Current transformer selection for Allen-Bradley series overcurrent and differential relays

Size: px
Start display at page:

Download "Current transformer selection for Allen-Bradley series overcurrent and differential relays"

Transcription

1 pplicatti ion otte Current transformer selection for llen-bradley series overcurrent and differential relays ron core current transformers (CT) are accurate in amplitude and phase when used near their nominal values. t very low and at very high currents they are far from ideal. For overcurrent and differential protection, the actual performance of CTs at high currents must be checed to ensure correct function of the protection relay. 1. CT classification according EC , 1996 CT model Figure 1 CT equivalent circuit. Lm is the saturable magnetisation inductance, L is secondary of an ideal current transformer, RCT is resistance of the CT secondary winding, RW is resistance of wiring and RL is the burden i.e. the protection relay. Composite error C ron core current transformers (CT) are accurate in amplitude and phase when used near their nominal values. t very low and at very high currents they are far from ideal. For overcurrent and differential protection, the actual performance of CTs at high currents must be checed to ensure correct function of the protection relay. 1 T ( K is ip ) dt T 0 C 100% (eq. 1) P T = Cycle time K = Rated transformation ratio Primary/secondary is = instantaneous secondary current ip = instantaneous primary current P = Rms value of primary current

2 pplication ote ote: ll current based protection functions of llen-bradley relays, except arc protection, thermal protection and nd harmonic blocing functions, are using the base frequency component of the measured current. The EC formulae include an RMS value of the current. That is why the composite error defined by EC is not ideal for llen-bradley relays. However the difference is not big enough to prevent rough estimation. Standard accuracy classes t rated frequency and with rated burden connected, the amplitude error and phase error and composite error of a CT shall not exceed the values given in the following table. ccuracy class mplitude error at rated primary current (%) Phase displacement at rated primary current ( ) Composite error C at rated accuracy limit primary current (%) 5P P 3-10 Maring: The accuracy class of a CT is written after the rated power. E.g. 10 V 5P10, 15 V 10P10, 30 V 5P0 ccuracy limit current L Current transformers for protection must retain a reasonable accuracy up to the largest relevant fault current. Rated accuracy limit current is the value of primary current up to which the CT will comply with the requirements for composite error C. ccuracy limit factor The ratio of the accuracy limit current to the rated primary current. = L/. (eq. ) The standard accuracy limit factors are 5, 10, 15, 0 and 30. Maring: ccuracy limit factor is written after the accuracy class. E.g. 10 V 5P10, 15 V 10P10, 30 V 5P0. Si S (eq. 3) S S i Figure This figure of equation 3 shows that it is essential to now the winding resistance RCT of the CT if the load is much less than the nominal. 10 V 5P10 CT with 5% load gives actual values from when the winding resistance varies from 0.5 to = ccuracy limit factor at rated current and rated burden Si = nternal secondary burden. (Winding resistance RCT in Figure 1 S = Rated burden of the CT S = ctual burden including wiring and the load. The actual accuracy limit factor depends on the actual burden. (Figure )

3 pplication ote 3 f the current is an asymmetric short circuit current lie in Figure 3 the needed accuracy limit factor should be multiplied by coefficient DC: 1 (eq. 4) DC = ngle frequency f = Time constant of the short circuit current 15 Current () Time (s) Figure 3 symmetric short circuit current with time constant = 50ms. CT requirements for differential protection When the through current equals and exceeds x there may be enough secondary differential current to trip a relay although there is no inzone fault. This is because the CTs are unique and they do not behave equally when saturating. To avoid false tripping caused by heavy through faults the actual accuracy limit factor of the CTs should obey equation: Tra c DC (eq. 5) CT c = Safety factor. See Table 1. = Maximum through fault short circuit current Tra = Rated current of the transformer CT = Rated primary current of the CT DC = Extra coefficient for decaying dc component according equation 4.

4 pplication ote 4 Table 1 Safety factor c for accuracy limit factor. Using slightly smaller safety factor than indicated in the table will increase the setting inaccuracy. Protection application Safety factor c Overcurrent 1.4 Transformer differential, -winding or unearthed Y-winding 3 Transformer differential, earthed Y-winding 4 Generator differential 3 Formula to solve needed CT power rating S By replacing the complex power terms with corresponding resistances in equation 3 we get R R CT (eq. 6) RCT RW RL where the nominal burden resistance is S R (eq. 7) CT sec RCT = Winding resistance (See Figure 1) RW = Wiring resistance (from CT to the relay and bac) RL = Resistance of the protection relay input S = ominal burden of the CT CTsec = ominal secondary current of the CT By solving S and substituting according equation 5, we get S c R R R R DC Tra CT W L CT CT sec (eq. 8) CT Example 1 Transformer: 16 MV Yd11 Z = 10% 110 V / 1 V (84 / 440 ) CTs on HV side: 100/1 5P0 15 V Winding resistance RCT = 0.3 (RCT depends on the CT type, CT and power rating. Let's say that the selected CT type, 100 and an initial guess of 15 V, yields to 0.3.) Safety factor c = 4. (Table1. Transformer differential, earthed Y.) CTs on LV side: 500/1 5P0 15 V Winding resistance RCT = 0.4 (RCT depends on the CT type, CT and power rating. Let's say that the selected CT type, 500 and an initial guess of 15 V, yields to 0.4.) Safety factor c = 3. (Table 1. Transformer differential,.) Maximum through fault short circuit current =10 x

