# New Advanced Higher Mathematics: Formulae

Size: px
Start display at page:

## Transcription

1 Advcd High Mthmtics Nw Advcd High Mthmtics: Fomul G (G): Fomul you must mmois i od to pss Advcd High mths s thy ot o th fomul sht. Am (A): Ths fomul giv o th fomul sht. ut it will still usful fo you to mmois thm. Rd (R): Do t woy out mmoisig ths, ut thy might usful to sv tim i clsswok d homwok. Tigoomtic Idtitis: (fom Ntiol 5 d High) Liks tw tios Esstil Fomul to kow off y ht fo th m (G) cos Asi A si A t A cos A Squd cos ( cos ) si ( cos ) Compoud si( A ) si Acos cos Asi Agl cos( A ) cos Acos si Asi Doul si( A) si Acos A Agl cos( A) cos Asi A Oth usful os tht my usful fo homwok/clsswok tc. t A sc A cot A cosc A t A t t( A ) t A t ta t( A) t A Ect Vlus(you should kow ll ths, though th is o o-clculto pp, ulik High) si cos t udf. 0 udf. 0 Compl Nums Fo th compl um, z i, th modulus is giv y z d th gumt is giv y t Th cojugt is z i Ngtiv fcts: si( ) si( ) cos( ) cos( ) t( ) t( ) D Moiv s Thom sys tht fo y z (cos isi ), th z (cos isi ) ( ) Nwttl Commuity High School D Wtkis 05

2 Advcd High Mthmtics Difftitio Poduct Rul: du dv v u dv du u v Quotit Rul: d d d d v f ( ) f '( ) si cos t t l 0 sc f( ) f '( ) sc sc t cosc cosc cot cot cosc l f( ) f '( ) f( ) To difftit ivs d fuctio: d Itgtio Pmtic Equtios (wh f(), t y g() t ): Gdit (dictio of movmt) = d Spd = dt dt d y y y 3 d d dt d dt O Fomul Sht f ( ) f ( ) d sc t C si C t C C To sv you tim i hd qustios fo homwok/clsswok, o d to mmois: f ( ) f ( ) d t l sc C cosc l cosc cot C cot l si C sc l sc t C Itgtio y Pts dv du u d uv v d d d Volum of solid of volutio f() tw d : Aout is: V f( ) d Aout y is: V f( y) Nwttl Commuity High School D Wtkis 05

3 Advcd High Mthmtics Squcs d Sis Aithmtic Sis Gomtic Sis th tm u ( ) d u Sum of ( ) S ( ) d S tms Sum to S ifiity Impott Idtitis ( ) 3 k ( ) 4 ( )() 6 Mclui Sis ( ) f (0) f (0) 3 f (0) f( ) f(0) f (0)......! 3!! d i pticul: Vy usful to mmois: ! 3!! si... 3! 5! 7! 4 6 cos...! 4! 6! Lss sstil to mmois: t l( ) Fuctios Odd fuctio: f ( ) f( ) Ev fuctio: f ( ) f( ) (80 ottiol symmty) (li symmty out th y-is) Nwttl Commuity High School D Wtkis 05

4 Advcd High Mthmtics iomil Thom Th cofficit of th th tm i th iomil psio ( y) is C!!( )! y Vctos, Lis d Pls Agl tw two vctos: (High) cos Equtios of 3d li: though (, y, z ) d with dictio vcto d ij ck Pmtic fom Symmtic fom t y y z z y y t ( td ) ( t) c z z ct Equtios of pl: l Noml is m Poit o li = P (with positio vcto ) Vcto qutio Symmtic/Ctsi Pmtic (A) l my z k stc wh k ( d c y two oplll vctos i pl) Agl tw two lis = Acut gl tw thi dictio vctos Agl tw two pls = Acut gl tw thi omls Agl tw li d pl = 90 (Acut gl tw d d) Coss (vcto) poduct: i j k si 3 i j k Scl tipl poduct: ( c) 3 3 c c c 3 Nwttl Commuity High School D Wtkis 05

5 Advcd High Mthmtics Mtics mtics 3 3 mtics A c d c A d f g h i Dtmit d Ivs d dt A d c d A d c c f d f d dt A c h i g i g h ( A) A ( A) T T A T dt A dt Adt (A) Tsfomtio Mtics cos si Ati-CW Rottio y θ dgs si cos, Rflctio i y-is Dilttio y scl fcto 0, Rflctio i -is 0 0 Difftil Equtios ( ) Fo Py ( ) Q ( ) d, th Itgtig Fcto I() is d th solutio is giv y I( y ) IQd ( ) ( ) P d Scod Od Difftil Equtios COMPLEMENTARY FUNCTION (Homogous Equtios) Ntu of oots Fom of gl solutio Two distict l m d m y A Rl d qul m y ( A ) m Compl cojugt m p iq y p ( Acosq si q) PARTICULAR INTEGRAL (Ihomogous Equtios) Right-hd sid cotis Fo Pticul Itgl, ty si o cos y Pcos Qsi y P Li pssio y y P Q Qudtic pssio y c y P Q R Nwttl Commuity High School D Wtkis 05

