Summary. Engine Sizing & Selection. Propulsion Integration Extremely Important. Airframe Integrator s Motto. Piston Engine.

Size: px
Start display at page:

Download "Summary. Engine Sizing & Selection. Propulsion Integration Extremely Important. Airframe Integrator s Motto. Piston Engine."

Transcription

1 Engine Sizing & Selection Copyright 2006 by Don Edberg Summary Engine Sizing & Arrangement Introduction Performance Requirements Engine Geometric Characteristics & Placement Airframe Integrator s Motto Blame it on propulsion. Barnaby Wainfan, NGC El Segundo Propulsion Integration Extremely Important A small shortfall in performance can add up to millions of dollars in increased fuel costs Airframe supplier may have to pay penalties for shortfalls Engine Choices Piston Engine Types Piston engine with propeller Turbine engine with prop = Turboprop Turbojet Turbofan (low or high bypass ratio) Pulsejet Ramjet Rocket 1

2 Piston Engines Turbojet Engine Inexpensive Best fuel economy Relatively heavy Vibration issues with intermittent combustion process Performance decrease with altitude Solved with turbocharger or supercharger Inlet Diffuser Shaft Burner Compressor Turbine Nozzle Afterburners Turbojet With Afterburner AKA reheat Pour fuel into rear of engine and burn it Get more thrust Get empty tanks fast (higher SFC) Inlet Low-Pressure Compressor Burner Low-Pressure Turbine Afterburner Flameholders Nozzle High-Pressure Compressor High-Pressure Turbine Afterburner Afterburner Fuel Injectors Low Bypass Ratio Turbofan Low-Pressure Compressor Bypass Duct Nozzle Fan Burner Low-Pressure Turbine High Bypass Ratio Turbofan Fan Burner Low-Pressure Turbine High-Pressure Compressor High-Pressure Turbine Bypass ratio = , T SL /W eng = 6 10, TSFC Dry = , TSFC WET = Afterburner Nozzle Compressor High-Pressure Turbine Bypass ratio = , T SL /W eng = 4 6, TSFC =

3 Pulsejet Engine Rocket-Powered Aircraft Limitations Performance of all engines limited by thermodynamics Exhaust temperature must not damage engine Usually run lean using excess air for cooling Turbines use active blade cooling Thrust determined by mass flow, density drops with altitude (no issue for rocket) Thrust, T, lbs Thrust vs. Speed & Altitude (left: dry; right: afterburning) Sea Level 10,000 ft 20,000 ft 30,000 ft 40,000 ft 50,000 ft Thrust, T, lbs Sea Level 10,000 ft 20,000 ft 30,000 ft 40,000 ft 50,000 ft Mach Number, M Mach Number, M Figures of Merit HP per pound (higher is better) Specific fuel consumption SFC in terms of HP or thrust per weight of fuel Typically in terms of lb thrust/(lb fuel/h) watch units for range & endurance calcs Equivalent for propped engines (delivered power per fuel weight) Lower is better Power Available and Power Required, Power Available vs. Power Required, Prop Aircraft horsepower V for minimum Power Required Power Available Power Required True Airspeed, knots Vmax 3

4 Power Available vs. Power Required, Jet Aircraft Engine Selection Criteria: Cruise speed Cost Economy (fuel, maintenance, etc.) Redundancy etc. Engine data on Internet, AV Week Source issue, Janes, etc. Requirements Size Engines Constraint diagram provides required T/W Estimated weight W provides T = (T/W)W Item Takeoff Length Minimum Rate of Climb Sustained Turn Specific Excess Power Maximum Speed Civil Military () Engine Selection Rubber engine Use an engine deck for performance prediction (ref: AIAA competition history) High cost of engine development Existing engines Search information sources for off-the-shelf engines with sufficient performance No engine development costs Already in maintenance stores? Scaling An Existing Engine L = L actual (SF) 0.4 D = D actual (SF) 0.5 W = W actual (SF) 1.1 SF = scale factor (Raymer ) Engine Geometric Characteristics (Raymer) Non-afterburning and afterburning sizing data equations , Raymer Diameter, engine length,weight, SFC all are functions of takeoff thrust T and Mach no. M Other inlets and ducts as needed Boundary layer diverters Afterburners? Add to your aircraft drawing 4

