Section 3.1 Worksheet NAME. f(x + h) f(x)


 Laurence Neal
 1 years ago
 Views:
Transcription
1 MATH 1170 Section 3.1 Worksheet NAME Recall that we have efine the erivative of f to be f (x) = lim h 0 f(x + h) f(x) h Recall also that the erivative of a function, f (x), is the slope f s tangent line at the point (x, f(x)). We are now going to explore what generalizations we can make about the certain kin of functions we have previously iscusse. Let s begin with polynomial functions. The most basic polynomial function is the constant function. Constant Functions Recall that a constant function is a function f(x) = c where c is a constant (real number). Sketch a graph of the function f(x) = c. What is the slope of this line? Looking at the graph, what woul you imagine that the slope a line tangent to f(x) = c at any given is? Using the efinition of erivative, compute the erivative of f(x) = 3. Using the efinition if erivative, compute the erivative of f(x) = c. 1
2 Derivative of the Constant Function x (c) = This little rule that we establishe makes it easy to compute erivatives of functions like: f(x) = 90 g(t) = 17, 562 h(r) = π 2 /4 k(x) = e 1000 s(t) = 2...they are all...0! Power Functions Sketch a graph of f(x) = x. Using the efinition of the erivative, compute the erivative of f(x) = x. Using the efinition of erivative, compute the erivative of f(x) = x 2. Using the efinition of erivative, compute the erivative of f(x) = x 3. 2
3 Using the efinition if erivative, compute the erivative of f(x) = x n for where n > 0 is an integer. Hint: Recall the Binomial Theorem states that (x + h) n = a n,0 x n + a n,1 x n 1 h + a n,2 x n 2 h a n,n 2 x 2 h n 2 + a n,n 1 xh n 1 + a n,n h n where a i,j is the j th entry in the i th column of Pascal s Triangle. This means that (x + h) n = x n + nx n 1 h + a n,2 x n 2 h a n,n 2 x 2 h n 2 + nxh n 1 + h n. We have now establishe x (xn ) where n is a positive integer. While it is a little more complicate to prove this result when n is not an integer, what you showe above oes exten for n any real number. If n is any real number, The Power Rule x (xn ) = Practice Fin the erivative of the following functions using the Constant Rule or Power Rule. f(x) = x 5 g(t) = t 4 h(x) = π 2 h(t) = t 1000 f(r) = r 5/4 g(x) = x k(x) = x π s(r) = r 0 h(x) = 3 x 2 3
4 Exponential Functions Recall that an exponential function comes in the form of f(x) = a x where a is some constant. Note that these functions are very ifferent from power functions that have the form f(x) = x a where a is a constant. Sketch the graphs of f(x) = 2 x an f(x) = x 2. Using the efinition of erivative, compute the erivative of f(x) = a x. Compare lim h 0 a k 1 h to the efinition of the erivative of f(x) = a x at 0. What o you notice? The Derivative of the Exponential Function x (ax ) = The efinition of e is such that e h 1 lim = 1. h 0 h What oes this tell you about the erivative of e x? 4
5 The Derivative of the Natural Exponential Function x (ex ) = Composition of Derivatives Now that we have establishe a few basic rules for erivatives, it woul be beneficial to figure out how to combine them. For instance, we know that the erivative of f(x) = x 5, But what about g(x) = 2x 5? x (x5 ) = 5x 5 1 = 5x 4. Using the efinition of erivative, compute the erivative of f(x) = 2x.( ) Using the efinition if erivative, compute the erivative of f(x) = 3x 2.( ) Using the efinition of erivative, compute the erivative of g(x) = cf(x) where c is a constant an f is a ifferentiable function. Hint: Refer to the rules of limits on the review sheet. 5
6 The Constant Multiple Rule If c is a constant an f is a ifferentiable function, then x (cf(x)) = Verify that the ( ) erivatives can be compute (resulting in the same solution) using the Constant Multiple Rule. Practice Using the Constant Multiple Rule (an the other erive rules), compute the following erivatives: g(x) = 2x 5 f(t) = 3 t h(x) = 1 3 ex k(x) = ex 4 f(x) = 5π 2 g(t) = 5x 2/3 4 We are clearly making progress, but what about more complicate polynomials like f(x) = x 2 2x + 1? Using the efinition of erivative, compute the erivative of F (x) = f(x) + g(x). Hint: You may want to refer to the rules of limits on the review sheet. 6