### MATH 181-Exponents and Radicals ( 8 )

Mth 8 S. Numkr MATH 8-Epots d Rdicls ( 8 ) Itgrl Epots & Frctiol Epots Epotil Fuctios Epotil Fuctios d Grphs I. Epotil Fuctios Th fuctio f ( ), whr is rl umr, 0, d, is clld th potil fuctio, s. Rquirig

### SHAPES AND SHAPE WORDS!

1 Pintbl Activity Pg 1 SAPES AND SAPE WORDS! (bst fo 1 o plys) Fo ch child (o pi of childn), you will nd: wo copis of pgs nd Cyons Scissos Glu stick 10 indx cds Colo nd Mk Shp Cds! Giv ch child o pi of

### at 10 knots to avoid the hurricane, what could be the maximum CPA? 59 miles - 54 nm STEP 1 Ship s Speed Radius (e-r) 10 k - 1.0 nm every 6 minutes

:1 Navigatio :1 Gal 1 1 1 Rf: P, Huica You a udway o cous T ad you axiu spd is 1 kots. Th y of a huica bas 1 T, ils fo you positio. Th huica is ovig towads T at 1 kots. If you auv at 1 kots to avoid th

### Power Means Calculus Product Calculus, Harmonic Mean Calculus, and Quadratic Mean Calculus

Gug Istitut Jourl, Volum 4, No 4, Novmbr 008 H. Vic Do Powr Ms Clculus Product Clculus, Hrmoic M Clculus, d Qudrtic M Clculus H. Vic Do vick@dc.com Mrch, 008 Gug Istitut Jourl, Volum 4, No 4, Novmbr 008

### SOME IMPORTANT MATHEMATICAL FORMULAE

SOME IMPORTANT MATHEMATICAL FORMULAE Circle : Are = π r ; Circuferece = π r Squre : Are = ; Perieter = 4 Rectgle: Are = y ; Perieter = (+y) Trigle : Are = (bse)(height) ; Perieter = +b+c Are of equilterl

### Instruction: Solving Exponential Equations without Logarithms. This lecture uses a four-step process to solve exponential equations:

49 Instuction: Solving Eponntil Equtions without Logithms This lctu uss fou-stp pocss to solv ponntil qutions: Isolt th bs. Wit both sids of th qution s ponntil pssions with lik bss. St th ponnts qul to

C o a t i a n P u b l i c D e b tm a n a g e m e n t a n d C h a l l e n g e s o f M a k e t D e v e l o p m e n t Z a g e bo 8 t h A p i l 2 0 1 1 h t t pdd w w wp i j fp h D p u b l i c2 d e b td S t

### 1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

PROCEDIMIENTO DE RECUPERACION Y COPIAS DE SEGURIDAD DEL CORTAFUEGOS LINUX P ar a p od e r re c u p e ra r nu e s t r o c o rt a f u e go s an t e un d es a s t r e ( r ot u r a d e l di s c o o d e l a

### Problem Set 6 Solutions

6.04/18.06J Mathmatics for Computr Scic March 15, 005 Srii Dvadas ad Eric Lhma Problm St 6 Solutios Du: Moday, March 8 at 9 PM Problm 1. Sammy th Shar is a fiacial srvic providr who offrs loas o th followig

### Comparing plans is now simple with metal plans. What Does it Mean to Have a 6-Tier Pharmacy Plan? Tie. Individual Health Insurance

Compg p ow mp wth mt p Iu p py 0% 0% Iu p py T T T T T T 0% t to M G - No G B No B Iu p py 0% Iu p py Iu Hth Iu Mt p po you wth ho. Th m wth mt p th ptg you p w gy py o. 0% A Hth O tm. Cot. Cg o you. Wh

### Summary: Vectors. This theorem is used to find any points (or position vectors) on a given line (direction vector). Two ways RT can be applied:

Summ: Vectos ) Rtio Theoem (RT) This theoem is used to find n points (o position vectos) on given line (diection vecto). Two ws RT cn e pplied: Cse : If the point lies BETWEEN two known position vectos

### Intro to Circle Geometry By Raymond Cheong

Into to Cicle Geomety By Rymond Cheong Mny poblems involving cicles cn be solved by constucting ight tingles then using the Pythgoen Theoem. The min chllenge is identifying whee to constuct the ight tingle.