5 Engine Nacelle Drawing Integration with Airframe Thrust or power level picks or scales engine Inlet air duct must be sized for airflow in ALL conditions Fuel lines Cooling Engine-driven accessories Installation and removal clearances, mounting structure Engine Placement Choices Under wing on pylon (traditional) Aft fuselage side-mounted engines (DC-9, 717) Center fuselage engines (DC-10, 727) Over wing (Honda jet) Other configurations (White Knight, etc.) Engine Placement Trades Locate nacelle(s) to be above or below wing wake Consider structural weight of pylons, etc. FOD ingestion, etc. Weight & balance considerations Wing location, fuselage upsweep, etc. Service & maintenance Local Flow Effects Angle nacelle for local flow direction (calculate upwash or downwash as needed) Example: B-717 engines at rear of fuse are angled upward Inlets Very important to engine performance Must provide enough air in all conditions Must diffuse (slow down) air to M = 0.4 ~ 0.5 Want as much pressure recovery as possible (best >90%) Geometry affects drag of aircraft Upwash Downwash 5

6 Inlet Types NACA duct (for aux air) Conical (SR-71) Normal shock or Pitot (airliners) 2-D Ramp (F-14, F-15) Inlet applicability summarized in Raymer Fig Normal Shock Inlet Geometry in Raymer Fig Lip radius very important No shock if subsonic Rotate front face or entire engine to account for up/downwash from wing Other Inlets May be used for subsonic or supersonic Often use variable geometry Adjust geometry so shock is swallowed or minimized Mechanism must be reliable Isentropic flow desired, but typically get some oblique shocks Raymer Figs to Location of Inlets/Nacelles Many choices (Raymer Fig ) Nose, chin, side, over/under wing, over/under fuselage, wing LE, etc. Want clean air to be ingested Minimizing length minimizes losses CG considerations OEI control ( one engine inoperative ) S-duct vs. Straight (L-1011 vs. MD-11) Internal separation in S-duct vs. structural weight issues with pylon mount Servicing buried engine must be more difficult Inlet Design Capture area estimated using mass flow Estimate area using Raymer Fig m If mass flow not known, rule of thumb is: mass flow = 26[D(ft)] 2 = 127[D(m)] 2 where D is front face diameter. Better to use isentropic compressible flow per Raymer equations 10.16, 10.17,

7 Boundary-Layer Air F-35 Has No BL Diverters Need to avoid BL air for better performance Use a diverter (Fig ) Diverter must be integrated with inlet location Diverter must work effectively at all angles of attack Space for BL air to bypass engine Nozzle Integration Nozzle must (or should) expand exhaust gases and accelerate them Depends on mass flow: often use variablearea nozzle Affects drag Lots of info Raymer pp Cooling also required, Fig Installed Jet Thrust Manufacturer data uses perfect inlet, exhaust, etc. Losses due to: actual inlet, air bleed, power extraction, actual exhaust nozzle, air temperature Aerodynamic losses: drag of inlets, nozzles, trim drag due to change in thrust Brandt suggests: installed T = 0.8T mfr, installed SFC = SFC mfr /0.8 May be offset by engine improvements Engines Mounted on Fuselage Propellers 7

8 One-Bladed Propeller Propeller Types Propellers Prop Blade Angles Prop s Helical speed = (V tip 2 +V 2 ) 1/2 = (ω 2 R 2 +V 2 ) 1/2 Inflow angle changes with velocity so variable pitch props used for maximum efficiency Propeller Blade Angles Variable Pitch Propeller 8

9 Prop Efficiency Efficiency typically depends on advance ratio J and power coefficient C p J = V/nD C p = P/ρn 3 D 5 Can get propeller maps and find sweet spot Corrections for fixed pitch Raymer Fig Power coefficient Propeller Efficiency Chart Propeller efficiency depends on: Power level RPM Blade pitch β Dimensionless numbers are advance ratio J and power coefficient C p Choose pitch and RPM for max efficiency η ( eta ) Advance Ratio J Prop Configurations Pusher allows shorter fuselage = less drag Pusher reduces efficiency because of disturbed airflow over prop (= noise) Longer landing gear required Other Propeller Notes Wing-mounted engines require larger tails for OEI control Rubber piston engine equations in Raymer Table 10.3, 10.4 Cooling vitally important Fuel System Fuel Considerations Tanks contain fuel Types = discrete, bladder, integral Volume depends on required fuel volume (approx. density is 7.5 gal/ft 3 ) Density varies with temperature (Raymer Table 10.5) Stow in wing or fuselage or tail or all Fuel CG must average near aircraft CG Calculate CG movement, show on CG plot (Raymer Fig ) Pumps needed in certain cases 9