5 pplication ote 5 RL = 0.05 Typical burden of an llen-bradley relay 1 current input. RWHV = Wiring impedance of high voltage side. (x16 m Cu, 4 mm ) RWLV = Wiring impedance of low voltage side. (x10 m Cu, 4 mm ) f = 50 Hz Frequency = 50 ms DC time constant Equation 4 gives: DC = x 0.05 = 16.7 The needed CT power on HV side will be (eq. 8) S V 15 V is a good choice for HV side! nd on the LV side S V 15 V is a good choice for HV side! 3. CT requirements for overcurrent protection Undirectional overcurrent protection does not set as high requirements for a CT as the differential protection. The nominal primary current should be enough for the maximum short circuit current according equation: CTpri (eq. 9) 100 CTpri = ominal primary current of the CT = Maximum short circuit current The needed minimum value for the actual accuracy limit factor (equation 3.) depends on the highest setting value, the applied delay type definite/inverse and the needed fault current grading for selectivity. reasonable actual accuracy limit factor for most cases should be according equation 9. c (eq. 10) SET DC c = Safety factor. See Table 1. SET = Relative setting of the most coarse overcurrent stage DC = Extra coefficient for decaying dc component according equation 4.

6 pplication ote 6 The needed power rating for the CT is c DC SET S RCT RW RL RCT CT sec (eq. 11) Example etwor: = 30 Maximum short circuit current RL = Typical burden of an llen-bradley relay 5 current input. RW = 0.09 Secondary wiring impedance CT: 1000/5 10P10 30 V (10P10 10% 10x1000 ) RCT = 0.4 Secondary winding resistance Settings of the most coarse overcurrent stage: set = 10 x = Delay type = definite time f = 50 Hz Frequency = 50 ms DC time constant ccording equation 9 the CT primary value is o (30/1000 = 30 and 30 is well under 100). Equation 4 gives: DC = x 0.05 = 16.7 ext we chec if the power rating is adequate (equation 11) S V This is an impractical big CT. We must either use a CT with 1 nominal secondary or ignore the DC-component. The latter choice may increase trip time at heavy faults. Let's ignore the DC effect S V 10 V is enough, but only if we ignore the decaying DC component.

7 pplication ote 7 4. Maximum allowed wiring distance between CT and a relay From equation 11 we can solve the maximum possible wiring resistance: S RW RCT RCT RL max (eq. 1) CT sec c SET This resistance corresponds to a wire length of L R max (eq. 13), where Lmax = Maximum wire length R = Wiring resistance = Cross-sectional area of the wire = unit resistance of the wire The corresponding distance will be half of the wire length, because there are two wires from the CT to the relay. Max. distance = Lmax/ (eq. 14) Example 3 Let us calculate the maximum possible distance between CT and protection relay with in the following case. CT = 500/5 10P10 FL = 10 ccuracy limit factor at rated current and rated burden according CT specification. CTsec = 5 ominal secondary current of the CT S = 15 V Rated burden of the CT RL = Burden of an llen-bradley relay 5 current input RCT = 0.6 Secondary winding resistance c = 1.4 Safety factor. See Table 1. SET = 8x Overcurrent setting Wire =.5 mm Cu Cross-sectional area and material Cu = 17. nm Unit resistance of copper DC = 1 This ignores any decaying DC component From equation 11 we get the maximum allowed wiring resistance R W max and from equation 13 we get the corresponding wire length Lmax 669m Thus the maximum possible distance will be according equation 14 Distancemax = 669/ = 330 m

8 pplication ote 8 Keywords : Current transformer, Current selection, Current requirements, Current accuracy class, Current accuracy limit, Current power rating, Current wiring Medium Voltage Products, 135 Dundas Street, Cambridge, O, 1R 5X1 Canada, Tel: (1) , Fax: (1) , Publication 857-P019-E-P June 011 Copyright 011 Rocwell utomation, nc. ll rights reserved. Printed in Canada.

Calculation of the Current Transformer Accuracy Limit Factor Application Note

Calculation of the Current Transformer Accuracy Limit Factor Application Note Calculation of the Current Transformer Application Note kansikuva_bw 1MRS 755481 Issued: 09.11.2004 Version: A/09.11.2004 Calculation of the Current Transformer Application Note Contents: 1. Scope...4

More information

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating.

