energy differences Static comparisons of states Kinetics Observe
More informationELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication
ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,
More informationStress Evolution During and After Deposition of Polycrystalline Thin Films
Stress Evolution During and After Deposition of Polycrystalline Thin Films Carl V. Thompson, Jeff S. Leib, and Hang Yu Dept. of Materials Science and Engineering Massachusetts Institute of Technology Cambridge,
More informationLecture 1: Introduction to Random Walks and Diffusion
Lecture : Introduction to Random Walks and Diffusion Scribe: Chris H. Rycroft (and Martin Z. Bazant) Department of Mathematics, MIT February, 5 History The term random walk was originally proposed by Karl
More informationMultiscale modelling of plasmamaterial interactions
Multiscale modelling of plasmamaterial interactions T. Ahlgren, C. Björkas, K. Heinola, K. O. E. Henriksson, N. Juslin, Ane Lasa, A. Meinander, K. E. Salonen, K. Vörtler of Physics and Helsinki Institute
More informationMechanical properties of twin lamella copper: Preliminary studies
: Preliminary studies Markus J. Buehler Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Abstract. The study of the mechanical properties of materials at nano
More informationSolid State Detectors = SemiConductor based Detectors
Solid State Detectors = SemiConductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the pn junction Charge collection
More informationPHYS 3061 Introduction to Computer Simulation of Physical Systems. Lab 2: Initialization with Boltzmann distribution
PHYS 3061 Introduction to Computer Simulation of Physical Systems Lab 2: Initialization with Boltzmann distribution Molecular Dynamic System (Ideal gas) At temperature T, f(v) Although the KE satisfies
More informationphys4.17 Page 1  under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon
Covalent Crystals  covalent bonding by shared electrons in common orbitals (as in molecules)  covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined
More informationVacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
More informationRadiation Interactions with Matter: Energy Deposition
Radiation Interactions with Matter: Energy Deposition Biological effects are the end product of a long series of phenomena, set in motion by the passage of radiation through the medium. Image removed due
More informationIntroduction to the Monte Carlo method
Some history Simple applications Radiation transport modelling Flux and Dose calculations Variance reduction Easy Monte Carlo Pioneers of the Monte Carlo Simulation Method: Stanisław Ulam (1909 1984) Stanislaw
More informationGreens functions  solution for earthʼs surface movement due to a slipping patch at depth
Greens functions  solution for earthʼs surface movement due to a slipping patch at depth Need to know slip distribution along the fault as a function of time No closedform solution for Greens functions
More informationNUCLEAR FISSION DOEHDBK1019/193 Atomic and Nuclear Physics NUCLEAR FISSION
NUCLEAR FISSION DOEHDBK101/13 Atomic and Nuclear Physics NUCLEAR FISSION Nuclear fission is a process in which an atom splits and releases energy, fission products, and neutrons. The neutrons released
More informationMolecular vs. Continuum
Molecular vs. Continuum Classical fluid mechanics (i.e., A&AE 511) treats a gas as an infinitely divisible substance, a continuum. As a consequence of continuum assumption, each fluid property is assumed
More informationThe Metropolis Algorithm
The Metropolis Algorithm Statistical Systems and Simulated Annealing Physics 170 When studying systems with a great many particles, it becomes clear that the number of possible configurations becomes exceedingly
More informationSize effects. Lecture 6 OUTLINE
Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE Why does size influence the material s properties? How does size influence the material s performance? Why are properties of nanoscale objects
More informationKinetic Theory of Gases. Chapter 33. Kinetic Theory of Gases
Kinetic Theory of Gases Kinetic Theory of Gases Chapter 33 Kinetic theory of gases envisions gases as a collection of atoms or molecules. Atoms or molecules are considered as particles. This is based on
More informationv kt = N A ρ Au exp (
42 4.2 Determination of the number of vacancies per cubic meter in gold at 900 C (1173 K) requires the utilization of Equations 4.1 and 4.2 as follows: N v N exp Q v N A ρ Au kt A Au exp Q v kt (6.023
More informationSemiconductor doping. Si solar Cell
Semiconductor doping Si solar Cell Two Levels of Masks  photoresist, alignment Etch and oxidation to isolate thermal oxide, deposited oxide, wet etching, dry etching, isolation schemes Doping  diffusion/ion
More informationChapter Outline. Defects Introduction (I)
Crystals are like people, it is the defects in them which tend to make them interesting!  Colin Humphreys. Defects in Solids Chapter Outline 0D, Point defects vacancies interstitials impurities, weight
More informationPhotoinduced volume change in chalcogenide glasses
Photoinduced volume change in chalcogenide glasses (Ph.D. thesis points) Rozália Lukács Budapest University of Technology and Economics Department of Theoretical Physics Supervisor: Dr. Sándor Kugler 2010
More information1.4 Review. 1.5 Thermodynamic Properties. CEE 3310 Thermodynamic Properties, Aug. 26,
CEE 3310 Thermodynamic Properties, Aug. 26, 2011 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container
More informationCHEM6085: Density Functional Theory Lecture 2. Hamiltonian operators for molecules
CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.K. Skylaris 1 The (timeindependent) Schrödinger equation is an eigenvalue equation operator for property A eigenfunction
More informationNumerical analysis of Bose Einstein condensation in a threedimensional harmonic oscillator potential
Numerical analysis of Bose Einstein condensation in a threedimensional harmonic oscillator potential Martin Ligare Department of Physics, Bucknell University, Lewisburg, Pennsylvania 17837 Received 24
More informationNuclear Magnetic Resonance
Nuclear Magnetic Resonance Introduction Atomic magnetism Nuclear magnetic resonance refers to the behaviour of atomic nuclei in the presence of a magnetic field. The first principle required to understand
More information7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.
