Sample Induction Proofs


 Audra Hoover
 1 years ago
 Views:
Transcription
1 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given illustrate all of the main types of induction situations that you may encounter and that you should be able to handle. Use these solutions as models for your writing up your own solutions in exams and homework. For additional examples, see the following examples and exercises in the Rosen text: Section 4., Examples 0, Exercises 3, 5, 7, 3, 5, 9,, 3, 5, 45. Section 4.3, Example 6, Exercises 3, 5.. Prove by induction that, for all n Z +, n ( )i i = ( ) n n(n + )/. () n ( ) i i = ( )n n(n + ). Base case: When n =, the left side of () is ( ) =, and the right side is ( )(+)/ =, so both sides are equal and () is true for n =. Induction step: Let k Z + be given and suppose () is true for n = k. Then ( ) i i = ( ) i i + ( ) (k + ) = ( )k k(k + ) = ( )k (k + ) + ( ) (k + ) (by induction hypothesis) (k (k + )) = ( )k (k + ) ( k ) = ( ) (k + ). Thus, () holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, () is true for all n Z +.. Find and prove by induction a formula for n i(i+), where n Z +. () n i(i + ) = n n +. Base case: When n =, the left side of () is /( ) = /, and the right side is /, so both sides are equal and () is true for n =.
2 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Induction step: Let k Z + be given and suppose () is true for n = k. Then i(i + ) = i(i + ) + (k + )(k + ) = k k + + (by induction hypothesis) (k + )(k + ) k(k + ) + = (by algebra) (k + )(k + ) (k + ) = (k + )(k + ) = k + k +. (by algebra) Thus, () holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, () is true for all n Z Find and prove by induction a formula for n n Z +. (i ) (i.e., the sum of the first n odd numbers), where () n (i ) = n. Base case: When n =, the left side of () is, and the right side is =, so both sides are equal and () is true for n =. Induction step: Let k Z + be given and suppose () is true for n = k. Then (i ) = (i ) + ((k + ) ) = k + (k + ) (by induction hypothesis) = k + k + = (k + ). Thus, () holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, () is true for all n. 4. Find and prove by induction a formula for n i= ( i ), where n Z + and n. Proof: We will prove by induction that, for all integers n, () n ( i ) i= = n + n. Base case: When n =, the left side of () is / = 3/4, and the right side is (+)/4 = 3/4, so both sides are equal and () is true for n =.
3 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Induction step: Let k be given and suppose () is true for n = k. Then i= ( i ) = k i= = k + k ( i ) ( ( (k + ) = k + k (k + ) (k + ) = k + k k(k + ) = k + (k + ). ) (k + ) ) (by induction hypothesis) Thus, () holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, () is true for all n Z + with n. 5. Prove that n! > n for n 4. Proof: We will prove by induction that n! > n holds for all n 4. Base case: Our base case here is the first nvalue for which is claimed, i.e., n = 4. For n = 4, the left and right sides of are 4 and 6, respectively, so is true in this case. Induction step: Let k 4 be given and suppose is true for n = k. Then (k + )! = k!(k + ) > k (k + ) (by induction hypothesis) k (since k 4 and so k + )) =. Thus, holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, it follows that is true for all n Prove that for any real number x > and any positive integer x, ( + x) n + nx. Proof: Let x be a real number in the range given, namely x >. We will prove by induction that for any positive integer n, ( + x) n + nx. holds for any n Z +. Base case: For n =, the left and right sides of are both + x, so holds. Induction step: Let k Z + be given and suppose is true for n = k. We have ( + x) = ( + x) k ( + x) ( + kx)( + x) (by ind. hyp. and since x > and thus ( + x) > 0) = + (k + )x + kx (by algebra) + (k + )x (since kx 0). Hence holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, it follows that holds for all n Z +. 3