THE PER-UNIT SYSTEM. (2) The per-unit values for various components lie within a narrow range regardless of the equipment rating. THE PER-UNIT SYSTEM An interconnected power system typically consists of many different voltage levels given a system containing several transformers and/or rotating machines. The per-unit system simplifies

More information

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION

DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION ÿþ üûúùø öõöôùóùõò CT Dimensioning DIMENSIONING OF CURRENT TRANSFORMERS FOR PROTECTON APPLICATION Application note GER3973 1 CT Dimensioning ÿþ üûúùø öõöôùóùõò GER-3973 Application note ÿþ üûúùø öõöôùóùõò

More information

Current transformer selection guide

Current transformer selection guide The selection of a current transformer is a simple task. There are four phases in the selection procedure. Current transformer selection guide KEEP IN MIND efine customer requirements based on the primary

More information

Enhanced Quality with a Touch of Style

Enhanced Quality with a Touch of Style Rudolf Current Transformer Enhanced Quality with a Touch of Style Current Transformer Enhanced Quality with a Touch of Style New Products Rudolf launched our new encapsulated current transformer. Portraying

More information

T 3000. Substation Maintenance and Commissioning Test Equipment

T 3000. Substation Maintenance and Commissioning Test Equipment T 3000 Substation Maintenance and Commissioning Test Equipment Multi function system for testing substation equipment such as: current, voltage and power transformers, all type of protection relays, energy

More information

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application

Digital Energy ITI. Instrument Transformer Basic Technical Information and Application g Digital Energy ITI Instrument Transformer Basic Technical Information and Application Table of Contents DEFINITIONS AND FUNCTIONS CONSTRUCTION FEATURES MAGNETIC CIRCUITS RATING AND RATIO CURRENT TRANSFORMER

More information

Safety technique. Emergency stop module BO 5988 safemaster

Safety technique. Emergency stop module BO 5988 safemaster Safety technique Emergency stop module BO 5988 safemaster 0221562 Function diagram Pushbutton on Mains or emergencystop () K1 According to EC Directive for machines 98/37/EG According to IEC/E 60204-1

More information

Instrument Transformers Application Guide

Instrument Transformers Application Guide Instrument Transformers Application Guide Edited by ABB AB High Voltage Products Department: Marketing & Sales Text: Knut Sjövall, ABB Layout, 3D and images: Mats Findell, ABB SE-771 80 LUDVIKA, Sweden

More information

CT Application Guide for the 489 Generator Management Relay

CT Application Guide for the 489 Generator Management Relay g GE Power Management Technical Notes CT Application Guide for the 489 Generator Management Relay GE Publication No. GET-8402 Copyright 2002 GE Power Management Introduction A protection scheme operates

More information

Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012

Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers Vrieswijk, T & Srinivasan,A Amerongen,NL, 25 januari 2012 Theory Current Transformers 25 januari 2012 Topics - Theory of current transformers (CTs) - Equivalent Circuit for

More information

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392

Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading. Ramandeep Kaur Aujla S.NO 250447392 1 Generator Stator Protection, under/over voltage, under /over frequency and unbalanced loading By Ramandeep Kaur Aujla S.NO 250447392 ES 586b: Theory and applications of protective relays Department of

More information

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E.

Selecting Current Transformers Part 1 By Darrell G. Broussard, P.E. By Darrell G. Broussard, P.E. Introduction: As engineers, we are aware that electrical power systems have grown. How much have they grown? When was the last time you specified a 2400-volt system, a 4160-volt

More information

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear.

OVERCURRENT & EARTH FAULT RELAYS. To study the protection of equipment and system by relays in conjunction with switchgear. OVERCURRENT & EARTH FAULT RELAYS Objective: To study the protection of equipment and system by relays in conjunction with switchgear. Theory: The function of a relay is to detect abnormal conditions in

More information

RM4TG20 three-phase network control relay RM4-T - range 200..500 V

RM4TG20 three-phase network control relay RM4-T - range 200..500 V Characteristics three-phase network control relay RM4-T - range 200..500 V Complementary [Us] rated supply voltage Output contacts Setting accuracy of time delay Delay at power up Measuring cycle Marking

More information

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

More information

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies

The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies The Importance of the X/R Ratio in Low-Voltage Short Circuit Studies DATE: November 17, 1999 REVISION: AUTHOR: John Merrell Introduction In some short circuit studies, the X/R ratio is ignored when comparing

More information

DRTS 33. The new generation of advanced test equipments for Relays, Energy meters, Transducers and Power quality meters

DRTS 33. The new generation of advanced test equipments for Relays, Energy meters, Transducers and Power quality meters The new generation of advanced test equipments for Relays, Energy meters, Transducers and Power quality meters Testing all relay technologies: electromechanical, solid state, numerical and IEC61850 Manual

More information

Positive-guided relay outputs: 3 safety contacts (N/O), instantaneous. 1 auxiliary contact (N/C), instantaneous

Positive-guided relay outputs: 3 safety contacts (N/O), instantaneous. 1 auxiliary contact (N/C), instantaneous Safety relay for monitoring E-STOP pushbuttons. Approvals Unit features Positive-guided relay outputs: 3 safety contacts (N/O), instantaneous 1 auxiliary contact (N/C), instantaneous Safe separation of