### Lecture 27. Rectangular Metal Waveguides

Lctu 7 Rctgul Mtl Wvguids I this lctu u will l: Rctgul tl wvguids T d TM guidd ds i ctgul tl wvguids C 303 Fll 006 Fh R Cll Uivsit Plll Plt Mtl Wvguids d 1 T Mds: Dispsi lti: ( ) si { 1,, d d d 1 TM Mds:

### M06/5/MATME/SP2/ENG/TZ2/XX MATHEMATICS STANDARD LEVEL PAPER 2. Thursday 4 May 2006 (morning) 1 hour 30 minutes INSTRUCTIONS TO CANDIDATES

IB MATHEMATICS STANDARD LEVEL PAPER 2 DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI 22067304 Thursday 4 May 2006 (morig) 1 hour 30 miutes INSTRUCTIONS TO CANDIDATES Do ot ope

### i n g S e c u r it y 3 1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his å ] í d : L : g u id e Scanned by CamScanner

í d : r ' " B o m m 1 E x p e r i e n c e L : i i n g S e c u r it y. 1-1B# ; u r w e b a p p li c a tio n s f r o m ha c ke r s w ith t his g u id e å ] - ew i c h P e t e r M u la e n PACKT ' TAÞ\$Æo

### Put the human back in Human Resources.

Put the human back in Human Resources A Co m p l et e Hu m a n Ca p i t a l Ma n a g em en t So l u t i o n t h a t em p o w er s HR p r o f essi o n a l s t o m eet t h ei r co r p o r a t e o b j ect

### «С e n tra l- A s ia n E le c tric - P o w e r C o rp o ra tio n», JS C

J o in t - s t o c k c o m p C E N T R A L - A S IA N E L E C T R IC P O W a n y E R C O R P O R A T IO N I n t e r n a l A u d i t P O L IC Y o f J o in t - S t o c k C o m p a n y C E N T R A L - A S

### Arithmetic Sequences

Arithmetic equeces A simple wy to geerte sequece is to strt with umber, d dd to it fixed costt d, over d over gi. This type of sequece is clled rithmetic sequece. Defiitio: A rithmetic sequece is sequece

### Batteries in general: Batteries. Anode/cathode in rechargeable batteries. Rechargeable batteries

Bttris i grl: Bttris How -bsd bttris work A rducig (gtiv) lctrod A oxidizig (positiv) lctrod A - th ioic coductor Rchrgbl bttris Rctios ust b rvrsibl Not too y irrvrsibl sid rctios Aod/cthod i rchrgbl

### Heat (or Diffusion) equation in 1D*

Heat (or Diffusio) equatio i D* Derivatio of the D heat equatio Separatio of variables (refresher) Worked eamples *Kreysig, 8 th Ed, Sectios.4b Physical assumptios We cosider temperature i a log thi wire

### A function f whose domain is the set of positive integers is called a sequence. The values

EQUENCE: A fuctio f whose domi is the set of positive itegers is clled sequece The vlues f ( ), f (), f (),, f (), re clled the terms of the sequece; f() is the first term, f() is the secod term, f() is

### Fundamentals of Tensor Analysis

MCEN 503/ASEN 50 Chptr Fundmntls of Tnsor Anlysis Fll, 006 Fundmntls of Tnsor Anlysis Concpts of Sclr, Vctor, nd Tnsor Sclr α Vctor A physicl quntity tht cn compltly dscrid y rl numr. Exmpl: Tmprtur; Mss;

### I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y and KB rl iak s iol mi a, hme t a ro cp hm a5 a 2k p0r0o 9f i,e ls hv oa nr t ds eu rmv oedye l o nf dae cr

### PROBLEMS 05 - ELLIPSE Page 1

PROBLEMS 0 ELLIPSE Pge 1 ( 1 ) The edpoits A d B of AB re o the X d Yis respectivel If AB > 0 > 0 d P divides AB from A i the rtio : the show tht P lies o the ellipse 1 ( ) If the feet of the perpediculrs

### r Curl is associated w/rotation X F

13.5 ul nd ivegence ul is ssocited w/ottion X F ivegence is F Tody we define two opetions tht cn e pefomed on vecto fields tht ply sic ole in the pplictions of vecto clculus to fluid flow, electicity,

### w ith In fla m m a to r y B o w e l D ise a se. G a s tro in te s tin a l C lin ic, 2-8 -2, K a s h iw a z a, A g e o C ity, S a ita m a 3 6 2 -

E ffic a c y o f S e le c tiv e M y e lo id L in e a g e L e u c o c y te D e p le tio n in P y o d e r m a G a n g re n o su m a n d P so r ia sis A sso c ia te d w ith In fla m m a to r y B o w e l D