7 The Sum Rule If f an g are ifferentiable functions, then (f(x) + g(x)) = x Using the Sum Rule, compute the erivative of f(x) = x 2 + x. Can you make a conjecture about the erivative a the ifference of two ifferentiable functions? What o you think that x (f(x) g(x)) will be an why? The Difference Rule If f an g are ifferentiable functions, then (f(x) g(x)) = x Putting it Together Differentiate the following functions using the rules that you establishe. a. f(x) = x e x b. f(x) = 3x 4 ( x ) c. f(x) = 4x 2 2x x 1. f(x) = 3 x e. f(x) = 3x 5 + e x π f. f(x) = x 1/2 (x 3 + 1/x) 7
Lecture 13: Differentiation Derivatives of Trigonometric Functions
Lecture 13: Differentiation Derivatives of Trigonometric Functions Derivatives of the Basic Trigonometric Functions Derivative of sin Derivative of cos Using the Chain Rule Derivative of tan Using the
More informationf(x) = a x, h(5) = ( 1) 5 1 = 2 2 1
Exponential Functions an their Derivatives Exponential functions are functions of the form f(x) = a x, where a is a positive constant referre to as the base. The functions f(x) = x, g(x) = e x, an h(x)
More informationSection 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of
More informationMAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules
MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 17 April 2013 Reminer Mats Learning Centre: CRing 512 My office: CRing 533A (Stats Dept corrior)
More informationSections 3.1/3.2: Introducing the Derivative/Rules of Differentiation
Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here
More information20. Product rule, Quotient rule
20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that
More informationLimits at Infinity Limits at Infinity for Polynomials Limits at Infinity for the Exponential Function Function Dominance More on Asymptotes
Lecture 5 Limits at Infinity and Asymptotes Limits at Infinity Horizontal Asymptotes Limits at Infinity for Polynomials Limit of a Reciprocal Power The End Behavior of a Polynomial Evaluating the Limit
More informationMATH 125: LAST LECTURE
MATH 5: LAST LECTURE FALL 9. Differential Equations A ifferential equation is an equation involving an unknown function an it s erivatives. To solve a ifferential equation means to fin a function that
More informationTo differentiate logarithmic functions with bases other than e, use
To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with
More informationSOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH
SOME NOTES ON THE HYPERBOLIC TRIG FUNCTIONS SINH AND COSH Basic Definitions In homework set # one of the questions involves basic unerstaning of the hyperbolic functions sinh an cosh. We will use this
More informationnparameter families of curves
1 nparameter families of curves For purposes of this iscussion, a curve will mean any equation involving x, y, an no other variables. Some examples of curves are x 2 + (y 3) 2 = 9 circle with raius 3,
More informationLimits and Continuity
Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function
More informationThe rules of calculus. Christopher Thomas
Mathematics Learning Centre The rules of calculus Christopher Thomas c 1997 University of Syney Mathematics Learning Centre, University of Syney 1 1 How o we fin erivatives (in practice)? Differential
More information5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
More informationProof of the Power Rule for Positive Integer Powers
Te Power Rule A function of te form f (x) = x r, were r is any real number, is a power function. From our previous work we know tat x x 2 x x x x 3 3 x x In te first two cases, te power r is a positive
More informationCalculus I Notes. MATH /Richards/
Calculus I Notes MATH 52154/Richards/10.1.07 The Derivative The derivative of a function f at p is denoted by f (p) and is informally defined by f (p)= the slope of the fgraph at p. Of course, the above
More informationThe composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result.