More information

Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Chapter 16. Current Transformer Design. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Chapter 16 Current Transformer Design Table of Contents 1. Introduction 2. Analysis of the Input Current Component 3. Unique to a Current Transformer 4. Current Transformer Circuit Applications 5. Current

More information

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection

TA Kahraman Yumak ELK412 - Distribution of Electrical Energy Lab. Notes v1.0 2013 Spring web.itu.edu.tr/yumakk. Distance Protection Distance Protection Announcement: You are not supposed to prepare a pre-report. But there will be an oral examination, so you are strongly advised to study this note regarding to the pre-study questions

More information

Electronic overload relay EF65, EF96 and EF146

Electronic overload relay EF65, EF96 and EF146 Data sheet Electronic overload relay EF65, EF96 and EF146 Electronic overload relays offer reliable protection in case of overload and phase-failure. They are the alternative to thermal overload relays.

More information

Medium voltage circuit breaker

Medium voltage circuit breaker Medium voltage circuit breaker IEC 60 056 and ANSI C37-06 define on one hand the operating conditions, the rated characteristics, the design and the manufacture; and on the other hand the testing, the

More information

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd

100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center. 598 N. Buth Rd 3215 Arrowhead Rd 100% Stator Ground Fault Detection Implementation at Hibbard Renewable Energy Center Introduction Roger Hedding Steven Schoenherr, P.E. ABB Inc. Minnesota Power 598 N. Buth Rd 3215 Arrowhead Rd Dousman,

More information

High Efficiency Motor Protection. Industry White Paper

High Efficiency Motor Protection. Industry White Paper High Efficiency Motor Protection Industry White Paper 2 High Efficiency Motor Protection High Efficiency Motor Protection - An Overview Electric motor protection depends on the accurate selection of overloads,

More information

Electronic overload relay EF19 and EF45

Electronic overload relay EF19 and EF45 Data sheet Electronic overload relay EF19 and EF45 Electronic overload relays offer reliable protection in case of overload and phase-failure. They are the alternative to thermal overload relays. Motor

More information

Rectifier circuits & DC power supplies

Rectifier circuits & DC power supplies Rectifier circuits & DC power supplies Goal: Generate the DC voltages needed for most electronics starting with the AC power that comes through the power line? 120 V RMS f = 60 Hz T = 1667 ms) = )sin How

More information

Current transformers (CT) & Shunts

Current transformers (CT) & Shunts Current transformers (CT) & Shunts Genreal overview LV CURRENT TRANSFORMERS Product selection guide Standard industrial transformers?????? TCR - TCRO range NEW 9 9 9 Current summation JVM 0 9 TCR usbar

More information

Using Current Transformers with the 78M661x

Using Current Transformers with the 78M661x A Maxim Integrated Products Brand Using Current Transformers with the 78M661x APPLICATION NOTE AN_661x_021 April 2010 Introduction This application note describes using current transformers (CT) with the

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

Transformer Thermal Overload Protection - What s It All About?

Transformer Thermal Overload Protection - What s It All About? Transformer Thermal Overload Protection - What s It All About? Glenn Swift, Dave Fedirchuk, Zhiying Zhang APT Power Technologies, Winnipeg, Canada Presented at the 25th Annual Western Protective Relay

More information

REVIEWED BY CAPITAL PROJECTS MANAGER (DAN REDDY) GENERAL MANAGER EQUIPMENT ENGINEERING & ASSET MANAGEMENT (HAMILTON NXUMALO)

REVIEWED BY CAPITAL PROJECTS MANAGER (DAN REDDY) GENERAL MANAGER EQUIPMENT ENGINEERING & ASSET MANAGEMENT (HAMILTON NXUMALO) SA Port Operations DOCUMENT TYPE: REFERENCE EEAM-Q-014 (ORIGINAL SPECIFICATION HE8.2.3 Ver5) REVISION 0 SPECIFICATION TITLE: SPECIFICATION FOR ELECTRICAL MOTORS AND GENERATORS PAGE 0 of 07 COMPILED BY

More information

USER MANUAL THE RESOLVER

USER MANUAL THE RESOLVER USR MANUAL TH RSOLVR ICP Department 4 has developed and produced a wide range of transmitter type resolvers for military and industrial applications. From a mechanical viewpoint, these products have been

More information

CT Analyzer: Coming to the Rescue. Introduction. Equivalent Circuit. Construction. Classification of a CT. Tony Porrelli, OMICRON, UK

CT Analyzer: Coming to the Rescue. Introduction. Equivalent Circuit. Construction. Classification of a CT. Tony Porrelli, OMICRON, UK Presentation 09.1 CT Analyzer: Coming to the Rescue Tony Porrelli, OMICRON, UK Introduction The Current Transformer (CT) may exist for many applications but for this paper we can think about them being

More information

ABB 1. Three-phase monitoring relay CM-PFS. Data sheet. Features. Approvals. Marks. Order data. Order data - Accessories. Application.