4 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand 7. Prove that n f i = f nf n+ for all n Z +. Proof: We seek to show that, for all n Z +, n fi = f n f n+. Base case: When n =, the left side of is f =, and the right side is f f = =, so both sides are equal and is true for n =. Induction step: Let k Z + be given and suppose is true for n = k. Then fi = fi + f = f k f + f (by ind. hyp. with n = k) = f (f k + f ) (by algebra) = f f k+ (by recurrence for f n ). Thus, holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, it follows that is true for all n Z Prove that f n (3/) n for all n Z +. Proof: We will show that for all n Z +, f n (3/) n Base cases: When n =, the left side of is f =, and the right side is (3/) = /3, so holds for n =. When n =, the left side of is f =, and the right side is (3/) 0 =, so both sides are equal and is true for n =. Thus, holds for n = and n =. Induction step: Let k be given and suppose is true for all n =,,..., k. Then f = f k + f k (by recurrence for f n ) (3/) k + (3/) k 3 (by induction hypothesis with n = k and n = k ) = (3/) k ( (3/) + (3/) ) (by algebra) ( = (3/) k ) 9 = (3/) k 0 9 > (3/)k. Thus, holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of strong induction, it follows that is true for all n Z +. Remarks: Number of base cases: Since the induction step involves the cases n = k and n = k, we can carry out this step only for values k (for k =, k would be 0 and out of range). This in turn forces us to include the cases n = and n = in the base step. Such multiple bases cases are typical in proofs involving recurrence sequences. For a three term recurrence we would need to check three initial cases, n =,, 3, and in the induction step restrict k to values 3 or greater. 9. Prove that n f i = f n+ for all n Z +. 4
5 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand n f i = f n+. Base case: When n =, the left side of is f =, and the right side is f 3 = =, so both sides are equal and is true for n =. Induction step: Let k Z + be given and suppose is true for n = k. Then f i = f i + f = f k+ + f (by ind. hyp. with n = k) = f k+3 (by recurrence for f n ) Thus, holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of induction, it follows that is true for all n Z +. Remark: Here standard induction was sufficient, since we were able to relate the n = k + case directly to the n = k case, in the same way as in the induction proofs for summation formulas like n i = n(n + )/. Hence, a single base case was sufficient. 0. Let the Tribonacci sequence be defined by T = T = T 3 = and T n = T n + T n + T n 3 for n 4. Prove that T n < n for all n Z +. Proof: We will prove by strong induction that, for all n Z +, T n < n Base case: We will need to check directly for n =,, 3 since the induction step (below) is only valid when k 3. For n =,, 3, T n is equal to, whereas the righthand side of is equal to =, = 4, and 3 = 8, respectively. Thus, holds for n =,, 3. Induction step: Let k 3 be given and suppose is true for all n =,,..., k. Then T = T k + T k + T k (by recurrence for T n ) < k + k + k (by strong ind. hyp. with n = k, k, and k ) ( = ) 8 = 7 8 <. Thus, holds for n = k +, and the proof of the induction step is complete. Conclusion: By the principle of strong induction, it follows that is true for all n Z +.. Let a n be the sequence defined by a =, a = 8, a n = a n + a n (n 3). Prove that a n = 3 n + ( ) n for all n Z +. Proof: We will prove by strong induction that, for all n Z +, a n = 3 n + ( ) n. Base case: When n =, the left side of is a =, and the right side is ( ) =, so both sides are equal and is true for n =. 5
6 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand When n =, the left and right sides of are a = 8 and 3 + ( ) = 8, so holds in this case as well. Induction step: Let k Z + with k be given and suppose is true for n =,,..., k. Then a = a k + a k (by recurrence for a n ) = 3 k + ( ) k + ( 3 k + ( ) k ) (by for n = k and n = k ) = 3 ( k + k ) + ( ( ) k + ( ) k ) (by algebra) = 3 k + ( ) (more algebra). Thus, holds for n = k +, and the proof of the induction step is complete. Conclusion: By the strong induction principle, it follows that is true for all n Z +.. Number of subsets: Show that a set of n elements has n subsets. Proof: P (n) We will prove by induction that, for all n Z +, the following holds: Any set of n elements has n subsets. Base case: Since any element set has subsets, namely the empty set and the set itself, and =, the statement P (n) is true for n =. Induction step: Let k Z + be given and suppose P (k) is true, i.e., that any kelement set has k subsets. We seek to show that P (k + ) is true as well, i.e., that any (k + )element set has subsets. Let A be a set with (k + ) elements. Let a be an element of A, and let A = A {a} (so that A is a set with k