10 CG Travel Diagram Valuable Info in Raymer App. E Contains curves from engine decks Based on Mattingly et al Aircraft Engine Design (good ref.) 10

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011

INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 MASTER OF SCIENCE IN AEROSPACE ENGINEERING PROPULSION AND COMBUSTION INLET AND EXAUST NOZZLES Chap. 10 AIAA AIRCRAFT ENGINE DESIGN R01-07/11/2011 LECTURE NOTES AVAILABLE ON https://www.ingegneriaindustriale.unisalento.it/scheda_docente/-/people/antonio.ficarella/materiale

More information

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar

Performance. Power Plant Output in Terms of Thrust - General - Arbitrary Drag Polar Performance 11. Level Flight Performance and Level flight Envelope We are interested in determining the maximum and minimum speeds that an aircraft can fly in level flight. If we do this for all altitudes,

More information

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1

Jet Propulsion. Lecture-2. Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Lecture-2 Prepared under QIP-CD Cell Project Jet Propulsion Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Simple Gas Turbine Cycle A gas turbine that

More information

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) PETER LAW ONE OF THE BEST JET ENGINES EVER BUILT Rolls-Royce Milestone Engines Merlin Conway W2B Welland Derwent Trent SR-71 GENERAL CHARACTERISTICS

More information

g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines

g GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed GE Aircraft Engines GEAE The Aircraft Engine Design Project- Engine Cycles Design Problem Overview Spring 2009 Ken Gould Phil Weed 1 Background The Aircraft Engine Design Project- Engine Cycles A new aircraft application

More information

FUNDAMENTALS OF GAS TURBINE ENGINES

FUNDAMENTALS OF GAS TURBINE ENGINES FUNDAMENTALS OF GAS TURBINE ENGINES INTRODUCTION The gas turbine is an internal combustion engine that uses air as the working fluid. The engine extracts chemical energy from fuel and converts it to mechanical

More information

Cessna Skyhawk II / 100. Performance Assessment

Cessna Skyhawk II / 100. Performance Assessment Cessna Skyhawk II / 100 Performance Assessment Prepared by John McIver B.Eng.(Aero) Temporal Images 23rd January 2003 http://www.temporal.com.au Cessna Skyhawk II/100 (172) Performance Assessment 1. Introduction

More information

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example

APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example APP Aircraft Performance Program Demo Notes Using Cessna 172 as an Example Prepared by DARcorporation 1. Program Layout & Organization APP Consists of 8 Modules, 5 Input Modules and 2 Calculation Modules.

More information

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz**

CC RH A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS. C. SSnchez Tarifa* E. Mera Diaz** A STUDY ON THE OPTIMIZATION OF JET ENGINES FOR COMBAT AIRCRAFTS C. SSnchez Tarifa* E. Mera Diaz** Abstract In the paper the optimization of jet engines for combat aircrafts is discussed. This optimization

More information

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Dora E. Musielak, Ph.D. Aerospace Engineering Consulting Arlington, TX All rights reserved. No part of this publication may

More information

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Over- and Under-expanded Nozzles and Nozzle Configurations. J. M. Meyers, PhD ME 239: Rocket Propulsion Over- and Under-expanded Nozzles and Nozzle Configurations J. M. Meyers, PhD 1 Over- and Underexpanded Nozzles Underexpanded Nozzle Discharges fluid at an exit pressure greater

More information

OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION

OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION Sheet 1 of 2 OUTLINE SHEET 5-1-1 PRINCIPLES OF GAS TURBINE OPERATION A. INTRODUCTION This lesson topic introduces some basic propulsion theory as it applies to the gas turbine engine and explains some

More information

AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

More information

AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS

AIRCRAFT GENERAL www.theaviatornetwork.com GTM 1.1 2005 1-30-05 CONTENTS www.theaviatornetwork.com GTM 1.1 CONTENTS INTRODUCTION... 1.2 GENERAL AIRPLANE... 1.2 Fuselage... 1.2 Wing... 1.2 Tail... 1.2 PROPELLER TIP CLEARANCE... 1.2 LANDING GEAR STRUT EXTENSION (NORMAL)... 1.2