### Chapter 04.05 System of Equations

hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

G ri d m on i tori n g w i th N A G I O S (*) (*) Work in collaboration with P. Lo Re, G. S av a and G. T ortone WP3-I CHEP 2000, N F N 10.02.2000 M e e t i n g, N a p l e s, 29.1 1.20 0 2 R o b e r 1

### B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g S y s te m

Symposium on Public Transportation in Indian Cities with Special focus on Bus Rapid Transit (BRT) System New Delhi 20-21 Jan 2010 B R T S y s te m in S e o u l a n d In te g r a te d e -T ic k e tin g

### The Chain Rule. rf dx. t t lim " (x) dt " (0) dx. df dt = df. dt dt. f (r) = rf v (1) df dx

The Chin Rule The Chin Rule In this section, we generlize the chin rule to functions of more thn one vrible. In prticulr, we will show tht the product in the single-vrible chin rule extends to n inner

### Budgeting. Here are five easy ways to keep your budget. Keeping up with all the INS and OUTS POSITIVE. Budget Quick Start. Go Green!

Bgig K lif G h igh l f chl Mbil, li, v g bkig h w chck cc c i blc M bk l ff li bkig, which i g w k ll f ic i chck Lk f chckig vig cc h icl li bkig l v bil bkig, c k chck bg i G G! G f l li lik li bill

### Issue 1, Volume 1 January 2010. news for the residents of alamo heights SAN ANTONIO STOCK SHOW & RODEO. T h e S a n Antonio Stock Show & Rodeo

Al Hi 09 ER I 1 Vl 1 Jy 2010 i i Al Hi 09'ER SAN ANTONIO STOCK SHOW & RODEO V PRCA L I R O T Y F Fi Cciv Y T S Ai Sc S & R i ill c i ill ly ily i AT&T C i Pi R Cy Acii (PRCA) L I R Y. T S Ai Sc S & R cii

### EM EA. D is trib u te d D e n ia l O f S e rv ic e

EM EA S e c u rity D e p lo y m e n t F o ru m D e n ia l o f S e rv ic e U p d a te P e te r P ro v a rt C o n s u ltin g S E p p ro v a rt@ c is c o.c o m 1 A g e n d a T h re a t U p d a te IO S Es

### Right Angle Trigonometry

Righ gl Trigoomry I. si Fs d Dfiiios. Righ gl gl msurig 90. Srigh gl gl msurig 80. u gl gl msurig w 0 d 90 4. omplmry gls wo gls whos sum is 90 5. Supplmry gls wo gls whos sum is 80 6. Righ rigl rigl wih

### Campus Sustainability Assessment and Related Literature

Campus Sustainability Assessment and Related Literature An Annotated Bibliography and Resource Guide Andrew Nixon February 2002 Campus Sustainability Assessment Review Project Telephone: (616) 387-5626

### stichting mathematisch centrum

chg hch cu AFDLING INFORMATICA W 52/75 NOVMBR L.G.L.T. MRTNS & J. C. VAN VLIT RPAIRING TH PARNTHSIS SKLTON OF ALGOL 68 PROGRAMS: PROOF OF CORRCTNSS P u b c 2 bhv 49 d 3 LI 0 T}:;. f 4 A T H M ). T ;. f.

### ABS (W/O TRACTION CONTROL)

S (/O TCTION CONTO) 9 S (/O TCTION CONTO) FOM OE SOUCE SSTEM (SEE GE 6) 60 S NO. E - 6 E -, 9 S E +M +S M M + S S GND 6 D DT INK CONNECTO (SHOT IN) 6 TS TC - - - - - IJ II 6 IJ - - I6 IF I6 I6 - - 7 M

### Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

### Vom Prototyp zum MVP. Peter Spisak Senior Lead Architect Online and VAS Development. Public Nicht vertraulich

V Py z VP P Sk S Achc O VAS Dv Pbc Nch vch Py DSCOVER, DSRUPT, DEVER Pbc Nch vch x C DSCOVER, DSRUPT, DEVER 3 Pbc Nch vch DSCOVER, DSRUPT, DEVER 4 C - Dvb C C Pbc Nch vch DSCOVER, DSRUPT, DEVER 5 Dcb wh

### Exponential Generating Functions

Epotl Grtg Fuctos COS 3 Dscrt Mthmtcs Epotl Grtg Fuctos (,,, ) : squc of rl umbrs Epotl Grtg fucto of ths squc s th powr srs ( )! 3 Ordry Grtg Fuctos (,,, ) : squc of rl umbrs Ordry Grtg Fucto of ths squc

### Tim o th y H ig h le y. tjh ig h le c s.v irg in ia.e d u. U n iv e rs ity o f V irg in ia

Ma rg in a l C o s t-b e n e fit A n a ly s is fo r P re d ic tiv e F ile P re fe tc h in g Tim o th y H ig h le y D e p a rtm e n t o f C o m p u te r S c ie n c e U n iv e rs ity o f V irg in ia tjh

### Formulas and Units. Transmission technical calculations Main Formulas. Size designations and units according to the SI-units.