elements). We classify the subsets of A into two types: (I) subsets that do not contain a, and (II) subsets that do contain a. The subsets of type (I) are exactly the subsets of the set A. Since A has k elements, the induction hypothesis can be applied to this set and we get that there are k subsets of type (I). The subsets of type (II) are exactly the sets of the form B = B {a}, where B is a subset of A. By the induction hypothesis there are k such sets B, and hence k subsets of type (II). Since there are k subsets of each of the two types, the total number of subsets of A is k + k =. Since A was an arbitrary (k + )element set, we have proved that any (k + )element set has subsets. Thus P (k + ) is true, completing the induction step. Conclusion: By the principle of induction, P (n) is true for all n Z Number of element subsets: Show that a set of n elements has n(n )/ subsets with elements. (Take n = as the base case.) Proof: (Sketch) This can be proved in the same way as the formula for the number of all subsets. For the number of Type I subsets (i.e., those not containing the element a), the induction hypothesis can be used as before. The Type II subsets of A can be counted directly: the latter subsets are those of the form {a, b}, where a is the selected element and b is an arbitrary element in A {a}. There are k choices for b, and hence k subsets of Type II. 4. Generalization of De Morgan s Law to unions of n sets. Show that if A,..., A n are sets, then (A A n ) = A A n. 6
7 Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Proof: P (n): We seek to prove by induction on n the following statement: For all sets A,..., A n we have (A A n ) = A A n. The key to the argument is two set version of De Morgan s Law: ( ) (A B) = A B, which holds for any sets A and B. Base case: For n =, the left and right sides of are both equal to A, so holds trivially in this case. Hence P () is true. Though not absolutely necessary, we can also easily verify the next case, n = : In this case, the left and right sides of are (A A ) and A A, respectively, so the identity is just the two set version of De Morgan s Law, i.e., ( ) with A = A and B = A. Induction step: Let k, and suppose P (k) is true, i.e., suppose that holds for n = k and any sets A,..., A k. We seek to show that P (k + ) is true, i.e., that for any sets A,..., A, holds. Let A,..., A be given sets. Then (A A ) = ((A A k ) A ) = (A A k ) A (by ( ) with A = (A A k ) and B = A ) = ( A A k ) A (by induction hypothesis applied to A,..., A k ) = A A k A. Thus, holds for n = k +, and since the A,..., A were arbitrary sets, we have obtained statement P (k + ). Hence, the proof of the induction step is complete. Conclusion: By the principle of induction, it follows that P (n) is true for all n Z +. 7
8.7 Mathematical Induction
8.7. MATHEMATICAL INDUCTION 8135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture
More informationSequences and Summations. Andreas Klappenecker
Sequences and Summations Andreas Klappenecker Sequences Sequences A sequence is a function from a subset of the set of integers (such as {0,1,2,...} or {1,2,3,...}) to some set S. We use the notation a
More informationClimbing an Infinite Ladder
Section 5.1 Climbing an Infinite Ladder Suppose we have an infinite ladder and the following capabilities: 1. We can reach the first rung of the ladder. 2. If we can reach a particular rung of the ladder,
More informationInduction More Examples
Induction More Examples Margaret M. Fleck March 009 In this lecture, we see more examples of mathematical induction (section 4.1 of Rosen). 1 Recap A simple proof by induction has the following outline:
More informationWorksheet on induction Calculus I Fall 2006 First, let us explain the use of for summation. The notation
Worksheet on induction MA113 Calculus I Fall 2006 First, let us explain the use of for summation. The notation f(k) means to evaluate the function f(k) at k = 1, 2,..., n and add up the results. In other
More informationCOMP232  Mathematics for Computer Science
COMP3  Mathematics for Computer Science Tutorial 10 Ali Moallemi moa ali@encs.concordia.ca Iraj Hedayati h iraj@encs.concordia.ca Concordia University, Winter 016 Ali Moallemi, Iraj Hedayati COMP3  Mathematics
More informationHomework 6, Fri CS 2050, Intro Discrete Math for Computer Science Due Mon , Note: This homework has 2 pages and 5 problems.