ABB 1. Three-phase monitoring relay CM-PFS. Data sheet. Features. Approvals. Marks. Order data. Order data - Accessories. Application. 1SR 430 824 F9300 Features Monitoring of three-phase mains for phase sequence and failure Powered by the measuring circuit 2 c/o (SPDT) contacts 1 LED for status indication Approvals R: yellow LED - relay

More information

Transformers Energy efficient transformer solutions European Minimum Energy Performance Standard (MEPS)

Transformers Energy efficient transformer solutions European Minimum Energy Performance Standard (MEPS) Transformers Energy efficient transformer solutions European Minimum Energy Performance Standard (MEPS) 2 European MEPS for transformers The EU MEPS (European Minimum Energy Performance Standard) Transformers

More information

Power Quality Paper #3

Power Quality Paper #3 The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production

More information

Medium-voltage transformers

Medium-voltage transformers Medium-voltage transformers We make energy measurable and take care of your future www.mbs-ag.com Page 2 E-Mail: info@mbs-ag.com Web: www.mbs-ag.com Contents Current transformers Technical characteristics

More information

Application Note. So You Need to Measure Some Inductors?

Application Note. So You Need to Measure Some Inductors? So You Need to Measure Some nductors? Take a look at the 1910 nductance Analyzer. Although specifically designed for production testing of inductors and coils, in addition to measuring inductance (L),

More information

Coupled Inductors. Introducing Coupled Inductors

Coupled Inductors. Introducing Coupled Inductors Coupled Inductors From power distribution across large distances to radio transmissions, coupled inductors are used extensively in electrical applications. Their properties allow for increasing or decreasing

More information

LOW-VOLTAGE CURRENT TRANSFORMERS

LOW-VOLTAGE CURRENT TRANSFORMERS LOWVOLTAGE CURRENT TRANSFORMERS 5 A Power network meters ND0 and ND type. N4Z and N5Z Tel: (+48 68) 45 75 39; 45 75 305; 45 75 3; 45 75 368; email: export@lumel.com.pl ul. Słubicka 657 Zielona Góra CONTENTS

More information

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA

PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA PHASOR DIAGRAMS HANDS-ON RELAY SCHOOL WSU PULLMAN, WA. RON ALEXANDER - BPA What are phasors??? In normal practice, the phasor represents the rms maximum value of the positive half cycle of the sinusoid

More information

FREJA 300 Relay Testing System

FREJA 300 Relay Testing System Relay Testing System A Megger Group Company FREJA 300 Relay testing system The FREJA 300 relay testing system is a computer-aided relay testing and simulation system. The weight of FREJA 300 is only 15

More information

Tape Wound, Split Core and Ebony Current Transformers

Tape Wound, Split Core and Ebony Current Transformers Tape Wound, Split Core and Ebony Current Transformers Current Transformers Contents Page Tape Wound Measuring and Protection Current Transformers 2 6 Split Core Current Transformers 7 9 3-in-1 Current

More information

Paralleling Power Sources Which Share a Common Neutral

Paralleling Power Sources Which Share a Common Neutral Paralleling Power Sources Which Share a Common Neutral By: Tony Hoevenaars, P.E., President & CEO, Mirus International, Inc. Mike McGraw, President, NSOEM, Inc. When paralleling power sources that share

More information

RM17TE 183...528 V AC. Main. Product or component type. Product specific application. Relay monitored parameters 250 V DC 5 A DC

RM17TE 183...528 V AC. Main. Product or component type. Product specific application. Relay monitored parameters 250 V DC 5 A DC Characteristics multifunction control relay RM17-TE - range 183..528 V AC Complementary Reset time Maximum switching voltage Minimum switching current Maximum switching current [Us] rated supply voltage

More information

Power-monitoring unit PowerLogic System. Technical data sheet. Power Meter Series 800

Power-monitoring unit PowerLogic System. Technical data sheet. Power Meter Series 800 Power-monitoring unit PowerLogic System Technical data sheet 2003 Power Meter Series 800 Function and characteristics PB100313 The PowerLogic Power Meter Series 800 offers all the high-performance measurement

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

Problem Solving 8: RC and LR Circuits

Problem Solving 8: RC and LR Circuits MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Problem Solving 8: RC and LR Circuits Section Table and Group (e.g. L04 3C ) Names Hand in one copy per group at the end of the Friday Problem

More information

Op amp DC error characteristics and the effect on high-precision applications

Op amp DC error characteristics and the effect on high-precision applications Op amp DC error characteristics and the effect on high-precision applications Srudeep Patil, Member of Technical Staff, Maxim Integrated - January 01, 2014 This article discusses the DC limitations of

More information

Power Meter Series 700

Power Meter Series 700 PowerLogic power-monitoring units Power Meter Series 700 Technical data sheet 2007 Functions and characteristics E90463 The PowerLogic Power Meter Series 700 offers all the measurement capabilities required