More information

Mechanical Design of Turbojet Engines. An Introduction

Mechanical Design of Turbojet Engines. An Introduction Mechanical Design of Turbomachinery Mechanical Design of Turbojet Engines An Introduction Reference: AERO0015-1 - MECHANICAL DESIGN OF TURBOMACHINERY - 5 ECTS - J.-C. GOLINVAL University of Liege (Belgium)

More information

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP

Propeller Efficiency. Rule of Thumb. David F. Rogers, PhD, ATP Propeller Efficiency Rule of Thumb David F. Rogers, PhD, ATP Theoretically the most efficient propeller is a large diameter, slowly turning single blade propeller. Here, think the Osprey or helicopters.

More information

Propulsion (1): Jet Engine Basics

Propulsion (1): Jet Engine Basics FLIGHT OPERATIONS ENGINEERING Propulsion (1): Jet Engine Basics P1, Page 1 Propulsion (1): Jet Engine Basics Jet Engine Fundamentals (Videos) Types of Jet Engines Propulsive Efficiency and the Thrust Equation

More information

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere: AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

More information

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com

COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com CORSO DI LAUREA MAGISTRALE IN Ingegneria Aerospaziale PROPULSION AND COMBUSTION COMBUSTION SYSTEMS - EXAMPLE Cap. 9 AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E DISPONIBILE SU www.ingindustriale.unisalento.it

More information

Turbofan. Report. Re-engine the Boeing 707-320 E-3A Sentry. Project group A2k

Turbofan. Report. Re-engine the Boeing 707-320 E-3A Sentry. Project group A2k Turbofan Re-engine the Boeing 707-320 E-3A Sentry Report Project group A2k Robert de Haas Anthony Hovenburg Arthur van Schalkwijk Thomas Schijf Erwin Steen Daniel Touw Dion Zumbrink Amsterdam, December

More information

TYPE-CERTIFICATE DATA SHEET

TYPE-CERTIFICATE DATA SHEET TYPE-CERTIFICATE DATA SHEET EASA TC E.036 for Trent 1000 series engines Certificate Holder Rolls-Royce plc PO Box 31 Derby DE24 8BJ United Kingdom For Models: Trent 1000-A Trent 1000-A2 Trent 1000-AE Trent

More information

WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)

WEEKLY SCHEDULE. GROUPS (mark X) SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room) SESSION WEEK COURSE: THERMAL ENGINEERING DEGREE: Aerospace Engineering YEAR: 2nd TERM: 2nd The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The

More information

CHAPTER 7 CLIMB PERFORMANCE

CHAPTER 7 CLIMB PERFORMANCE CHAPTER 7 CLIMB PERFORMANCE 7 CHAPTER 7 CLIMB PERFORMANCE PAGE 7.1 INTRODUCTION 7.1 7.2 PURPOSE OF TEST 7.1 7.3 THEORY 7.2 7.3.1 SAWTOOTH CLIMBS 7.2 7.3.2 STEADY STATE APPROACH TO CLIMB PERFORMANCE 7.4

More information

An insight into some innovative cycles for aircraft propulsion

An insight into some innovative cycles for aircraft propulsion 731 An insight into some innovative cycles for aircraft propulsion G Corchero 1, J L Montañés 1, D Pascovici 2, and S Ogaji 2 1 Universidad Politécnica de Madrid (UPM), E. T. S. Ingenieros Aeronáuticos,

More information

IPS Inboard performance system. Volvo Penta IPS, the future for fast vessels

IPS Inboard performance system. Volvo Penta IPS, the future for fast vessels IPS, the future for fast vessels 1 dec 2010 Save fuel and reduce environmental impact 2 dec 2010 Best efficiency with Contra Rotating propellers Double blade area means smaller prop diameter for same output

More information

Introduction to Flight

Introduction to Flight Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables 123 David G. Hull The University of Texas at Austin Aerospace Engineering

More information

The Aircraft Engine Design Project Fundamentals of Engine Cycles

The Aircraft Engine Design Project Fundamentals of Engine Cycles GE Aviation The Aircraft Engine Design Project Fundamentals of Engine Cycles Spring 2009 Ken Gould Phil Weed 1 GE Aviation Technical History I-A - First U.S. jet engine (Developed in Lynn, MA, 1941) U.S.