Homework 6, Fri 08 CS 050, Intro Discrete Math for Computer Science Due Mon 7, Note: This homework has pages and 5 problems. Problem : 0 Points What is wrong with this proof? Theorem: For every positive
More information3. Mathematical Induction
3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)
More informationPRINCIPLE OF MATHEMATICAL INDUCTION
Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION Analysis and natural philosophy owe their most important discoveries to this fruitful means, which is called induction Newton was indebted to it for his theorem
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What
More informationIntroduction. Induction. What is Induction? The Well Ordering Principle I. Another View II. Theorem (Principle of Well Ordering)
Induction Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Introduction How can we prove the following quantified statement? s SP (x) Spring 00 For a finite set S {s 1, s,..., s n }, we can
More informationMath 213 F1 Final Exam Solutions Page 1 Prof. A.J. Hildebrand
Math 213 F1 Final Exam Solutions Page 1 Prof. A.J. Hildebrand 1. For the questions below, just provide the requested answer no explanation or justification required. As always, answers should be left in
More informationPRINCIPLE OF MATHEMATICAL INDUCTION
Chapter 4 PRINCIPLE OF MATHEMATICAL INDUCTION 4.1 Overview Mathematical induction is one of the techniques which can be used to prove variety of mathematical statements which are formulated in terms of
More informationp 2 1 (mod 6) Adding 2 to both sides gives p (mod 6)
.9. Problems P10 Try small prime numbers first. p p + 6 3 11 5 7 7 51 11 13 Among the primes in this table, only the prime 3 has the property that (p + ) is also a prime. We try to prove that no other
More informationMath 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
More informationMathematical induction. Niloufar Shafiei
Mathematical induction Niloufar Shafiei Mathematical induction Mathematical induction is an extremely important proof technique. Mathematical induction can be used to prove results about complexity of
More informationDEFINITIONS: 1. FACTORIAL: n! = n (n 1) (n 2) ! = 1. n! = n (n 1)! = n (n 1) (n 2)! (n + 1)! = (n + 1) n! = (n + 1) n (n 1)!
MATH 2000 NOTES ON INDUCTION DEFINITIONS: 1. FACTORIAL: n! = n (n 1) (n 2)... 3 2 1 0! = 1 n! = n (n 1)! = n (n 1) (n 2)! (n + 1)! = (n + 1) n! = (n + 1) n (n 1)! 2. SUMMATION NOTATION: f(i) = f(1) + f(2)
More informationChapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1
Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes
More informationCourse Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction.
Course Notes for Math 320: Fundamentals of Mathematics Chapter 3: Induction. February 21, 2006 1 Proof by Induction Definition 1.1. A subset S of the natural numbers is said to be inductive if n S we have
More informationThe binomial series for negative integral exponents
The binomial series for negative integral exponents Peter Haggstrom www.gotohaggstrom.com mathsatbondibeach@gmail.com July, 0 Background Newton developed the binomial series in order to solve basic problems
More information1.3. INDUCTION 17. n (n + 1) 2 (cos x + i sin x) n = cos nx+i sin nx. This is known as de Moivre s theorem.
.3. INDUCTION 7.3 Induction.3. Definition and Examples Proofs by induction are often used when one tries to prove a statement made about natural numbers or integers. Here are examples of statements where
More information1.5 Problems and solutions
15 PROBLEMS AND SOLUTIONS 11 15 Problems and solutions Homework 1: 01 Show by induction that n 1 + 2 2 + + n 2 = n(n + 1)(2n + 1) 01 Show by induction that n 1 + 2 2 + + n 2 = n(n + 1)(2n + 1) We ve already
More informationHOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!
Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following
More informationMATHEMATICAL INDUCTION. Mathematical Induction. This is a powerful method to prove properties of positive integers.