30 5.6 The chain rule The composition g f of the functions f and g is the function (g f)(x) = g(f(x)). This means, "do the function f to x, then do g to the result." Example. g(x) = x 2 and f(x) = (3x+1).
More informationMATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:
MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,
More informationTaylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
More informationLIMITS AND CONTINUITY The following tables show values of f(x, y) and g(x, y), correct to three decimal places, for points (x, y) near the origin.
LIMITS AND Let s compare the behavior of the functions 14. Limits and Continuity In this section, we will learn about: Limits and continuity of various types of functions. sin( ) f ( x, y) and g( x, y)
More informationDraft Material. Determine the derivatives of polynomial functions by simplifying the algebraic expression lim h and then
CHAPTER : DERIVATIVES Specific Expectations Addressed in the Chapter Generate, through investigation using technology, a table of values showing the instantaneous rate of change of a polynomial function,
More informationPolynomials Classwork
Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th degree polynomial function Def.: A polynomial function of degree n in the vaiable
More informationLecture 17: Implicit differentiation
Lecture 7: Implicit ifferentiation Nathan Pflueger 8 October 203 Introuction Toay we iscuss a technique calle implicit ifferentiation, which provies a quicker an easier way to compute many erivatives we
More informationHomework # 3 Solutions
Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8
More informationAverage rate of change of y = f(x) with respect to x as x changes from a to a + h:
L151 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
More informationMATH301 Real Analysis Tutorial Note #3
MATH301 Real Analysis Tutorial Note #3 More Differentiation in Vectorvalued function: Last time, we learn how to check the differentiability of a given vectorvalued function. Recall a function F: is
More informationPRECALCULUS GRADE 12
PRECALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms
More informationy or f (x) to determine their nature.
Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic
More informationM147 Practice Problems for Exam 2
M47 Practice Problems for Exam Exam will cover sections 4., 4.4, 4.5, 4.6, 4.7, 4.8, 5., an 5.. Calculators will not be allowe on the exam. The first ten problems on the exam will be multiple choice. Work
More informationCollege Algebra. Some of the vocabulary and skills to review are included in the following table:
MATH 11 College Algebra FINAL EXAM Review The Final Exam is cumulative. Problems will be similar to those you have seen on previous exams. The exam is worth 1 points. Formulas provided on Exam will also
More informationThe Geometric Series
The Geometric Series Professor Jeff Stuart Pacific Lutheran University c 8 The Geometric Series Finite Number of Summands The geometric series is a sum in which each summand is obtained as a common multiple
More informationPrecalculus Workshop  Functions
Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.
More informationHOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
More informationRules for Finding Derivatives
3 Rules for Fining Derivatives It is teious to compute a limit every time we nee to know the erivative of a function. Fortunately, we can evelop a small collection of examples an rules that allow us to
More informationItems related to expected use of graphing technology appear in bold italics.
 1  Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing
More informationSolutions to modified 2 nd Midterm
Math 125 Solutions to moifie 2 n Miterm 1. For each of the functions f(x) given below, fin f (x)). (a) 4 points f(x) = x 5 + 5x 4 + 4x 2 + 9 Solution: f (x) = 5x 4 + 20x 3 + 8x (b) 4 points f(x) = x 8
More informationPower Series. We already know how to express one function as a series. Take a look at following equation: 1 1 r = r n. n=0
Math 0 Calc Power, Taylor, and Maclaurin Series Survival Guide One of the harder concepts that we have to become comfortable with during this semester is that of sequences and series We are working with
More informationInterpolating Polynomials Handout March 7, 2012
Interpolating Polynomials Handout March 7, 212 Again we work over our favorite field F (such as R, Q, C or F p ) We wish to find a polynomial y = f(x) passing through n specified data points (x 1,y 1 ),
More informationAnswers to the Practice Problems for Test 2
Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan
More informationMicroeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
More informationMATH 2300 review problems for Exam 3 ANSWERS
MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test
More informationLecture 5 : Continuous Functions Definition 1 We say the function f is continuous at a number a if
Lecture 5 : Continuous Functions Definition We say the function f is continuous at a number a if f(x) = f(a). (i.e. we can make the value of f(x) as close as we like to f(a) by taking x sufficiently close
More informationNotes on Linear Recurrence Sequences
Notes on Linear Recurrence Sequences April 8, 005 As far as preparing for the final exam, I only hold you responsible for knowing sections,,, 6 and 7 Definitions and Basic Examples An example of a linear
More information4.3 Limit of a Sequence: Theorems
4.3. LIMIT OF A SEQUENCE: THEOREMS 5 4.3 Limit of a Sequence: Theorems These theorems fall in two categories. The first category deals with ways to combine sequences. Like numbers, sequences can be added,
More informationDerivatives and Graphs. Review of basic rules: We have already discussed the Power Rule.