More information

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE Adapted from Dr. Leland M. Nicolai s Write-up (Technical Fellow, Lockheed Martin Aeronautical Company) by Dr. Murat Vural (Illinois Institute of Technology)

More information

Contents AVIATION ENVIRONMENT ISSUES NOISE SONIC BOOM EMISSION ALTERNATIVE AVIATION FUEL. 14.10.2012 JAXA Aeronautics Symposium in Nagoya

Contents AVIATION ENVIRONMENT ISSUES NOISE SONIC BOOM EMISSION ALTERNATIVE AVIATION FUEL. 14.10.2012 JAXA Aeronautics Symposium in Nagoya CENTRAL AEROHYDRODYNAMIC INSTITUTE CENTRAL AEROHYDRODYNAMIC NAMED AFTER PROFESSOR N.E. ZHUKOVSKY INSTITUTE NAMED AFTER PROFESSOR N.E. ZHUKOVSKY TSAGI RESEARCH CAPABILITIES TO ADDRESS AVIATION ENVIRONMENTAL

More information

Fundamentals of Aircraft Turbine Engine Control

Fundamentals of Aircraft Turbine Engine Control Fundamentals of Aircraft Turbine Engine Control Dr. Sanjay Garg Chief, Ph: (216) 433-2685 FAX: (216) 433-8990 email: sanjay.garg@nasa.gov http://www.lerc.nasa.gov/www/cdtb Outline The Engine Control Problem

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE CERTIFICATE DATA SHEET Number : IM.E.026 Issue : 04 Date : 04 April 2014 Type : Engine Alliance LLC GP7200 series engines Models: GP7270 GP7272 GP7277 List of

More information

CAT VIII WORKING DRAFT

CAT VIII WORKING DRAFT Category VIII Military Aircraft and Associated Equipment A. End Items, Systems, Accessories, Attachments, Equipment, Parts and Components 1. Fighter, bomber, attack, or specialized fixed or rotary wing

More information

MULTI-ENGINE PISTON AEROPLANE ENDORSEMENT

MULTI-ENGINE PISTON AEROPLANE ENDORSEMENT MULTI-ENGINE PISTON AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR---------------------------------------------------------------------------------------------------------- (Aeroplane

More information

CFD Analysis of Swept and Leaned Transonic Compressor Rotor

CFD Analysis of Swept and Leaned Transonic Compressor Rotor CFD Analysis of Swept and Leaned Transonic Compressor Nivin Francis #1, J. Bruce Ralphin Rose *2 #1 Student, Department of Aeronautical Engineering& Regional Centre of Anna University Tirunelveli India

More information

Multi Engine Oral Exam Questions

Multi Engine Oral Exam Questions Multi Engine Oral Exam Questions 1. What are the requirements for a multi-engine rating? 2. What is the max rated horse power at sea level? At 12,000 msl? 3. What is the rated engine speed? 4. What is

More information

Chapter 2. Basic Airplane Anatomy. 2008 Delmar, Cengage Learning

Chapter 2. Basic Airplane Anatomy. 2008 Delmar, Cengage Learning Chapter 2 Basic Airplane Anatomy Objectives Identify components of basic aircraft anatomy Understand aircraft size and weight categories List different types and examples of General aviation aircraft Military

More information

Performance. 13. Climbing Flight

Performance. 13. Climbing Flight Performance 13. Climbing Flight In order to increase altitude, we must add energy to the aircraft. We can do this by increasing the thrust or power available. If we do that, one of three things can happen:

More information

400 Main Street East Hartford, CT 06118

400 Main Street East Hartford, CT 06118 TCDS NUMBER E00087EN Revision 2 U. S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET E00087EN International Aero Engines, LLC MODELS: PW1133G-JM, PW1133GA-JM,

More information

MULTI-ENGINE TURBO-PROP AEROLANE ENDORSEMENT

MULTI-ENGINE TURBO-PROP AEROLANE ENDORSEMENT CAAP 5.23-1(1): Multi-engine Aeroplane Operations and Training 133 Appendix E to CAAP 5.23-1(1) MULTI-ENGINE TURBO-PROP AEROLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR (Aeroplane

