# Acoustic Phonetics. Chapter 8

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Acoustic Phonetics Chapter 8 1

2 1. Sound waves Vocal folds: Frequency: 300 Hz

3 1.1 Sound waves: The parts of waves We will be considering the parts of a wave with the wave represented as a transverse wave as in the following diagram: In the above diagram the white line represents the position of the medium when no wave is present. This medium could be imagined as a rope fixed at one end a few feet above the ground and held by you at the other end. The yellow line represents the position of the medium as a wave travels through it. We simply say that the yellow line is the wave. If we consider the rope mentioned before, this wave could be created by vertically shaking the end of the rope. Often, when several waves are traveling along a medium as shown above, the continuous group of waves is called a wave train. 3

4 1.2 Sound waves: What is crest and trough? The section of the wave that rises above the undisturbed position is called the crest. That section which lies below the undisturbed position is called the trough. These sections are labeled in the following diagram: 4

5 1.3 Sound waves: What is amplitude? The term amplitude can have slightly different meanings depending upon the context of the situation. Its most general definition is that the amplitude is the maximum positive displacement from the undisturbed position of the medium to the top of a crest. This is shown in the following diagram: 5

6 1.4 What is positive & negative amplitude? The displacements of positive and negative amplitudes are shown in the following diagram: Sometimes it is necessary to discuss an amplitude at a certain point along the wave. Several of these amplitudes are shown in the following diagram: 6

7 1.5 Sound waves: What is wavelength? The wavelength of a wave is the distance between any two adjacent corresponding locations on the wave train. This distance is usually measured in one of three ways: crest to next crest, trough to next trough, or from the start of a wave cycle to the next starting point. Actually, the a wavelength exists between any point on a wave and the corresponding point on the next wave in the wave train. A few of such distances are shown below: 7

8 2.1 What is frequency? 1. Frequency refers to how many waves are made per time interval. This is usually described as how many waves are made per second,, or as cycles per second. 2. If ten waves are made per second,, then the frequency is said to be ten cycles per second,, written as 10 cps. 3. Usually, we use the unit Hertz to state frequency.. A frequency of 10 cps is noted as a frequency of 10 Hertz.. So, one cycle per second is one Hertz, as in: 1 cps = 1 Hertz or it is abbreviated this way: 1 cps = 1 Hz 120 cps = 120 Hz 350 cps = 350 Hz 8

9 2.2. Sound waves and the frequency Frequency: The number of complete repetitions (cycles) of variations in air pressure occurring in a second.. The unit of frequency measurement is the hertz (Hz)

10 2.3 Sound waves with different frequencies? 100 Hz 200 Hz second 10

11 2.4. Frequencies and sound waves Frequency: 300 Hz Frequency: 500 Hz

12 2.5 High & low frequencies and sound waves Frequency: 350 Hz Try to listen to the following sounds: 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000, 100, 20, 10, 8, 6, 5 12

13 2.6 More varieties of frequencies 16 Hz 4000 Hz 32 Hz 5000 Hz 64 Hz 8000 Hz 100 Hz Hz 160 Hz Hz 200 Hz Hz 250 Hz 320 Hz 900 Hz Hz 400 Hz 300 Hz Hz 450 Hz 1000 Hz 1600 Hz 2000 Hz 13

14 3. Formants Formants 1-4: 1 leaves (Amanda) Time (s) Time (s) 14

15 3.1 Formants with lines Formants 1-4: 1 leaves (Amanda) Time (s) Time (s) 15

16 3.2 Formants of different vowels See CBCAP 16

17 3.2 The relationship between F1 and F2 Formant 1: reflecting the high or low of the vowel in the oral tract Formant 2: reflecting the backness of the vowel in the oral tract Try to use praat to figure out the relationship described above. See also CBCAP 17