Fomuls nd Units Tnsmission technicl clcultions Min Fomuls Size designtions nd units ccoding to the SI-units Line movement: s v = m/s t s = v t m s = t m v = m/s t P = F v W F = m N Rottion ω = π f d/s

### Morningstar Document Research

Morningstar Document Research FORM8-K EMC INSURANCE GROUP INC - EMCI Filed: May 11, 2016 (period: May 11, 2016) Report of unscheduled material events or corporate changes. The information contained herein

m Future of learning Zehn J a hr e N et A c a d ei n E r f o l g s p r o g r a m Cisco E x p o 2 0 0 7 2 6. J u n i 2 0 0 7, M e sse W ie n C. D or n in g e r, b m u k k 1/ 12 P r e n t t z d e r p u t

### SCO TT G LEA SO N D EM O Z G EB R E-

SCO TT G LEA SO N D EM O Z G EB R E- EG Z IA B H ER e d it o r s N ) LICA TIO N S A N D M ETH O D S t DVD N CLUDED C o n t e n Ls Pr e fa c e x v G l o b a l N a v i g a t i o n Sa t e llit e S y s t e

### 4-H 500 OHIO STATE UNIVERSITY EXTENSION. Science Fun with PHYSICS. Name: Age (as of January 1 of the current year): Club name: Advisor name: County: _

OHIO STATE UNIVERSITY EXTENSION 4-H 500 S F PHYSICS Nm: A ( f Jy 1 f y): Clb m: Av m: Cy: _ A Ky Blkf, Ex E, 4-H Cy D, T O S Uvy, Al Cy Sy S. C, fl Ozl Av f Gl Exl 4-H Clb, W, O Rv Ml F, PD, R L, Bll Rb

### Assessing Software Reliability Using SPC An Order Statistics Approach

Ittiol Joul of Comput Scic, Egiig d Applictios (IJCSEA Vol., No.4, August Assssig Softw Rliility Usig SPC A Od Sttistics Appoch.Rmchd H Ro D. R.Sty Psd D. R.R..thm Dptmt of Comput Scic, A.S.N. Dg Collg,

M Mobile Based Clinical Decision Support System Bhudeb Chakravarti & Dr. Suman Bhusan Bhattacharyya Provider & Public Health Group, VBU-HL P S aty am C om puter S ervices L im ited Bhudeb_ C hak ravarti@

### Cruisin with Carina Motorcycle and Car Tour Guide

Ifi Tchlgy Slui Wh Swdih hpiliy V, ully. Cuii wih Ci Mcycl d C Tu Guid Ikp: Ci Th 290 Ru 100 W Dv, V 05356 800-745-3615 802-464-2474 L h g ll! Th d i ck, c, i d l x. My 17h, 18h, & 19h W ivi yu c cui h

### http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

### 92.131 Calculus 1 Optimization Problems

9 Calculus Optimization Poblems ) A Noman window has the outline of a semicicle on top of a ectangle as shown in the figue Suppose thee is 8 + π feet of wood tim available fo all 4 sides of the ectangle

### Calculating the Real ROI of Video Conferencing Technology. SHOCKING TRUTH It s Not Just About Travel Costs!

Clcultig th Rl ROI f Vid Cfcig Tchlgy SHOCKING TRUTH It s Nt Just Abut Tvl Csts! Clcultig th Rl ROI f Vid Cfcig Tchlgy Svig M Th Just th Cst f Tvl...3 Old Schl Th Tditil Wy f Clcultig VC ROI...4 Tim =

### WAVEGUIDES (& CAVITY RESONATORS)

CAPTR 3 WAVGUIDS & CAVIT RSONATORS AND DILCTRIC WAVGUIDS OPTICAL FIBRS 導 波 管 & 共 振 腔 與 介 質 導 波 管 光 纖 W t rqu is t irowv rg >4 G? t losss o wv i two-odutor trsissio li du to iprt odutor d loss diltri o

### fun www.sausalitos.de

O ily i f www.lit. Ctt. Cy... 4 5 Rtt... 6 7 B... 8 11 Tt... 12 13 Pt... 14 15. 2 Ctt. Cy. Rtt. B. Tt. Pt Ctt. Cy. Rtt. B. Tt. Pt. 3 Ti t f vyy lif, ity viti. AUALITO i l t t fi, t ty, t t, jy ktil jt