7. DYNAMIC LIGHT SCATTERING 7. First order temporal autocorrelation function. Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic situation is illustrated
More informationMOLECULAR DYNAMICS SIMULATION OF DYNAMIC RESPONSE OF BERYLLIUM
MOLECULAR DYNAMICS SIMULATION OF DYNAMIC RESPONSE OF BERYLLIUM Aidan P. Thompson, J. Matthew D. Lane and Michael P. Desjarlais Sandia National Laboratories, Albuquerque, New Mexico 87185, USA Abstract.
More informationRANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA
RANDOM VIBRATION AN OVERVIEW by Barry Controls, Hopkinton, MA ABSTRACT Random vibration is becoming increasingly recognized as the most realistic method of simulating the dynamic environment of military
More informationLecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows
Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3. 1 Basics: equations of continuum mechanics  balance equations for mass and momentum  balance equations for the energy and the chemical
More informationChapter Outline Dislocations and Strengthening Mechanisms
Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip
More information20542. Structure and Dynamics of HydrogenBonded Systems. 2627 October 2009. Hydrogen Bonds and Liquid Water
20542 Structure and Dynamics of HydrogenBonded Systems 2627 October 2009 Hydrogen Bonds and Liquid Water Ruth LYNDENBELL University of Cambridge, Department of Chemistry Lensfield Road Cambridge CB2
More informationmomentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3
Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.
More informationCLASSICAL CONCEPT REVIEW 8
CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with
More information5: The Neutron Cycle. B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.Dec.
5: The Neutron Cycle B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.Dec. 2015 September 1 Reaction rates Table of Contents Reactor multiplication
More informationReaction Rates and Chemical Kinetics. Factors Affecting Reaction Rate [O 2. CHAPTER 13 Page 1
CHAPTER 13 Page 1 Reaction Rates and Chemical Kinetics Several factors affect the rate at which a reaction occurs. Some reactions are instantaneous while others are extremely slow. Whether a commercial
More informationIronCarbon Phase Diagram (a review) see Callister Chapter 9
IronCarbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,
More informationChapter 8. Low energy ion scattering study of Fe 4 N on Cu(100)
Low energy ion scattering study of 4 on Cu(1) Chapter 8. Low energy ion scattering study of 4 on Cu(1) 8.1. Introduction For a better understanding of the reconstructed 4 surfaces one would like to know
More informationIntegration of a fin experiment into the undergraduate heat transfer laboratory
Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. AbuMulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA Email: mulaweh@engr.ipfw.edu
More informationBasic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
More informationThe Physics of Energy sources Nuclear Fission
The Physics of Energy sources Nuclear Fission B. Maffei Bruno.maffei@manchester.ac.uk Nuclear Fission 1 Introduction! We saw previously from the Binding energy vs A curve that heavy nuclei (above A~120)
More informationMolecular Dynamics Study of Void Growth and Dislocations in dynamic Fracture of FCC and BCC Metals
Preprint UCRLJC151375 Molecular Dynamics Study of Void Growth and Dislocations in dynamic Fracture of FCC and BCC Metals E. T. Seppala, J. Belak, R. E. Rudd This article was submitted to: Plasticity
More informationStatistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004
Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein
More informationLecture 2: Semiconductors: Introduction
Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical
More informationa) Conservation of Mass states that mass cannot be created or destroyed. b) Conservation of Energy states that energy cannot be created or destroyed.
7 Fission In 1939 Hahn and Strassman, while bombarding U235 nuclei with neutrons, discovered that sometimes U235 splits into two nuclei of medium mass. There are two important results: 1. Energy is produced.
More informationLecture 8: Extrinsic semiconductors  mobility
Lecture 8: Extrinsic semiconductors  mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............