18 3.3 The Assignment Try to examine the articulation positions and sounds. 1. Draw the matrix to represent space of oral tract Make sure that the X and Y axes (with X axis = 3000 Hz and Y axis = 1500 Hz) 2. Try to produce different vowels by yourself 3. Try to collect the acoustic info of the first and second formants s by means of any speech analyzer (e.g., PRAAT) 4. Try to locate each vowel according to the sets of formant values from speech analyzers 18

19 4 Formants of consonants See CBCAP 1. Aerodynamic effects 2. Degree of constriction 3. Place of articulation 4. Voicing 5. Nasalization 19

20 4.1 Aerodynamic effects See CBCAP 20

21 4.2.1 Degree of constriction See CBCAP 21

22 4.2.2 Degree of constriction See CBCAP 22

23 4.2.3 Degree of constriction See CBCAP 23

24 4.3 Place of articulation See CBCAP 24

25 4.4.1 Voicing See CBCAP 25

26 4.4.2 Voicing See CBCAP 26

27 4.4.3 Voicing See CBCAP 27

28 4.4.4 Voicing See CBCAP 28

29 4.4.5 Voicing See CBCAP 29

30 4.5.1 Nasalization See CBCAP 30

31 4.5.2 Nasalization See CBCAP 31

32 4.5 Nasalization See CBCAP 32

33 4.6 Summary and conclusion See CBCAP 33

34 4.7 Summary and conclusion See CBCAP 34

35 4.8 Summary and conclusion See CBCAP 35

36 4.9 Summary and conclusion See CBCAP 36

37 4.10 Summary and conclusion See CBCAP 37

38 4.11 Summary and conclusion See CBCAP 38

39 4.11 Summary and conclusion See CBCAP 39

40 4.12 An expression with only the first formants Time (s) 40

41 4.13 An expression with only the second formants Time (s) 41

42 4.14 An expression with only the third formants Time (s) 42

43 4.15 An expression with only the first three formants Time (s) 43

44 4.16 An expression with only the consonants Time (s) 44

45 4.17 An expression with everything but F Time (s) 45

46 4.18 An expression with everything Time (s) 46

47 4.19 Try to read the following pairs in PRAAT 47

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### Periodic Wave Phenomena

Name: Periodic Wave Phenomena 1. The diagram shows radar waves being emitted from a stationary police car and reflected by a moving car back to the police car. The difference in apparent frequency between

### Waves-Wave Characteristics

1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of

### Introduction to Waves. Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f)

Introduction to Waves Essential Question: What are the characteristics of mechanical and electromagnetic waves? (S8P4a,d,f) Use the PowerPoint to fill in the Waves graphic organizer as we discuss the characteristics

### Differences of Vowel Pronunciation in China English and American English: A Case Study of [i] and [ɪ]

Sino-US English Teaching, ISSN 1539-8072 February 2013, Vol. 10, No. 2, 154-161 D DAVID PUBLISHING Differences of Vowel Pronunciation in China English and American English: A Case Study of [i] and [ɪ]

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

### What is the essence of waviness? The Wave Model. Waves: examples. Particles. Wave. 1. Ripples on a pond. Think of a leaf, or a cork on the water

Chapter 20: Traveling Waves 20.1 The wave model 20.2 One-dimensional waves 20.3 Sinusoidal waves 20.4 Waves in 2- & 3-dimensions 20.5 Sound and Light Waves 20.6 Power and Intensity 20.7 Doppler Effect

### Data Communications Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture # 03 Data and Signal

(Refer Slide Time: 00:01:23) Data Communications Prof. Ajit Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture # 03 Data and Signal Hello viewers welcome

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### Mathematical modeling of speech acoustics D. Sc. Daniel Aalto

Mathematical modeling of speech acoustics D. Sc. Daniel Aalto Inst. Behavioural Sciences / D. Aalto / ORONet, Turku, 17 September 2013 1 Ultimate goal Predict the speech outcome of oral and maxillofacial