MATHEMATICAL INDUCTION MIGUEL A LERMA (Last updated: February 8, 003) Mathematical Induction This is a powerful method to prove properties of positive integers Principle of Mathematical Induction Let P
More informationDiscrete Mathematics Inductive proofs
Discrete Mathematics Inductive proofs Saad Mneimneh 1 A weird proof Contemplate the following: 1 = 1 1 + 3 = 4 1 + 3 + = 9 1 + 3 + + 7 = 1 1 + 3 + + 7 + 9 =.. It looks like the sum of the first n odd integers
More informationHomework 4 CS 1050 A Due:
91608 Homework 4 CS 1050 A Due: 9308 Every assignment will be due at the beginning of class. Recall that you can collaborate in groups and/or use external references, but you must acknowledge the group/references
More informationMathematical Induction
Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers
More information3. Recurrence Recursive Definitions. To construct a recursively defined function:
3. RECURRENCE 10 3. Recurrence 3.1. Recursive Definitions. To construct a recursively defined function: 1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.. Recursion: Use a
More informationLecture 02: Probability Spaces Friday, January 20, 2012
Lecture 02: Probability Spaces Friday, January 20, 2012 1 DeMorgan s Laws There is a discussion of the algebra of sets in 2.1. Unless it is causing some sort of trouble I won t go over most of it in class,
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationDiscrete Mathematics, Chapter 5: Induction and Recursion
Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Wellfounded
More informationDirect Proofs. CS 19: Discrete Mathematics. Direct Proof: Example. Indirect Proof: Example. Proofs by Contradiction and by Mathematical Induction
Direct Proofs CS 19: Discrete Mathematics Amit Chakrabarti Proofs by Contradiction and by Mathematical Induction At this point, we have seen a few examples of mathematical proofs. These have the following
More informationEECS 203: Discrete Mathematics Individual Homework 3 (Winter 2016)
EECS 203: Discrete Mathematics Individual Homework 3 (Winter 2016) Answer Key Due: May 19, 2016 1. (2 points) Section 1.6 Problem 28 1. x(p (x) Q(x)) premise 2. x(( P (x) Q(x)) R(x)) premise Let c be an
More informationMathematical Induction
Mathematical Induction MAT30 Discrete Mathematics Fall 016 MAT30 (Discrete Math) Mathematical Induction Fall 016 1 / 19 Outline 1 Mathematical Induction Strong Mathematical Induction MAT30 (Discrete Math)
More informationMath 213, Section X1 Midterm Exam 1 Solutions and Comments Spring 2006
Problem 1 Let A = {0, 1} and B = {2, 3}. Write down the following sets, using proper mathematical notation (e.g., use parentheses or braces as appropriate. 1. The power set of A: P (A = Solution: The power
More informationLecture 3. Mathematical Induction
Lecture 3 Mathematical Induction Induction is a fundamental reasoning process in which general conclusion is based on particular cases It contrasts with deduction, the reasoning process in which conclusion
More informationMathematical Induction
Chapter 2 Mathematical Induction 2.1 First Examples Suppose we want to find a simple formula for the sum of the first n odd numbers: 1 + 3 + 5 +... + (2n 1) = n (2k 1). How might we proceed? The most natural
More informationMATH 289 PROBLEM SET 1: INDUCTION. 1. The induction Principle The following property of the natural numbers is intuitively clear:
MATH 89 PROBLEM SET : INDUCTION The induction Principle The following property of the natural numbers is intuitively clear: Axiom Every nonempty subset of the set of nonnegative integers Z 0 = {0,,, 3,
More informationSEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION
CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ  http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.
More informationCS103X: Discrete Structures Homework Assignment 1: Solutions
CS103X: Discrete Structures Homework Assignment 1: Solutions Due January, 008 Exercise 1 (10 Points). Prove or give a counterexample for each of the following: (a) If A B and B C, then A C. (b) If A B
More informationCARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE
CARDINALITY, COUNTABLE AND UNCOUNTABLE SETS PART ONE With the notion of bijection at hand, it is easy to formalize the idea that two finite sets have the same number of elements: we just need to verify
More informationMathematical Induction. Lecture 1011
Mathematical Induction Lecture 1011 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach
More informationCS 173: Discrete Structures, Fall 2010 Homework 6 Solutions
CS 173: Discrete Structures, Fall 010 Homework 6 Solutions This homework was worth a total of 5 points. 1. Recursive definition [13 points] Give a simple closedform definition for each of the following
More informationFull and Complete Binary Trees
Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full