### Payor Sheet for Medicare Part D/ PDP and MA-PD

Payor Specification Sheet for MEDICARE PART D/PDP AND MA-PD PRIME THERAPEUTICS LLC CLIENTS JANUARY 1, 2006 (Page 1 of 8) BIN: PCN: See BINs on page 2 (in bold red type) See PCNs on page 2 (in bold red

### OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. EMPLOYMENT APPLICATION

OFFSHORE INTERNATIONAL MARINE PERSONNEL SERVICES, INC. 3802 W. Nvy Bvd Po, FL 32507 Tho: (850) 455-2995 Tx: (850) 455-3033 www.oho-.om EMPLOYMENT APPLICATION Poo Ay Fo Nm: F L SS# - - Add Cy/S Z Pho: Hom

### HEAT TRANSFER ANALYSIS OF LNG TRANSFER LINE

Scintific Jounal of Impact Facto(SJIF): 3.34 Intnational Jounal of Advanc Engining and sach Dvlopmnt Volum,Issu, Fbuay -05 HEAT TANSFE ANALYSIS OF LNG TANSFE LINE J.D. Jani -ISSN(O): 348-4470 p-issn(p):

### UNIK4250 Security in Distributed Systems University of Oslo Spring 2012. Part 7 Wireless Network Security

UNIK4250 Security in Distributed Systems University of Oslo Spring 2012 Part 7 Wireless Network Security IEEE 802.11 IEEE 802 committee for LAN standards IEEE 802.11 formed in 1990 s charter to develop

### S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + \$ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

### ta tio n a l s c ie n c e b y s u p p o rtin g th e e m e rg in g G rid p ro to c o ls o n W in d o w s a n d

A p p e a rs in th e P ro c e e d in g s o f th e 2 0 0 5 In te rn a tio n a l C o n fe re n c e o n C o m p u ta tio n a l S c ie n c e (IC C S 2 0 0 5 ), E m o ry U n iv e rs ity, A tla n ta, G A, M

### Released Assessment Questions, 2015 QUESTIONS

Relesed Assessmet Questios, 15 QUESTIONS Grde 9 Assessmet of Mthemtis Ademi Red the istrutios elow. Alog with this ooklet, mke sure you hve the Aswer Booklet d the Formul Sheet. You my use y spe i this

### x(x 1)(x 2)... (x k + 1) = [x] k n+m 1

1 Coutig mappigs For every real x ad positive iteger k, let [x] k deote the fallig factorial ad x(x 1)(x 2)... (x k + 1) ( ) x = [x] k k k!, ( ) k = 1. 0 I the sequel, X = {x 1,..., x m }, Y = {y 1,...,

### Series FOURIER SERIES. Graham S McDonald. A self-contained Tutorial Module for learning the technique of Fourier series analysis

Series FOURIER SERIES Graham S McDonald A self-contained Tutorial Module for learning the technique of Fourier series analysis Table of contents Begin Tutorial c 004 g.s.mcdonald@salford.ac.uk 1. Theory.

### Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Claim#:021914-174 Initials: J.T. Last4SSN: 6996 DOB: 5/3/1970 Crime Date: 4/30/2013 Status: Claim is currently under review. Decision expected within 7 days Claim#:041715-334 Initials: M.S. Last4SSN: 2957

### A n d r e w S P o m e r a n tz, M D

T e le h e a lth in V A : B r in g in g h e a lth c a r e to th e u n d e r s e r v e d in c lin ic a n d h o m e A n d r e w S P o m e r a n tz, M D N a tio n a l M e n ta l H e a lth D ir e c to r f

Application Note: Cisco A S A - Ce r t if ica t e T o S S L V P N Con n e ct ion P r of il e Overview: T h i s a p p l i ca ti o n n o te e x p l a i n s h o w to co n f i g u r e th e A S A to a cco m

### M P L S /V P N S e c u rity. 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d.

M P L S /V P N S e c u rity M ic h a e l B e h rin g e r < m b e h rin g @ c is c o.c o m > M b e h rin g - M P L S S e c u rity 2 0 0 1, C is c o S y s te m s, In c. A ll rig h ts re s e rv e d. 1 W h

### d e f i n i c j i p o s t a w y, z w i z a n e j e s t t o m. i n. z t y m, i p o jі c i e t o

P o s t a w y s p o і e c z e t s t w a w o b e c o s у b n i e p e і n o s p r a w n y c h z e s z c z e g у l n y m u w z g lb d n i e n i e m o s у b z z e s p o і e m D o w n a T h e a t t i t uodf