Derivatives and Graphs Review of basic rules: We have already discussed the Power Rule. Product Rule: If y = f (x)g(x) dy dx = Proof by first principles: Quotient Rule: If y = f (x) g(x) dy dx = Proof,
More informationCHAPTER 8: DIFFERENTIAL CALCULUS
CHAPTER 8: DIFFERENTIAL CALCULUS 1. Rules of Differentiation As we ave seen, calculating erivatives from first principles can be laborious an ifficult even for some relatively simple functions. It is clearly
More informationk=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =
Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem
More informationMath Instructional Framework. Unit 3 Lesson 1
Math Instructional Framework Time Frame Unit Name Learning Task/Topics/ Themes Standards and Elements Lesson Essential Questions Unit 3 Lesson 1 Logarithmic and Exponential Functions MMA32. Logarithmic
More informationDefinition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: f (x) =
Vertical Asymptotes Definition of Vertical Asymptote The line x = a is called a vertical asymptote of f (x) if at least one of the following is true: lim f (x) = x a lim f (x) = lim x a lim f (x) = x a
More informationRolle s Theorem. q( x) = 1
Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question
More informationSample Induction Proofs
Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given
More informationMath 1B, lecture 14: Taylor s Theorem
Math B, lecture 4: Taylor s Theorem Nathan Pflueger 7 October 20 Introduction Taylor polynomials give a convenient way to describe the local behavior of a function, by encapsulating its first several derivatives
More informationMTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages
MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem
More informationarcsine (inverse sine) function
Inverse Trigonometric Functions c 00 Donal Kreier an Dwight Lahr We will introuce inverse functions for the sine, cosine, an tangent. In efining them, we will point out the issues that must be consiere
More informationMATH 105: PRACTICE PROBLEMS FOR SERIES: SPRING Problems
MATH 05: PRACTICE PROBLEMS FOR SERIES: SPRING 20 INSTRUCTOR: STEVEN MILLER (SJM@WILLIAMS.EDU).. Sequences and Series.. Problems Question : Let a n =. Does the series +n+n 2 n= a n converge or diverge?
More informationFinding Inverse Functions Guided Notes. Example 1: Find the inverse of a(b) = 3b 7
Inverse Functions Finding Inverse Functions Guided Notes We ve explored the idea that the inverse of a function undoes the function. One way of finding the inverse of a function is to. You can think of
More informationFinding Antiderivatives and Evaluating Integrals
Chapter 5 Finding Antiderivatives and Evaluating Integrals 5. Constructing Accurate Graphs of Antiderivatives Motivating Questions In this section, we strive to understand the ideas generated by the following
More informationIntroduction to Calculus
Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative
More informationCURVES: VELOCITY, ACCELERATION, AND LENGTH
CURVES: VELOCITY, ACCELERATION, AND LENGTH As examples of curves, consier the situation where the amounts of ncommoities varies with time t, qt = q 1 t,..., q n t. Thus, the amount of the commoities are
More informationFourier Series Chapter 3 of Coleman
Fourier Series Chapter 3 of Coleman Dr. Doreen De eon Math 18, Spring 14 1 Introduction Section 3.1 of Coleman The Fourier series takes its name from Joseph Fourier (1768183), who made important contributions
More information3.2. The Remainder Theorem. Investigate Polynomial Division
3.2 The Remainder Theorem Focus on... describing the relationship between polynomial long division and synthetic division dividing polynomials by binomials of the form x  a using long division or synthetic
More informationx 2 x 2 cos 1 x x2, lim 1. If x > 0, multiply all three parts by x > 0, we get: x x cos 1 x x, lim lim x cos 1 lim = 5 lim sin 5x
Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0
More informationD f = (2, ) (x + 1)(x 3) (b) g(x) = x 1 solution: We need the thing inside the root to be greater than or equal to 0. So we set up a sign table.