More informationProblems on Discrete Mathematics 1
Problems on Discrete Mathematics 1 ChungChih Li Kishan Mehrotra 3 L A TEX at July 18, 007 1 No part of this book can be reproduced without permission from the authors Illinois State University, Normal,
More informationHOMEWORK 2 SOLUTIONS  MATH 215 INSTRUCTOR: George Voutsadakis
HOMEWORK 2 SOLUTIONS  MATH 215 INSTRUCTOR: George Voutsadakis Problem 1 Let x and y be integers. Prove that (a) if x and y are even, then x + y is even. (b) if x and y are even, then xy is divisible by
More informationSolutions for Practice problems on proofs
Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some
More informationMathematical Induction
Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,
More information3.3 MATHEMATICAL INDUCTION
Section 3.3 Mathematical Induction 3.3.1 3.3 MATHEMATICAL INDUCTION From modus ponens: p p q q basis assertion conditional assertion conclusion we can easily derive double modus ponens : p 0 p 0 p 1 p
More informationIntroduction. Appendix D Mathematical Induction D1
Appendix D Mathematical Induction D D Mathematical Induction Use mathematical induction to prove a formula. Find a sum of powers of integers. Find a formula for a finite sum. Use finite differences to
More informationDiscrete Mathematics: Homework Assignment 1 solutions
Discrete Mathematics: Homework Assignment 1 solutions Due : Thursday, 3 February 2005 Please submit solutions to the following problems: 1. Provide direct proofs of the following statements : (a) If n
More informationSome Review Problems for Exam 3: Solutions
Math 3355 Fall 016 Some Review Problems for Exam 3: Solutions I thought I d start by reviewing some counting formulas. Counting the Complement: Given a set U (the universe for the problem), if you want
More informationMATHEMATICAL INDUCTION
MATHEMATICAL INDUCTION MATH 5A SECTION HANDOUT BY GERARDO CON DIAZ Imagine a bunch of dominoes on a table. They are set up in a straight line, and you are about to push the first piece to set off the chain
More informationYimin Math Centre. 2/3 Unit Math Homework for Year 12 (Answers) 3.1 The Binomial Theorem Greatest Coefficient and Greatest Term...
/3 Unit Math Homework for Year 1 (Answers) Student Name: Grade: Date: Score: Table of contents 3 The Binomial Theorem Part 1 3.1 The Binomial Theorem.................................. 1 3. Greatest Coefficient
More informationMathematical Induction. Mary Barnes Sue Gordon
Mathematics Learning Centre Mathematical Induction Mary Barnes Sue Gordon c 1987 University of Sydney Contents 1 Mathematical Induction 1 1.1 Why do we need proof by induction?.... 1 1. What is proof by
More information(3n 2) = (3n 2) = 1(3 1) 2 1 = (3k 2) =
Question 1 Prove using mathematical induction that for all n 1, Solution 1 + + 7 + + (n ) = n(n 1) For any integer n 1, let P n be the statement that 1 + + 7 + + (n ) = n(n 1) Base Case The statement P
More informationSection 62 Mathematical Induction
6 Mathematical Induction 457 In calculus, it can be shown that e x k0 x k k! x x x3!! 3!... xn n! where the larger n is, the better the approximation. Problems 6 and 6 refer to this series. Note that
More information4. PRINCIPLE OF MATHEMATICAL INDUCTION
4 PRINCIPLE OF MATHEMATICAL INDUCTION Ex Prove the following by principle of mathematical induction 1 1 + 2 + 3 + + n 2 1 2 + 2 2 + 3 2 + + n 2 3 1 3 + 2 3 + 3 3 + + n 3 + 4 (1) + (1 + 3) + (1 + 3 + 5)
More information1. De Morgan s Law. Let U be a set and consider the following logical statement depending on an integer n. We will call this statement P (n):
Math 309 Fall 0 Homework 5 Drew Armstrong. De Morgan s Law. Let U be a set and consider the following logical statement depending on an integer n. We will call this statement P (n): For any n sets A, A,...,
More informationSECTION 102 Mathematical Induction
73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms
More informationIMPORTANT NOTE: All the following statements are equivalent:
.5 Congruences For this section, we think of m as a fixed positive integer. Definition 15. We say that a is congruent to b modulo m, and we write if m divides (a b). a b (mod m) IMPORTANT NOTE: All the
More informationCountable and Uncountable Sets
Countable and Uncountable Sets In this section we extend the idea of the size of a set to infinite sets. It may come as somewhat of a surprise that there are different sizes of infinite sets. At the end
More informationCOMPUTER SCIENCE 123. Foundations of Computer Science. 20. Mathematical induction
COMPUTER SCIENCE 123 Foundations of Computer Science 20. Mathematical induction Summary: This lecture introduces mathematical induction as a technique for proving the equivalence of two functions, or for
More informationDiscrete Mathematics: Solutions to Homework (12%) For each of the following sets, determine whether {2} is an element of that set.