More information

MULTI-ENGINE PISTON AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE

MULTI-ENGINE PISTON AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE CAAP 5.23-1(1): Multi-engine Aeroplane Operations and Training 117 APPENDIX D TO CAAP 5.23-1(1) MULTI-ENGINE PISTON AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR (Aeroplane

More information

Understanding Drag, Thrust, and Airspeed relationships

Understanding Drag, Thrust, and Airspeed relationships Understanding Drag, Thrust, and Airspeed relationships Wayne Pratt May 30, 2010 CFII 1473091 The classic curve of drag verses airspeed can be found in any aviation textbook. However, there is little discussion

More information

Best Practices for Fuel Economy

Best Practices for Fuel Economy AACO ICAO Operational Technical Forum Measures / Beirut, Workshop 19th of / November Montreal, 20/21 2005 September 2006 Presented by: Olivier HUSSE Senior Performance Engineer Best Practices for Fuel

More information

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7

STEAM TURBINE 1 CONTENT. Chapter Description Page. V. Steam Process in Steam Turbine 6. VI. Exhaust Steam Conditions, Extraction and Admission 7 STEAM TURBINE 1 CONTENT Chapter Description Page I Purpose 2 II Steam Turbine Types 2 2.1. Impulse Turbine 2 2.2. Reaction Turbine 2 III Steam Turbine Operating Range 2 3.1. Curtis 2 3.2. Rateau 2 3.3.

More information

European Aviation Safety Agency: Ottoplatz 1, D-50679 Cologne, Germany - easa.europa.eu

European Aviation Safety Agency: Ottoplatz 1, D-50679 Cologne, Germany - easa.europa.eu EASA.E.018 Description: Language: TCDS: Product type: Manufacturer/TC Holder: E.018 Rolls-Royce Deutschland BR700-710 Series engines English EASA.E.018 Engine (CS-E) Rolls-Royce Deutschland Ltd & Co KG

More information

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET

SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET SIMPLIFIED METHOD FOR ESTIMATING THE FLIGHT PERFORMANCE OF A HOBBY ROCKET WWW.NAKKA-ROCKETRY.NET February 007 Rev.1 March 007 1 Introduction As part of the design process for a hobby rocket, it is very

More information

SINGLE ENGINE PISTON AEROPLANE ENDORSEMENT

SINGLE ENGINE PISTON AEROPLANE ENDORSEMENT SINGLE ENGINE PISTON AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR (Aeroplane make and model) Version 1 August 1996 Name: Endorsed by: (Signature/Name) ARN: ARN Satisfactorily

More information

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium 26 March 2015 2015 MITSUBISHI HEAVY INDUSTRIES, LTD.

More information

PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS

PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they

More information

COMPARISON OF COUNTER ROTATING AND TRADITIONAL AXIAL AIRCRAFT LOW-PRESSURE TURBINES INTEGRAL AND DETAILED PERFORMANCES

COMPARISON OF COUNTER ROTATING AND TRADITIONAL AXIAL AIRCRAFT LOW-PRESSURE TURBINES INTEGRAL AND DETAILED PERFORMANCES COMPARISON OF COUNTER ROTATING AND TRADITIONAL AXIAL AIRCRAFT LOW-PRESSURE TURBINES INTEGRAL AND DETAILED PERFORMANCES Leonid Moroz, Petr Pagur, Yuri Govorushchenko, Kirill Grebennik SoftInWay Inc. 35

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

Understanding High Advance Ratio Flight

Understanding High Advance Ratio Flight Alfred Gessow Rotorcraft Center University of Maryland Understanding High Advance Ratio Flight Graham Bowen-Davies Graduate Research Assistant Adviser: Inderjit Chopra Alfred Gessow Professor and Director

More information

Pushing the Envelope: A NASA Guide to Engines A Guide for Educators and Students With Chemistry, Physics, and Math Activities

Pushing the Envelope: A NASA Guide to Engines A Guide for Educators and Students With Chemistry, Physics, and Math Activities Pushing the Envelope: A NASA Guide to Engines A Guide for Educators and Students With Chemistry, Physics, and Math Activities National Aeronautics and Space Administration This publication is in the public

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency ED Decision 2003/2/RM Final 17/10/2003 The Executive Director DECISION NO. 2003/2/RM OF THE EXECUTIVE DIRECTOR OF THE AGENCY of 17 October 2003 on certification specifications,

More information

SINGLE ENGINE TURBO-PROP AEROPLANE ENDORSEMENT

SINGLE ENGINE TURBO-PROP AEROPLANE ENDORSEMENT SINGLE ENGINE TURBO-PROP AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR (Aeroplane make & model) Version 1-31 August 1996 Name: Endorser: (Signature/Name) Satisfactorily Completed

More information

This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.