More information

CONDUCTOR SHORT-CIRCUIT PROTECTION

CONDUCTOR SHORT-CIRCUIT PROTECTION CONDUCTOR SHORT-CIRCUIT PROTECTION Introduction: This paper analyzes the protection of wire from fault currents. It gives the specifier the necessary information regarding the short-circuit current rating

More information

Step response of an RLC series circuit

Step response of an RLC series circuit School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 5 Step response of an RLC series circuit 1 Introduction Objectives

More information

Manual motor starter MS116

Manual motor starter MS116 Data sheet Manual motor starter MS116 Manual motor starters are electromechanical devices for motor and circuit protection. These devices offer local motor disconnect means, manual ON/ OFF control, and

More information

Three-phase monitoring relay CM-PFE

Three-phase monitoring relay CM-PFE Data sheet Three-phase monitoring relay CM-PFE The CM-PFE is a three-phase monitoring relay that monitors the phase parameter phase sequence and phase failure in three-phase mains. 2CDC 251 005 S0012 Characteristics

More information

ABB 1 NEW. Three-phase monitoring relay for grid feeding CM-UFS.1. Data sheet. Features. Approvals. Marks. Order data. Order data - Accessories

ABB 1 NEW. Three-phase monitoring relay for grid feeding CM-UFS.1. Data sheet. Features. Approvals. Marks. Order data. Order data - Accessories 2CDC 251 014 F0t09 Features Monitoring of three-phase mains for grid feeding Type-tested in accordance with DIN V VDE V 0126-1-1: February 2006 Neutral conductor connection configurable Can also be used

More information

Chapter 14: Inductor design

Chapter 14: Inductor design Chapter 14 Inductor Design 14.1 Filter inductor design constraints 14.2 A step-by-step design procedure 14.3 Multiple-winding magnetics design using the K g method 14.4 Examples 14.5 Summary of key points

More information

Measurement of Capacitance

Measurement of Capacitance Measurement of Capacitance Pre-Lab Questions Page Name: Class: Roster Number: Instructor:. A capacitor is used to store. 2. What is the SI unit for capacitance? 3. A capacitor basically consists of two

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current Transducer HO-P series I PN = 6, 10, 25 A Ref: HO 6-P, HO 10-P, HO 25-P For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary

More information

Short Circuit Current Calculations

Short Circuit Current Calculations Introduction Several sections of the National Electrical Code relate to proper overcurrent protection. Safe and reliable application of overcurrent protective devices based on these sections mandate that

More information

Type SA-1 Generator Differential Relay

Type SA-1 Generator Differential Relay ABB Automation Inc. Substation Automation and Protection Division Coral Springs, FL 33065 Instruction Leaflet 41-348.11C Effective: November 1999 Supersedes I.L. 41-348.11B, Dated August 1986 ( ) Denotes

More information

Residual Current Circuit Breaker

Residual Current Circuit Breaker Introduction Residual Current Circuit Breaker / ELCB The Fault current overloads and short circuits can be detected by circuit breakers like MCB s MCCB s & HRC Fuses etc. But, Circuit breakers don t detect

More information

Distribution Dry Type Transformers

Distribution Dry Type Transformers 8 TRASFORMERS Distribution Dry Type Transformers Table (Contact Sales office for List Price) (commonly used) 1a. 115 C Rise F 1b. 80 C Rise B 4. Wall Brackets1 W 6. Low noise XdB below std. LX Type bg

More information

LOW VOLTAGE RING TYPE MEASURING CURRENT TRANSFORMERS

LOW VOLTAGE RING TYPE MEASURING CURRENT TRANSFORMERS Specification for LOW VOLTAGE RING TYPE MEASURING CURRENT TRANSFORMERS CEYLON ELECTRICITY BOARD SRI LANKA Specification for LOW VOLTAGE RING TYPE MEASURING CURRENT TRANSFORMERS CEB Standard 027: 1998 CEYLON

More information

The full wave rectifier consists of two diodes and a resister as shown in Figure

The full wave rectifier consists of two diodes and a resister as shown in Figure The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached

More information

Current and voltage measuring relays

Current and voltage measuring relays Current and voltage measuring relays RXIK 1, RXEEB 1 and Page 1 Issued June 1999 Changed since July 1998 Data subject to change without notice RXIK 1 RXEEB 1 (SE980082) (SE980081) (SE970869) Features Application

More information

EARTHING SYSTEM CALCULATION

EARTHING SYSTEM CALCULATION BAZIAN STEAL FACTORY S/S 132/11kV, 1x30/40MVA EARTHING SYSTEM CALCULATION Kurdistan Region Sulaimani May 2011 Bazian Steal Factory S/S 132/11kV, 1x30/40 MVA Contents: 1. Introduction... 3 2. List of references

More information

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E

Power supplies. EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E Power supplies EE328 Power Electronics Assoc. Prof. Dr. Mutlu BOZTEPE Ege University, Dept. of E&E EE328 POWER ELECTRONICS Outline of lecture Introduction to power supplies Modelling a power transformer

More information

HPS Universal. Single and Three Phase Potted. Buck-Boost Transformers. Buck-Boost Applications & Standard Specification... 80

HPS Universal. Single and Three Phase Potted. Buck-Boost Transformers. Buck-Boost Applications & Standard Specification... 80 Buck-Boost Transformers Single and Three Phase Potted Buck-Boost Transformers Buck-Boost Applications & Standard Specification... 80 Selecting Buck-Boost Transformers... 81 Single Phase Selection Tables...