. Find the domains of the following functions: (a) f(x) = ln(x ) We need x > 0, or x >. Thus D f = (, ) (x + )(x 3) (b) g(x) = x We need the thing inside the root to be greater than or equal to 0. So we
More information2.7. The straight line. Introduction. Prerequisites. Learning Outcomes. Learning Style
The straight line 2.7 Introduction Probably the most important function and graph that you will use are those associated with the straight line. A large number of relationships between engineering variables
More informationf(x) = undefined otherwise We have Domain(f) = [ π, π ] and Range(f) = [ 1, 1].
Lecture 6 : Inverse Trigonometric Functions Inverse Sine Function (arcsin = sin ) The trigonometric function sin is not onetoone functions, hence in orer to create an inverse, we must restrict its omain.
More information55x 3 + 23, f(x) = x2 3. x x 2x + 3 = lim (1 x 4 )/x x (2x + 3)/x = lim
Slant Asymptotes If lim x [f(x) (ax + b)] = 0 or lim x [f(x) (ax + b)] = 0, then the line y = ax + b is a slant asymptote to the graph y = f(x). If lim x f(x) (ax + b) = 0, this means that the graph of
More informationMA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity
MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x
More informationSept 20, 2011 MATH 140: Calculus I Tutorial 2. ln(x 2 1) = 3 x 2 1 = e 3 x = e 3 + 1
Sept, MATH 4: Calculus I Tutorial Solving Quadratics, Dividing Polynomials Problem Solve for x: ln(x ) =. ln(x ) = x = e x = e + Problem Solve for x: e x e x + =. Let y = e x. Then we have a quadratic
More informationDerivatives Math 120 Calculus I D Joyce, Fall 2013
Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te
More information1.2 A Catalog of Essential Functions
1.2 A Catalog of Essential Functions Many real world phenomena can be modeled using basic functions, so we need to be familiar with these. 1) Linear: y = f(x) = mx + b; The graph is a line with slope m
More informationDifferentiability of Exponential Functions
Differentiability of Exponential Functions Philip M. Anselone an John W. Lee Philip Anselone (panselone@actionnet.net) receive his Ph.D. from Oregon State in 1957. After a few years at Johns Hopkins an
More informationSection 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations
Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate
More informationTaylor Polynomials and Taylor Series Math 126
Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will
More informationThe Inverse Trigonometric Functions
The Inverse Trigonometric Functions These notes amplify on the book s treatment of inverse trigonometric functions an supply some neee practice problems. Please see pages 543 544 for the graphs of sin
More informationThe Derivative of ln x. d dx EXAMPLE 3.1. Differentiate the function f(x) x ln x. EXAMPLE 3.2
Chapter 4 Section 3 Differentiation of Logarithmic an Eponential Functions 331 3 RADIOLOGY Differentiation of Logarithmic an Eponential Functions 61. The raioactive isotope gallium67 ( 67 Ga), use in
More informationIntroduction to polynomials
Worksheet 4.5 Polynomials Section 1 Introduction to polynomials A polynomial is an expression of the form p(x) = p 0 + p 1 x + p 2 x 2 + + p n x n, (n N) where p 0, p 1,..., p n are constants and x os
More information19.2. First Order Differential Equations. Introduction. Prerequisites. Learning Outcomes
First Orer Differential Equations 19.2 Introuction Separation of variables is a technique commonly use to solve first orer orinary ifferential equations. It is socalle because we rearrange the equation
More informationMath 41: Calculus Final Exam December 7, 2009
Math 41: Calculus Final Exam December 7, 2009 Name: SUID#: Select your section: Atoshi Chowdhury Yuncheng Lin Ian Petrow Ha Pham Yujong Tzeng 02 (1111:50am) 08 (1010:50am) 04 (1:152:05pm) 03 (1111:50am)
More informationLearning Objectives for Math 165