### θ = 45 θ = 135 θ = 225 θ = 675 θ = 45 θ = 135 θ = 225 θ = 675 Trigonometry (A): Trigonometry Ratios You will learn:

Trigonometr (A): Trigonometr Ratios You will learn: () Concept of Basic Angles () how to form simple trigonometr ratios in all 4 quadrants () how to find the eact values of trigonometr ratios for special

### Towards A Holistic Analysis of Mobile Payments: A Multiple Perspectives Approach

Tw A H Ay f b Py: A u Pv A J Ou, Yv Pu D f If Sy, HEC S f E, Uvy f Lu, 1015 Lu, Swz Ab A b v vu, y u w b y w b k f b. T v b u f k, yz y y bu ff vv. F u, w u w u y w uv f f b y u y u. T, w y v w f v v by

### SKIN PREPERATION. skin perfection velvety-s. cause damage to the sk

MAKEUP TUTORIAL Hllo vo! Fo oti I v gttig coplit qtio ot wt I ow I o k p Fitl I jt wt to kow tt I' lw z o lovl cot ot t k p I o I otl v togt it w tt gt til o g tt kig Ti igt co ock t I' ot c of t jk I

Unit 16 : Software Development Standards O b jec t ive T o p r o v id e a gu ide on ho w t o ac h iev e so f t wa r e p r o cess improvement through the use of software and systems engineering standards.

### ffi I Q II MM I VI I V2 I V3 I V 4 I :11 a a a e b Math 101, Final Exam, Term IANSWER KEY I : 1 a e b c e 2 a b a c d!

Math 0, Final Exam, Term 3 IANSWER KEY I I Q II MM I VI I V I V3 I V 4 I : a e b c e a b a c d! 3 a d e d c i 4 a a a e a 5 a e d e c! 6 a a d e c 7 a e c d c 8 a d d b b! 9 a c d b e 0 a c a c a : a a

### JCUT-3030/6090/1212/1218/1325/1530

JCUT CNC ROUTER/CNC WOODWORKING MACHINE JCUT-3030/6090/1212/1218/1325/1530 RZNC-0501 Users Guide Chapter I Characteristic 1. Totally independent from PC platform; 2. Directly read files from U Disk; 3.

### CODES FOR PHARMACY ONLINE CLAIMS PROCESSING

S FOR PHARMACY ONLINE CLAIMS PROCESSING The following is a list of error and warning codes that may appear when processing claims on the online system. The error codes are bolded. CODE AA AB AI AR CB CD

### The Casino Experience

Th Casino Expin with Mahi s authnti Indian uisin Lt us nttain you Th Casino Expin 10 Th Staight Flush Expin 20 p ps If you looking fo a gat night out, a Casino Expin patnd This is a gat intoduti to gaing

### Find the inverse Laplace transform of the function F (p) = Evaluating the residues at the four simple poles, we find. residue at z = 1 is 4te t

Homework Solutios. Chater, Sectio 7, Problem 56. Fid the iverse Lalace trasform of the fuctio F () (7.6). À Chater, Sectio 7, Problem 6. Fid the iverse Lalace trasform of the fuctio F () usig (7.6). Solutio:

### c. Values in statements are broken down by fiscal years; many projects are

Lecture 18: Finncil Mngement (Continued)/Csh Flow CEE 498 Construction Project Mngement L Schedules A. Schedule.of Contrcts Completed See Attchment # 1 ll. 1. Revenues Erned 2. Cost of Revenues 3. Gross

### Trigonometric Identities & Formulas Tutorial Services Mission del Paso Campus

Tigonometic Identities & Fomulas Tutoial Sevices Mission del Paso Campus Recipocal Identities csc csc Ratio o Quotient Identities cos cot cos cos sec sec cos = cos cos = cot cot cot Pthagoean Identities

### ň Ú Ú Č

Ú Ú ň Ú Ú Č Ú ň Ú Ž Č Ú Ž Ó Č ň Ž ň Ě Ý Ú Č Ú Č .{ +l ; l i.,i.t :i... (),i{ i,'...,.l l!,!. }, ii,)., i.a t-l.- C,..-'H -Ý':: 4,.J: C'É].,-t";g 5; i l'.i:.l) > t{ > P)O,.J 0" 3i an.ý u- ll c O },:, ll

### T ra d in g A c tiv ity o f F o re ig n In s titu tio n a l In v e s to rs a n d V o la tility

T ra d in g A c tiv ity o f F o re ig n In s titu tio n a l In v e s to rs a n d V o la tility V. Ravi Ans human Indian Ins titute of Manag ement B ang alore Rajes h Chakrabarti Indian S chool of Bus ines