More information

Inductors in AC Circuits

Inductors in AC Circuits Inductors in AC Circuits Name Section Resistors, inductors, and capacitors all have the effect of modifying the size of the current in an AC circuit and the time at which the current reaches its maximum

More information

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS

POWER SYSTEM HARMONICS. A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS A Reference Guide to Causes, Effects and Corrective Measures AN ALLEN-BRADLEY SERIES OF ISSUES AND ANSWERS By: Robert G. Ellis, P. Eng., Rockwell Automation Medium Voltage Business CONTENTS INTRODUCTION...

More information

Transformer circuit calculations

Transformer circuit calculations Transformer circuit calculations This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

ELR: ABB range of front panel residual current relays Protection device according to IEC/EN 60947-2 Annex M

ELR: ABB range of front panel residual current relays Protection device according to IEC/EN 60947-2 Annex M ELR: ABB range of front panel residual current relays Protection device according to IEC/EN 60947-2 Annex M Tested, certified, reliable Network monitoring and protection The electronic residual current

More information

GS Semiconductor Fuselinks. GE Power Controls. GS Semiconductor fuselinks

GS Semiconductor Fuselinks. GE Power Controls. GS Semiconductor fuselinks GE Power Controls GS Semiconductor fuselinks TYPE GS Semiconductor Fuselinks Technical information Full GS range of fuselinks are designed to the requirements of IEC269 -IV (1986) Precise Pre-determined

More information

Chapter 15: Transformer design

Chapter 15: Transformer design Chapter 15 Transformer Design Some more advanced design issues, not considered in previous chapter: : n Inclusion of core loss + + Selection of operating flux i 1 density to optimize total loss v 1 v Multiple

More information

6 ELECTRICAL PARAMETERS

6 ELECTRICAL PARAMETERS 6 ELECTRICAL PARAMETERS For power, low voltage and medium voltage cables, cross section nominal areas are calculated in taking into account several parameters as: permissible current carrying capacities

More information

Contact expander modules

Contact expander modules Gertebild ][Bildunterschrift Kontakterweiterungen Contact expansion module for increasing the number of available contacts Approvals Zulassungen Unit features Gertemerkmale Positive-guided relay outputs:

More information

Modeling of Transmission Lines

Modeling of Transmission Lines Modeling of Transmission Lines Electric Power Transmission The electric energy produced at generating stations is transported over high-voltage transmission lines to utilization points. The trend toward

More information

ES250: Electrical Science. HW7: Energy Storage Elements

ES250: Electrical Science. HW7: Energy Storage Elements ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;

More information

1587/1577. Insulation Multimeters. Technical Data. Two powerful tools in one.

1587/1577. Insulation Multimeters. Technical Data. Two powerful tools in one. 1587/1577 Insulation Multimeters Technical Data Two powerful tools in one. The Fluke 1587 and 1577 Insulation Multimeters combine a digital insulation tester with a full-featured, true-rms digital multimeter

More information

Contact expansion modules

Contact expansion modules Gertebild ][Bildunterschrift Kontakterweiterungen Contact for increasing the number of available contacts Approvals Zulassungen Unit features Gertemerkmale Positive-guided relay outputs: 4 safety contacts

More information

PROPER SELECTION OF CONTROL CIRCUIT TRANSFORMERS WHITE PAPER BULLETIN 1497, 1497A, AND 1497B

PROPER SELECTION OF CONTROL CIRCUIT TRANSFORMERS WHITE PAPER BULLETIN 1497, 1497A, AND 1497B WHITE PAPER PROPER SELECTION OF CONTROL CIRCUIT TRANSFORMERS BULLETIN 1497, 1497A, AND 1497B CONTROL CIRCUIT TRANSFORMERS The proper selection of the control circuit transformers is important for suitable

More information

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors.