### Grade 8 Science Chapter 4 Notes

Grade 8 Science Chapter 4 Notes Optics the science that deals with the properties of light. Light a form of energy that can be detected by the human eye. The History of Optics (3 Scientists): 1. Pythagoras

### 16.2 Periodic Waves Example:

16.2 Periodic Waves Example: A wave traveling in the positive x direction has a frequency of 25.0 Hz, as in the figure. Find the (a) amplitude, (b) wavelength, (c) period, and (d) speed of the wave. 1

Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

### AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide)

Waves: Recording Sound Waves and Sound Wave Interference (Teacher s Guide) OVERVIEW Students will measure a sound wave by placing the Ward s DataHub microphone near one tuning fork A440 (f=440hz). Then

### Lecture 1-10: Spectrograms

Lecture 1-10: Spectrograms Overview 1. Spectra of dynamic signals: like many real world signals, speech changes in quality with time. But so far the only spectral analysis we have performed has assumed

### Giant Slinky: Quantitative Exhibit Activity

Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the

### Thirukkural - A Text-to-Speech Synthesis System

Thirukkural - A Text-to-Speech Synthesis System G. L. Jayavardhana Rama, A. G. Ramakrishnan, M Vijay Venkatesh, R. Murali Shankar Department of Electrical Engg, Indian Institute of Science, Bangalore 560012,

Chapter 2: Electromagnetic Radiation Radiant Energy I Goals of Period 2 Section 2.1: To introduce electromagnetic radiation Section 2.2: To discuss the wave model of radiant energy Section 2.3: To describe

### 3. Production and Classification of Speech Sounds. (Most materials from these slides come from Dan Jurafsky)

3. Production and Classification of Speech Sounds (Most materials from these slides come from Dan Jurafsky) Speech Production Process Respiration: We (normally) speak while breathing out. Respiration provides

### Basic Acoustics and Acoustic Filters

Basic CHAPTER Acoustics and Acoustic Filters 1 3 Basic Acoustics and Acoustic Filters 1.1 The sensation of sound Several types of events in the world produce the sensation of sound. Examples include doors

### Yerkes Summer Institute 2002

Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### The Physics of Sound

The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw

### Objectives. Electric Current

Objectives Define electrical current as a rate. Describe what is measured by ammeters and voltmeters. Explain how to connect an ammeter and a voltmeter in an electrical circuit. Explain why electrons travel

### Waves and Sound. AP Physics B

Waves and Sound AP Physics B What is a wave A WAVE is a vibration or disturbance in space. A MEDIUM is the substance that all SOUND WAVES travel through and need to have in order to move. Two types of

### LAB 9 Waves and Resonance

Cabrillo College Physics l0l Name LAB 9 Waves and Resonance Read Hewitt Chapter 19 What to learn and explore Almost all of the information that we receive from our environment comes to us in the form of

### INTERFERENCE OF SOUND WAVES

2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. To observe interference phenomena

### A pulse is a collection of cycles that travel together. the cycles ( on or transmit time), and. the dead time ( off or receive time)

chapter 2 Pulsed Ultrasound In diagnostic ultrasound imaging, short bursts, or pulses, of acoustic energy are used to create anatomic images. Continuous wave sound cannot create anatomic images. Analogy

### All points on the coordinate plane are described with reference to the origin. What is the origin, and what are its coordinates?

Classwork Example 1: Extending the Axes Beyond Zero The point below represents zero on the number line. Draw a number line to the right starting at zero. Then, follow directions as provided by the teacher.

### Chapter 11. Waves & Sound

Chapter 11 Waves & Sound 11.2 Periodic Waves In the drawing, one cycle is shaded in color. The amplitude A is the maximum excursion of a particle of the medium from the particles undisturbed position.

### Review of Chapter 25. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review of Chapter 25 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The time needed for a wave to make one complete cycle is its b. velocity.

### PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.)

PLEASE DO NOT WRITE ON THE TEST. PLACE ALL MULTIPLE CHOICE ANSWERS ON THE SCANTRON. (THANK YOU FOR SAVING A TREE.) Sound Waves Test -- each multiple choice question is worth 3 points. 1. Sound waves are

### Resonance in a Closed End Pipe

Experiment 12 Resonance in a Closed End Pipe 12.1 Objectives Determine the relationship between frequency and wavelength for sound waves. Verify the relationship between the frequency of the sound, the

### Waves Sound and Light

Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

### The Nature of Sound Waves

Name: The Nature of Sound Waves Read from Lesson 1 of the Sound and Music chapter at The Physics Classroom: http://www.physicsclassroom.com/class/sound/u11l1a.html http://www.physicsclassroom.com/class/sound/u11l1b.html

### Trigonometric functions and sound

Trigonometric functions and sound The sounds we hear are caused by vibrations that send pressure waves through the air. Our ears respond to these pressure waves and signal the brain about their amplitude

### Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

### Figure 6.1: The Sound:To TextGid... form.

Annotation of sounds means adding meta data to a sound. The meta data in Praat can be any text you like. This meta data is either coupled to an interval or to a point in time and is stored in a TextGrid.

### The Effect of Anticipatory Coariticulation in VCV Sequences in Chinese

International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 2, Issue 12 (August 2013) PP: 17-22 The Effect of Anticipatory Coariticulation in VCV Sequences in Chinese Maolin

### Graph Ordered Pairs on a Coordinate Plane

Graph Ordered Pairs on a Coordinate Plane Student Probe Plot the ordered pair (2, 5) on a coordinate grid. Plot the point the ordered pair (-2, 5) on a coordinate grid. Note: If the student correctly plots

### Between voicing and aspiration

Workshop Maps and Grammar 17-18 September 2014 Introduction Dutch-German dialect continuum Voicing languages vs. aspiration languages Phonology meets phonetics Phonetically continuous, phonologically discrete

### Predicting Speech Intelligibility With a Multiple Speech Subsystems Approach in Children With Cerebral Palsy

Predicting Speech Intelligibility With a Multiple Speech Subsystems Approach in Children With Cerebral Palsy Jimin Lee, Katherine C. Hustad, & Gary Weismer Journal of Speech, Language and Hearing Research

### English Phonetics: Consonants (i)

1 English Phonetics: Consonants (i) 1.1 Airstream and Articulation Speech sounds are made by modifying an airstream. The airstream we will be concerned with in this book involves the passage of air from

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### Articulatory Phonetics. and the International Phonetic Alphabet. Readings and Other Materials. Introduction. The Articulatory System

Supplementary Readings Supplementary Readings Handouts Online Tutorials The following readings have been posted to the Moodle course site: Contemporary Linguistics: Chapter 2 (pp. 15-33) Handouts for This

### Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

### How can Lightspeed s sound panel solutions possibly break down acoustic barriers in the classroom?

How can Lightspeed s sound panel solutions possibly break down acoustic barriers in the classroom? There is no audio solution that throws sound. There is no solution that overcomes the laws of physics.

### Physics 117.3 Tutorial #1 January 14 to 25, 2013

Physics 117.3 Tutorial #1 January 14 to 25, 2013 Rm 130 Physics 8.79. The location of a person s centre of gravity can be determined using the arrangement shown in the figure. A light plank rests on two

### How is LASER light different from white light? Teacher Notes

How is LASER light different from white light? Teacher Notes Concepts: (1) Light is a type of energy that travels as waves. [6.2.3.1.1] (2) Laser light is different from traditional light sources and must

### Simple Pendulum 10/10

Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,

### 08/19/09 PHYSICS 223 Exam-2 NAME Please write down your name also on the back side of this exam

08/19/09 PHYSICS 3 Exam- NAME Please write down your name also on the back side of this exam 1. A sinusoidal wave of frequency 500 Hz has a speed of 350 m/s. 1A. How far apart (in units of cm) are two