Discrete Mathematics: Solutions to Homework 2 1. (12%) For each of the following sets, determine whether {2} is an element of that set. (a) {x R x is an integer greater than 1} (b) {x R x is the square
More informationMATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS
1 CHAPTER 6. MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATHEMATICAL INDUCTION AND DIFFERENCE EQUATIONS 1 Introduction Recurrence
More informationPUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.
PUTNAM TRAINING NUMBER THEORY (Last updated: November 8, 2016) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice
More informationCountable and Uncountable Sets
Countable and Uncountable Sets What follows is a different, and I hope simpler, presentation of the material in Appendix 3 of Grimaldi. For practice problems you should do Exercises A3, page A34, 16,
More informationThe WellOrdering Principle for the Integers. Some proofs in mathematics use a property of the set of integers called the WellOrdering Principle.
The WellOrdering Principle for the Integers Some proofs in mathematics use a property of the set of integers called the WellOrdering Principle. Definition of the WellOrdering Principle for the Integers
More informationPreliminary to Math Induction  An Infinite Sequence of Propositions: In Section 11.1, formulas are used to define an infinite sequence of numbers.
Preliminary to Math Induction  An Infinite Sequence of Propositions: In Section 11.1, formulas are used to define an infinite sequence of numbers. For instance the sequence {1,, 4, 8, 16,... } is generated
More informationDiscrete Mathematics: Homework 7 solution. Due: 2011.6.03
EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that
More informationNotes: Chapter 2 Section 2.2: Proof by Induction
Notes: Chapter 2 Section 2.2: Proof by Induction Basic Induction. To prove: n, a W, n a, S n. (1) Prove the base case  S a. (2) Let k a and prove that S k S k+1 Example 1. n N, n i = n(n+1) 2. Example
More informationHomework # 5 Solutions
Homework # 5 Solutions Math 111, Fall 2014 Instructor: Dr. Doreen De Leon 1. Write the negation of the following sentences. (a) Either x = 0 or y = 0. (b) The integers a and b are both nonnegative. (c)
More informationMultiple Choice Questions for Review
Review Questions Multiple Choice Questions for Review In each case there is one correct answer (given at the end of the problem set). Try to work the problem first without looking at the answer. Understand
More information1. We proceed with the following algebraic manipulation:
Homework Solutions 1. We proceed with the following algebraic manipulation: x 2 x 1 0 (mod 1957 x 2 x 1 (mod 1957 x 2 x + ( 2 2 1 + ( 2 2 (mod 1957 (x 2 2 1 + 9 4 (mod 1957 4(4 + 9 4 1 (mod 1957 So it
More informationMath 317 HW #7 Solutions
Math 17 HW #7 Solutions 1. Exercise..5. Decide which of the following sets are compact. For those that are not compact, show how Definition..1 breaks down. In other words, give an example of a sequence
More informationMath 117: Infinite Sequences
Math 117: Infinite Sequences John Douglas Moore November 3, 2010 We next describe how the BolzanoWeierstrass Theorem which in turn is an immediate consequence of the HeineBorel Theorem) can be used to
More informationMath 2602 Finite and Linear Math Fall 14. Homework 9: Core solutions
Math 2602 Finite and Linear Math Fall 14 Homework 9: Core solutions Section 8.2 on page 264 problems 13b, 27a27b. Section 8.3 on page 275 problems 1b, 8, 10a10b, 14. Section 8.4 on page 279 problems
More informationLOGIC & SET THEORY AMIN WITNO
LOGIC & SET THEORY AMIN WITNO.. w w w. w i t n o. c o m Logic & Set Theory Revision Notes and Problems Amin Witno Preface These notes are for students of Math 251 as a revision workbook
More informationPractice Problems Solutions
Practice Problems Solutions The problems below have been carefully selected to illustrate common situations and the techniques and tricks to deal with these. Try to master them all; it is well worth it!
More informationMAT2400 Analysis I. A brief introduction to proofs, sets, and functions
MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take
More informationHomework 3. d(x, y) = x i y i. d(x, y) = sup x i y i. d(x, y) = max{d 1 (x 1, y 1 ), d 2 (x 2, y 2 )}.