LM 358 Op Amp. If you have small signals and need a more useful reading we could amplify it using the op amp, this is commonly used in sensors. LM 358 Op Amp S k i l l L e v e l : I n t e r m e d i a t e OVERVIEW The LM 358 is a duel single supply operational amplifier. As it is a single supply it eliminates the need for a duel power supply, thus

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

Current Sensor: ACS755xCB-050

Current Sensor: ACS755xCB-050 Package CB-PFF 5 4 The Allegro ACS75x family of current sensors provides economical and precise solutions for current sensing in industrial, automotive, commercial, and communications systems. The device

More information

Technical data UNIBLOCK UBSF 180 625

Technical data UNIBLOCK UBSF 180 625 Data TECHNICL DT Technical data UNIBLOCK UBSF 80 6 Output data Type UBSF 80 UBSF 0 UBSF 00 UBSF 6 Output power 80 kv 0 kv 00 kv 6 kv Output voltage 80/77 V 0/ V 0/ V 0/ V Output current 7 8 66 80 Power

More information

Type: EASY719 DC RC Article No.: 274119. Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC. Description

Type: EASY719 DC RC Article No.: 274119. Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC. Description Type: EASY719 DC RC Article.: 274119 Ordering information Relay outputs Quantity 6 Power supply V DC 24 V DC Description 12 digital inputs (4 inputs available as analog inputs) 6 relay outputs LCD display

More information

Your Advantages For safety application up to PL e / Cat. 4 e.g. SIL 3 Manual or automatic start 0225592. * see variants. Applications.

Your Advantages For safety application up to PL e / Cat. 4 e.g. SIL 3 Manual or automatic start 0225592. * see variants. Applications. Safety Technique SAFEMASTER Emergency Stop Module BG 5924, IP 5924 Your Advantages For safety application up to PL e / Cat. 4 e.g. SIL 3 Manual or automatic start 0225592 BG 5924 IP 5924 Product Description

More information

Reyrolle Protection Devices. 7PG17 - XR Intertripping, Interposing, Supervision and Special Purpose Relays. Answers for energy

Reyrolle Protection Devices. 7PG17 - XR Intertripping, Interposing, Supervision and Special Purpose Relays. Answers for energy Reyrolle Protection Devices 7PG17 - XR Intertripping, Interposing, Supervision and Special Purpose Relays. Answers for energy Siemens Protection Devices Limited 2 7PG17 XR101 & XR102 Intertripping Relay

More information

Circulating Current Relay. Type IRXm

Circulating Current Relay. Type IRXm Circulating Current Relay Type IRXm ABB a global technology leader ABB is a global leader in Power and Automation technologies that enable utility and industry customers to improve performance while lowering

More information

Errors Due to Shared Leadwires in Parallel Strain Gage Circuits

Errors Due to Shared Leadwires in Parallel Strain Gage Circuits Micro-Measurements Strain Gages and Instruments Errors Due to Shared Leadwires in Parallel Strain Gage Circuits TN-516 1. Introduction The usual, and preferred, practice with multiple quarterbridge strain

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC

More information

Three-phase monitoring relays CM-PSS CM-PSS.31 and CM-PSS.41

Three-phase monitoring relays CM-PSS CM-PSS.31 and CM-PSS.41 Data sheet Three-phase monitoring relays CM-PSS CM-PSS.31 and CM-PSS.41 The three-phase monitoring relays CM-PSS.x1 monitor the phase parameters phase sequence, phase failure as well as over- and undervoltage.

More information

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 28 ELECTRIC CIRCUITS CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

More information

LM337. Three-terminal adjustable negative voltage regulators. Features. Description

LM337. Three-terminal adjustable negative voltage regulators. Features. Description Three-terminal adjustable negative voltage regulators Datasheet - production data current limit, thermal overload protection and safe area protection. All overload protection circuitry remains fully functional

More information

Features. Display. Measurements. Intelligent. Accuracy. Models. Installation DEIF A/S. Multi-instrument 4921210109D

Features. Display. Measurements. Intelligent. Accuracy. Models. Installation DEIF A/S. Multi-instrument 4921210109D 7000/7000C/7020 Multi-instrument 4921210109D Features Measurements All 3-phase AC measurements True RMS Replaces analogue meters Demand on each phase current Accuracy U, I and F class 0.5 Other values

More information

Advanced Monolithic Systems

Advanced Monolithic Systems Advanced Monolithic Systems FEATURES Three Terminal Adjustable or Fixed oltages* 1.5, 1.8, 2.5, 2.85, 3.3 and 5. Output Current of 1A Operates Down to 1 Dropout Line Regulation:.2% Max. Load Regulation:.4%

More information

Pilot-wire differential relay for lines with two or more terminals

Pilot-wire differential relay for lines with two or more terminals Pilot-wire differential relay for lines with two or more terminals Page 1 Issued: March 2003 Revision: A Data subject to change without notice Pilot-wire differential relay with RXHL 401 Features Phase

More information

Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer

Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer Simple Methods for Calculating Short Circuit Current Without a Computer By Dennis McKeown, PE GE Senior System Application Engineer A Short Circuit analysis is used to determine the magnitude of short

More information

Measurement devices Accessories for analogue and digital instruments

Measurement devices Accessories for analogue and digital instruments Accessories for analogue and digital instruments 1 2CSC96F0001 Current transformers Used to transform primary currents (max. 6000 A) into.../5 A and.../1 A low secondary currents indirectly supplying power

More information