### Lighting and Shading. Outline. Raytracing Example. Global Illumination. Local Illumination. Radiosity Example

CSCI 420 Computer Graphics Lecture 9 Lightig ad Shadig Light Sources Phog Illumiatio Model Normal Vectors [Agel Ch. 6.1-6.4] Jerej Barbic Uiversity of Souther Califoria 1 2 Global Illumiatio Raytracig

### Table Linens. Bed Linens. Bath Linens

T L B L B L OE coecon y By T - Dï B Rv Pc - L B L - S Câ S M - Vc Gf Bè - Dv Hô M - P H - Sã P L C L - Ly L M - Mkc G Bc - V L Rév - Gèv L Ry Mc - P L A - B P Bc - C Péc Répq - P L Cc - Ccv T G Ac- S Lk

### G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS

G.GMD.1 STUDENT NOTES WS #5 1 REGULAR POLYGONS Regul polygon e of inteet to u becue we begin looking t the volume of hexgonl pim o Tethedl nd to do thee type of clcultion we need to be ble to olve fit

### C e r t ifie d Se c u r e W e b

C r t ifi d S c u r W b Z r t ifizi r t Sic h r h it im W b 1 D l gat s N ic o las M ay n c o u r t, C EO, D r am lab T c h n o lo gi s A G M ar c -A n d r é B c k, C o n su lt an t, D r am lab T c h n

### Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage

Using Predictive Modeling to Reduce Claims Losses in Auto Physical Damage CAS Loss Reserve Seminar 23 Session 3 Private Passenger Automobile Insurance Frank Cacchione Carlos Ariza September 8, 23 Today

### STATISTICS: MODULE 12122. Chapter 3 - Bivariate or joint probability distributions

STATISTICS: MODULE Chapte - Bivaiate o joit pobabilit distibutios I this chapte we coside the distibutio of two adom vaiables whee both adom vaiables ae discete (cosideed fist) ad pobabl moe impotatl whee

### ProfileXT, Step One Survey II, Customer Service Profile

ch T vics S t D uctio d E ig gi E lth C l i c H m Fi Ho lthc H c su g I ctui f u M t l Est R til R vics S gy holo c T E S CA DY U T S g imgi l op p t C C lth H Hom d yr p om v o u ucs T CHALLENGES Rducig

### (Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

### english parliament of finland

gh f fd 213 P cvd f h f y f h g 4 Fby 213. E H (Sc Dcc Py) w -cd S, P Rv (N C Py) F Dy S d A Jh (Th F Py) Scd Dy S. Th g c c 5 Fby, wh Pd f h Rbc S Nö d P f h f fwg h c 212. P g dc c 12 Fby h b f P M c.

### B a rn e y W a r f. U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8

U r b a n S tu d ie s, V o l. 3 2, N o. 2, 1 9 9 5 3 6 1 ±3 7 8 T e le c o m m u n ic a t io n s a n d th e C h a n g in g G e o g r a p h ie s o f K n o w le d g e T r a n s m is s io n in th e L a te

### MATHEMATICS SYLLABUS SECONDARY 7th YEAR

Europe Schools Office of the Secretry-Geerl Pedgogicl developmet Uit Ref.: 2011-01-D-41-e-2 Orig.: DE MATHEMATICS SYLLABUS SECONDARY 7th YEAR Stdrd level 5 period/week course Approved y the Joit Techig

### Math 113 HW #11 Solutions

Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

### Paper Technics Orientation Course in Papermaking 2009:

P P Otto Cou Pmkg 2009: g to mk u tt you ol o tgt P Wo ould ttd? Otto Cou Pmkg wll b of vlu to t followg gou of ol:- 1. P mll mloy, wo dl dtly wt t o of mkg d w to mov t udtdg of t o d t mll oto t bod

### Magic Message Maker Amaze your customers with this Gift of Caring communication piece

Magic Mssag Makr maz your customrs with this Gift of aring communication pic Girls larn th powr and impact of crativ markting with this attntion grabbing communication pic that will hlp thm o a World of

### ON THE CHINESE CHECKER SPHERE. Mine TURAN, Nihal DONDURMACI ÇİN DAMA KÜRESİ ÜZERİNE

DÜ Fen Bilimlei Enstitüsü Degisi Sı 9 Ağustos 9 On The Chinese Cheke Sphee M. Tun N. Donumı ON THE CHINESE CHECKER SHERE Mine TURAN Nihl DONDURMACI Deptment of Mthemtis Fult of Ats n Sienes Dumlupin Univesit

### R e t r o f i t o f t C i r u n i s g e C o n t r o l

R e t r o f i t o f t C i r u n i s g e C o n t r o l VB Sprinter D e s c r i p t i o n T h i s r e t r o f i t c o n s i s t s o f i n s t a l l i n g a c r u i s e c o n t r o l s wi t c h k i t i n

### www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input