This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment. Dimensions: Span 107 ft 10 in Length 147 ft 10 in Height 29ft 7 in

More information

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction.

APPLIED THERMODYNAMICS. TUTORIAL No.3 GAS TURBINE POWER CYCLES. Revise gas expansions in turbines. Study the Joule cycle with friction. APPLIED HERMODYNAMICS UORIAL No. GAS URBINE POWER CYCLES In this tutorial you will do the following. Revise gas expansions in turbines. Revise the Joule cycle. Study the Joule cycle with friction. Extend

More information

MULTI-ENGINE TURBO-PROP AEROPLANE ENDORSEMENT

MULTI-ENGINE TURBO-PROP AEROPLANE ENDORSEMENT MULTI-ENGINE TURBO-PROP AEROPLANE ENDORSEMENT ENGINEERING, DATA AND PERFORMANCE QUESTIONNAIRE FOR (Aeroplane make & model) Version 1 -August 1996 Name: ARN. Endorser: ARN: (Signature/Name) 1 The endorsement

More information

Turn off all electronic devices

Turn off all electronic devices Balloons 1 Balloons 2 Observations about Balloons Balloons Balloons are held taut by the gases inside Some balloon float in air while others don t Hot-air balloons don t have to be sealed Helium balloons

More information

Exam questions for obtaining aircraft licenses and ratings

Exam questions for obtaining aircraft licenses and ratings Exam questions for obtaining aircraft licenses and ratings Subject: PPL (A) Flight performance and planning Revision 1 07.10.2009. Period of validity: 01 January 2010 th - 31 December 2010 th Belgrade

More information

TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy

TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy TYPE CERTIFICATE DATA SHEET Nº EA-2011T03 Type Certificate Holder: COSTRUZIONI AERONAUTICHE TECNAM S.r.l. Via Tasso, 478 80127 - Napoli Italy EA-2011T03-02 Sheet 01 TECNAM P2006T 04 May 2012 This data

More information

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives

Chapter 17. For the most part, we have limited our consideration so COMPRESSIBLE FLOW. Objectives Chapter 17 COMPRESSIBLE FLOW For the most part, we have limited our consideration so far to flows for which density variations and thus compressibility effects are negligible. In this chapter we lift this

More information

European Aviation Safety Agency

European Aviation Safety Agency European Aviation Safety Agency EASA TYPE-CERTIFICATE DATA SHEET Number: E.070 Issue: 05 Date: 16 November Type: GE Aviation Czech M601/H80 series turboprop engines Models: M601D M601D-1 M601D-2 M601D-11

More information

AIRPLANE TURBOPROP ENGINES BASIC FAMILIARIZATION

AIRPLANE TURBOPROP ENGINES BASIC FAMILIARIZATION AIRPLANE TURBOPROP ENGINES BASIC FAMILIARIZATION INTRODUCTION Many of today's airplanes are powered by turboprop engines. These engines are quite reliable, providing years of trouble-free service. However,

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

Rolls-Royce Technology for Future Aircraft Engines

Rolls-Royce Technology for Future Aircraft Engines Rolls-Royce Technology for Future Aircraft Engines RAeS Hamburg March 20 2014 Ulrich Wenger, Head of Engineering & Technology Rolls-Royce Deutschland 2014 Rolls-Royce Deutschland Ltd & Co KG The information

More information

Design and testing of a high flow coefficient mixed flow impeller

Design and testing of a high flow coefficient mixed flow impeller Design and testing of a high flow coefficient mixed flow impeller H.R. Hazby PCA Engineers Ltd., UK M.V. Casey PCA Engineers Ltd., UK University of Stuttgart (ITSM), Germany R. Numakura and H. Tamaki IHI

More information

This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby

This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby This file contains the full script of the corresponding video, published on YouTube. November 2014: http://youtu.be/wbu6x0hsnby Background papers and links to formal FAA and EASA Aviation Regulations and