Homework 3 Page 61 of Rosenlicht: 1, 2, 4, 5, 6, 15, 16(a),(c), 17, 22. 1. Verify that the following are metric spaces (a) all ntuples of real numbers with d(x, y) = n x i y i i=1 (b) all bounded infinite
More informationNotes on Linear Algebra
Notes on Linear Algebra David L. Duncan In this class linear algebra plays a key role, a role which should become a little more clear as the course progresses. These notes are meant to give an introduction
More informationThe Greatest Integer function.
The Greatest Integer function Definition For a real number x, denote by x the largest integer less than or equal to x A couple of trivial facts about x: x is the unique integer satisfying x 1 < x x x x
More informationCONTRIBUTIONS TO ZERO SUM PROBLEMS
CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg
More informationApplications of Methods of Proof
CHAPTER 4 Applications of Methods of Proof 1. Set Operations 1.1. Set Operations. The settheoretic operations, intersection, union, and complementation, defined in Chapter 1.1 Introduction to Sets are
More informationPUTNAM TRAINING MATHEMATICAL INDUCTION. Exercises
PUTNAM TRAINING MATHEMATICAL INDUCTION (Last updated: November 8, 016) Remark. This is a list of exercises on mathematical induction. Miguel A. Lerma 1. Prove that n! > n for all n 4. Exercises. Prove
More informationMATH10040 Chapter 3: Congruences and the Chinese Remainder Theorem
MATH10040 Chapter 3: Congruences and the Chinese Remainder Theorem 1. Congruence modulo m Recall that R m (a) denotes the remainder of a on division by m. Thus, by the division algorithm, 0 R m (a) < m
More informationarxiv:math/0202219v1 [math.co] 21 Feb 2002
RESTRICTED PERMUTATIONS BY PATTERNS OF TYPE (2, 1) arxiv:math/0202219v1 [math.co] 21 Feb 2002 TOUFIK MANSOUR LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France
More information1 Recurrence Relations
1 Recurrence Relations Suppose a 0, a 1, a 2,... is a sequence. A recurrence relation for the nth term a n is a formula (i.e., function) giving a n in terms of some or all previous terms (i.e., a 0, a
More informationMore Mathematical Induction. October 27, 2016
More Mathematical Induction October 7, 016 In these slides... Review of ordinary induction. Remark about exponential and polynomial growth. Example a second proof that P(A) = A. Strong induction. Least
More informationICS 6D ( Discrete Mathematic): Solution to Homework #4
Section 3.6 4. Converting integers from binary to decimal notation is done by adding up appropriate powers of 2, depending on the bits in the binary representation, as in Example 1 on page 219. Specifically,
More informationHomework until Test #2
MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such
More informationCMPS 102 Solutions to Homework 1
CMPS 0 Solutions to Homework Lindsay Brown, lbrown@soe.ucsc.edu September 9, 005 Problem.. p. 3 For inputs of size n insertion sort runs in 8n steps, while merge sort runs in 64n lg n steps. For which
More informationPascal s Triangle. Math 1200
Pascal s Triangle Math 1200 Pascal s Triangle starts out 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 The rule for obtaining one row from the previous row is to add two adjacent numbers
More informationChapter 7. Induction and Recursion. Part 1. Mathematical Induction
Chapter 7. Induction and Recursion Part 1. Mathematical Induction The principle of mathematical induction is this: to establish an infinite sequence of propositions P 1, P 2, P 3,..., P n,... (or, simply
More informationSets and Subsets. Countable and Uncountable
Sets and Subsets Countable and Uncountable Reading Appendix A Section A.6.8 Pages 788792 BIG IDEAS Themes 1. There exist functions that cannot be computed in Java or any other computer language. 2. There
More informationAnswer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
More informationSome Notes on Taylor Polynomials and Taylor Series
Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited
More informationMathematics for Economists (66110) Lecture Notes 1
Mathematics for Economists (66110) Lecture Notes 1 Sets Definition: set is a collection of distinct items The items in a set are called elements of the set Examples: 1) The set of integers greater than
More informationAN INTRODUCTION TO LOGIC. and PROOF TECHNIQUES
i AN INTRODUCTION TO LOGIC and PROOF TECHNIQUES Michael A. Henning School of Mathematical Sciences University of KwaZuluNatal ii Contents 1 Logic 1 1.1 Introduction....................................
More information