Learning Objectives for Math 165 Chapter 2 Limits Section 2.1: Average Rate of Change. State the definition of average rate of change Describe what the rate of change does and does not tell us in a given
More informationCork Institute of Technology. CIT Mathematics Examination, Paper 2 Sample Paper A
Cork Institute of Technology CIT Mathematics Examination, 2015 Paper 2 Sample Paper A Answer ALL FIVE questions. Each question is worth 20 marks. Total marks available: 100 marks. The standard Formulae
More informationLectures 56: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5: Taylor Series Weeks 5 Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
More informationThe Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
More information4. Factor polynomials over complex numbers, describe geometrically, and apply to realworld situations. 5. Determine and apply relationships among syn
I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More informationWeek 910: Recurrence Relations and Generating Functions
Week 910: Recurrence Relations and Generating Functions March 31, 2015 1 Some number sequences An infinite sequence (or just a sequence for short is an ordered array a 0, a 1, a 2,..., a n,... of countably
More informationFourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More informationChapter 7. Induction and Recursion. Part 1. Mathematical Induction
Chapter 7. Induction and Recursion Part 1. Mathematical Induction The principle of mathematical induction is this: to establish an infinite sequence of propositions P 1, P 2, P 3,..., P n,... (or, simply
More informationFactoring Trinomials: The ac Method
6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For
More informationTOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More informationMultiplicity. Chapter 6
Chapter 6 Multiplicity The fundamental theorem of algebra says that any polynomial of degree n 0 has exactly n roots in the complex numbers if we count with multiplicity. The zeros of a polynomial are
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Math 110 Review for Final Examination 2012 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Match the equation to the correct graph. 1) y = 
More informationVersion PREVIEW HW 04 hoffman (57225) 1. Consequently,
Version PREVIEW HW 04 hoffman (57225) 1 This printout shoul have 12 questions Multiplechoice questions may continue on the next column or page fin all choices before answering CalCa02b 001 100 points
More informationThe graphs of f and g intersect at (0, 0) and one other point. Find that point: f(y) = g(y) y 2 4y 2y 2 6y = = 2y y 2. 2y(y 3) = 0
. Compute the area between the curves x y 4y and x y y. Let f(y) y 4y y(y 4). f(y) when y or y 4. Let g(y) y y y( y). g(y) when y or y. x 3 y? The graphs of f and g intersect at (, ) and one other point.
More informationPRECALCULUS Semester I Exam Review Sheet
PRECALCULUS Semester I Exam Review Sheet Chapter Topic P.1 Real Numbers {1, 2, 3, 4, } Natural (aka Counting) Numbers {0, 1, 2, 3, 4, } Whole Numbers {, 3, 2, 2, 0, 1, 2, 3, } Integers Can be expressed
More informationAlgebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: AAPR.3: Identify zeros of polynomials
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More information4.7. Taylor and MacLaurin Series
4.7. TAYLOR AND MACLAURIN SERIES 0 4.7. Taylor and MacLaurin Series 4.7.. Polynomial Approximations. Assume that we have a function f for which we can easily compute its value f(a) at some point a, but
More informationProcedure In each case, draw and extend the given series to the fifth generation, then complete the following tasks:
Math IV Nonlinear Algebra 1.2 Growth & Decay Investigation 1.2 B: Nonlinear Growth Introduction The previous investigation introduced you to a pattern of nonlinear growth, as found in the areas of a series
More information