More informationAbaqus Technology Brief. Automobile Roof Crush Analysis with Abaqus
Abaqus Technology Brief Automobile Roof Crush Analysis with Abaqus TB06RCA1 Revised: April 2007. Summary The National Highway Traffic Safety Administration (NHTSA) mandates the use of certain test procedures
More informationChapter 18 Statistical mechanics of classical systems
Chapter 18 Statistical mechanics of classical systems 18.1 The classical canonical partition function When quantum effects are not significant, we can approximate the behavior of a system using a classical
More informationIndiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
More informationFluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
More informationNuclear Physics. Nuclear Physics comprises the study of:
Nuclear Physics Nuclear Physics comprises the study of: The general properties of nuclei The particles contained in the nucleus The interaction between these particles Radioactivity and nuclear reactions
More informationIn order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 103 m. Thus,
5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,
More informationLECTURE 11 : GLASSY DYNAMICS  Intermediate scattering function  Mean square displacement and beyond  Dynamic heterogeneities  Isoconfigurational
LECTURE 11 : GLASSY DYNAMICS  Intermediate scattering function  Mean square displacement and beyond  Dynamic heterogeneities  Isoconfigurational Ensemble  Energy landscapes A) INTERMEDIATE SCATTERING
More informationNote 5.1 Stress range histories and Rain Flow counting
June 2009/ John Wægter Note 5.1 Stress range histories and Rain Flow counting Introduction...2 Stress range histories...3 General...3 Characterization of irregular fatigue loading...4 Stress range histogram...5
More informationFluidInduced Material Transport: A Volume Averaged Approach to Modelling in SPH
FluidInduced Material Transport: A Volume Averaged Approach to Modelling in SPH Vinay Kumar SPH Workshop, 30.06. 01.07.2014, Karlsruhe www.baw.de Outline Motivation Model concept Groundwater model SPH
More informationProperties of Atomic Orbitals and Intro to Molecular Orbital Theory
Properties of Atomic Orbitals and Intro to Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #15 Atomic Orbitals Four quantum numbers define the properties of each
More informationPARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE
PARTICLE SIMULATION ON MULTIPLE DUST LAYERS OF COULOMB CLOUD IN CATHODE SHEATH EDGE K. ASANO, S. NUNOMURA, T. MISAWA, N. OHNO and S. TAKAMURA Department of Energy Engineering and Science, Graduate School
More informationNew Approach to Analysis of the Switching Current Data in Ferroelectric Thin Films
Ferroelectrics, 291: 27 35, 2003 Copyright c Taylor & Francis Inc. ISSN: 00150193 print / 15635112 online DOI: 10.1080/00150190390222510 New Approach to Analysis of the Switching Current Data in Ferroelectric
More informationEXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL
EXIT TIME PROBLEMS AND ESCAPE FROM A POTENTIAL WELL Exit Time problems and Escape from a Potential Well Escape From a Potential Well There are many systems in physics, chemistry and biology that exist
More informationWelcome to the World of Chemistry
Welcome to the World of Chemistry The Language of Chemistry CHEMICAL ELEMENTS  pure substances that cannot be decomposed by ordinary means to other substances. Aluminum Bromine Sodium The Language of
More information1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion
Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic
More informationUnit 1: Fire Engineering Science (A/505/6005)
L3D1 THE INSTITUTION OF FIRE ENGINEERS Founded 1918 Incorporated 1924 IFE Level 3 Diploma in Fire Science and Fire Safety (VRQ) Unit 1: Fire Engineering Science (A/505/6005) Friday 13 March 2015 10:15
More informationProposal 1: ModelBased Control Method for DiscreteParts machining processes
Proposal 1: ModelBased Control Method for DiscreteParts machining processes Proposed Objective: The proposed objective is to apply and extend the techniques from continuousprocessing industries to create
More informationBasic Principles of Magnetic Resonance
Basic Principles of Magnetic Resonance Contents: Jorge Jovicich jovicich@mit.edu I) Historical Background II) An MR experiment  Overview  Can we scan the subject?  The subject goes into the magnet 
More informationViscoelasticity of Polymer Fluids.
Viscoelasticity of Polymer Fluids. Main Properties of Polymer Fluids. Entangled polymer fluids are polymer melts and concentrated or semidilute (above the concentration c) solutions. In these systems polymer
More informationIncorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
The OpenAccess Journal for the Basic Principles of Diffusion Theory, Experiment and Application Incorporating Internal Gradient and Restricted Diffusion Effects in Nuclear Magnetic Resonance Log Interpretation
More informationModification of Graphene Films by LaserGenerated High Energy Particles
Modification of Graphene Films by LaserGenerated High Energy Particles Elena Stolyarova (Polyakova), Ph.D. ATF Program Advisory and ATF Users Meeting April 23, 2009, Berkner Hall, Room B, BNL Department
More informationLABORATORY EXPERIMENTS TESTING OF MATERIALS
LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective
More informationBasic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
More informationStates of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.
CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas
More information