### English Phonetics and Phonology: English Consonants

Applied Phonetics and Phonology English Phonetics and Phonology: English Consonants Tom Payne, TESOL at Hanyang University 2007 How Speech Sounds are Produced Speech sounds are produced by a moving column

### Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking

Workshop Perceptual Effects of Filtering and Masking Introduction to Filtering and Masking The perception and correct identification of speech sounds as phonemes depends on the listener extracting various

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

### STANDING WAVES & ACOUSTIC RESONANCE

REFERENCES & ACOUSTIC RESONANCE R.H. Randall, An Introduction to Acoustics, (Addison-Wesley, 1951), Sect. 7-1, 7-. A.B. Wood, A Textbook of Sound, (Bell & Sons, 1944), pp.179 et seq. Berkeley Physics Course,

### Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

### 3.14 understand that light waves are transverse waves which can be reflected, refracted and diffracted

Light and Sound 3.14 understand that light waves are transverse waves which can be reflected, refracted and diffracted 3.15 use the law of reflection (the angle of incidence equals the angle of reflection)

### Wake pattern of a boat

UNIVERSITY OF LJUBLJANA FACULTY OF MATHEMATICS AND PHYSICS DEPARTMENT OF PHYSICS Seminar 2008/09 Wake pattern of a boat Špela Rožman mentor: doc. dr. Aleš Mohorič Ljubljana, 13. 5. 2009 Summary A ship

I. A mechanical device shakes a ball-spring system vertically at its natural frequency. The ball is attached to a string, sending a harmonic wave in the positive x-direction. +x a) The ball, of mass M,

### Direct and Reflected: Understanding the Truth with Y-S 3

Direct and Reflected: Understanding the Truth with Y-S 3 -Speaker System Design Guide- December 2008 2008 Yamaha Corporation 1 Introduction Y-S 3 is a speaker system design software application. It is

### AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

### L2 EXPERIENCE MODULATES LEARNERS USE OF CUES IN THE PERCEPTION OF L3 TONES

L2 EXPERIENCE MODULATES LEARNERS USE OF CUES IN THE PERCEPTION OF L3 TONES Zhen Qin, Allard Jongman Department of Linguistics, University of Kansas, United States qinzhenquentin2@ku.edu, ajongman@ku.edu

### Lecture 1-8: Audio Recording Systems

Lecture 1-8: Audio Recording Systems Overview 1. Why do we need to record speech? We need audio recordings of speech for a number of reasons: for off-line analysis, so that we can listen to and transcribe

### physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

### !RTIFICIAL -OUTH. SERIES P: TELEPHONE TRANSMISSION QUALITY Objective measuring apparatus. ITU-T Recommendation P.51

INTERNATIONAL TELECOMMUNICATION UNION )454 0 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (08/96) SERIES P: TELEPHONE TRANSMISSION QUALITY Objective measuring apparatus!rtificial -OUTH ITU-T Recommendation

### L2: Speech production and perception Anatomy of the speech organs Models of speech production Anatomy of the ear Auditory psychophysics

L2: Speech production and perception Anatomy of the speech organs Models of speech production Anatomy of the ear Auditory psychophysics Introduction to Speech Processing Ricardo Gutierrez-Osuna CSE@TAMU

### UNIT 1: mechanical waves / sound

1. waves/intro 2. wave on a string 3. sound waves UNIT 1: mechanical waves / sound Chapter 16 in Cutnell, Johnson: Physics, 8th Edition Properties of waves, example of waves (sound. Light, seismic), Reflection,

### 18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

First Major T-042 1 A transverse sinusoidal wave is traveling on a string with a 17 speed of 300 m/s. If the wave has a frequency of 100 Hz, what 9 is the phase difference between two particles on the

### Tutorial about the VQR (Voice Quality Restoration) technology

Tutorial about the VQR (Voice Quality Restoration) technology Ing Oscar Bonello, Solidyne Fellow Audio Engineering Society, USA INTRODUCTION Telephone communications are the most widespread form of transport

### Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

### Articulatory Phonetics. and the International Phonetic Alphabet. Readings and Other Materials. Review. IPA: The Vowels. Practice

Supplementary Readings Supplementary Readings Handouts Online Tutorials The following readings have been posted to the Moodle course site: Contemporary Linguistics: Chapter 2 (pp. 34-40) Handouts for This

### Linear Predictive Coding

Linear Predictive Coding Jeremy Bradbury December 5, 2000 0 Outline I. Proposal II. Introduction A. Speech Coding B. Voice Coders C. LPC Overview III. Historical Perspective of Linear Predictive Coding

### Question based on Refraction and Refractive index. Glass Slab, Lateral Shift.

Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when

### Electrical Resonance

Electrical Resonance (R-L-C series circuit) APPARATUS 1. R-L-C Circuit board 2. Signal generator 3. Oscilloscope Tektronix TDS1002 with two sets of leads (see Introduction to the Oscilloscope ) INTRODUCTION

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### SPEECH AUDIOMETRY. @ Biswajeet Sarangi, B.Sc.(Audiology & speech Language pathology)

1 SPEECH AUDIOMETRY Pure tone Audiometry provides only a partial picture of the patient s auditory sensitivity. Because it doesn t give any information about it s ability to hear and understand speech.

### Solution Derivations for Capa #13

Solution Derivations for Capa #13 1 Identify the following waves as T-Transverse, or L-Longitudinal. If the first is T and the rets L, enter TLLL. QUESTION: A The WAVE made by fans at sports events. B

### PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

### Periodic wave in spatial domain - length scale is wavelength Given symbol l y

1.4 Periodic Waves Often have situations where wave repeats at regular intervals Electromagnetic wave in optical fibre Sound from a guitar string. These regularly repeating waves are known as periodic

### Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

### 1 of 10 11/23/2009 6:37 PM

hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

### Jitter Measurements in Serial Data Signals

Jitter Measurements in Serial Data Signals Michael Schnecker, Product Manager LeCroy Corporation Introduction The increasing speed of serial data transmission systems places greater importance on measuring

### LeadingEdge Systematic Approach. Room Acoustic Principles - Paper One. The Standing Wave Problem

LeadingEdge Systematic Approach Room Acoustic Principles - Paper One The Standing Wave Problem Sound quality problems caused by poor room acoustics. We all recognise that room acoustics can cause sound

### L3: Organization of speech sounds

L3: Organization of speech sounds Phonemes, phones, and allophones Taxonomies of phoneme classes Articulatory phonetics Acoustic phonetics Speech perception Prosody Introduction to Speech Processing Ricardo

### The Relationship Between Wavelength and Frequency in the Electromagnetic Spectrum

Name The Relationship Between Wavelength and Frequency in the Electromagnetic Spectrum Purpose: To discover and verify the relationship between Wavelength and Frequency of the Electromagnetic Spectrum.

### AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

### Bachelors of Science Program in Communication Disorders and Sciences:

Bachelors of Science Program in Communication Disorders and Sciences: Mission: The SIUC CDS program is committed to multiple complimentary missions. We provide support for, and align with, the university,

### Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

### Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

### The Physics of Guitar Strings

The Physics of Guitar Strings R. R. McNeil 1. Introduction The guitar makes a wonderful device to demonstrate the physics of waves on a stretched string. This is because almost every student has seen a

### SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

### Silicon Laboratories, Inc. Rev 1.0 1

Clock Division with Jitter and Phase Noise Measurements Introduction As clock speeds and communication channels run at ever higher frequencies, accurate jitter and phase noise measurements become more

### Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### A ball, attached to a cord of length 1.20 m, is set in motion so that it is swinging backwards and forwards like a pendulum.

MECHANICS: SIMPLE HARMONIC MOTION QUESTIONS THE PENDULUM (2014;2) A pendulum is set up, as shown in the diagram. The length of the cord attached to the bob is 1.55 m. The bob has a mass of 1.80 kg. The