More information

General Characteristics

General Characteristics This is the third of a series of Atlantic Sun Airways CAT C pilot procedures and checklists for our fleet. Use them with good judgment. Note, the start procedures may vary from FS9 Panel to Panel. However

More information

787 No-Bleed Systems: Saving Fuel and Enhancing Operational Efficiencies

787 No-Bleed Systems: Saving Fuel and Enhancing Operational Efficiencies 787 No-Bleed Systems: Saving Fuel and Enhancing Operational Efficiencies by ike Sinnett, Director, 787 Systems The Boeing 787 Dreamliner features a unique systems architecture that offers numerous advantages

More information

TITLE 14 CIVIL AVIATION

TITLE 14 CIVIL AVIATION CIVIL AIR REGULATIONS PART 4b-AIRPLANE AIRWORTHINESS TRANSPORT CATEGORIES CIVIL AERONAUTICS BOARD As amended to December 31, 1953 WASHINGTON, D.C. TITLE 14 CIVIL AVIATION Chapter 1 Civil Aeronautics Board

More information

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Performance- Page 67 AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude Pressure altitude is indicated altitude corrected for nonstandard pressure. It is determined by setting 29.92 in the altimeter

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

C H A P T E R F I V E GAS TURBINES AND JET ENGINES

C H A P T E R F I V E GAS TURBINES AND JET ENGINES 169 C H A P T E R F I V E GAS TURBINES AND JET ENGINES 5.1 Introduction History records over a century and a half of interest in and work on the gas turbine. However, the history of the gas turbine as

More information

Conceptual Design of a Supersonic Jet Engine

Conceptual Design of a Supersonic Jet Engine School of Innovation, Design and Engineering BACHELOR THESIS IN AERONAUTICAL ENGINEERING 15 CREDITS, BASIC LEVEL 300 Conceptual Design of a Supersonic Jet Engine by Joakim Kareliusson Melker Nordqvist

More information

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and

More information

1 Air-to-Air AfterCooling. 2 Engine Only. Capacity will vary with radiator size and use. of cab heater.

1 Air-to-Air AfterCooling. 2 Engine Only. Capacity will vary with radiator size and use. of cab heater. Diesel Truck Engine 3126B 175-330 hp 420-860 @ 1440 rpm Peak CATERPILLAR ENGINE SPECIFICATIONS 6-Cylinder, 4-Stroke-Cycle Diesel Bore in (mm)... 4.33 (110) Stroke in (mm)... 5.0 (127) Displacement cu in

More information

Constructing A Turbocharger Turbojet Engine

Constructing A Turbocharger Turbojet Engine Constructing A Turbocharger Turbojet Engine By Edwin H. Springer Copyright c 2001 Turbojet Technologies All rights reserved. No part of this publication may be reproduced, stored in a retrieval system

More information

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX

Machine Design II Prof. K.Gopinath & Prof. M.M.Mayuram. Module 2 - GEARS. Lecture 17 DESIGN OF GEARBOX Module 2 - GEARS Lecture 17 DESIGN OF GEARBOX Contents 17.1 Commercial gearboxes 17.2 Gearbox design. 17.1 COMMERCIAL GEARBOXES Various commercial gearbox designs are depicted in Fig. 17.1 to 17.10. These

More information

Interactive Aircraft Design for Undergraduate Teaching

Interactive Aircraft Design for Undergraduate Teaching Interactive Aircraft Design for Undergraduate Teaching Omran Al-Shamma, Dr. Rashid Ali University of Hertfordshire Abstract: This paper presents new software package developed for Aircraft Design. It is

More information

Light Aircraft Design

Light Aircraft Design New: Sport Pilot (LSA) The Light Aircraft Design Computer Program Package - based on MS-Excelapplication was now extented with the new Sport Pilots (LSA) loads module, which includes compliance for the

More information

Compiled by Matt Zagoren

Compiled by Matt Zagoren The information provided in this document is to be used during simulated flight only and is not intended to be used in real life. Attention VA's - you may post this file on your site for download. Please

More information

MAN Diesel & Turbo. Frederik Carstens Head of Offshore Sales Marine Medium Speed. Frederik Carstens & Karsten Borneman

MAN Diesel & Turbo. Frederik Carstens Head of Offshore Sales Marine Medium Speed. Frederik Carstens & Karsten Borneman Frederik Carstens Head of Offshore Sales Marine Medium Speed < 1 > Disclaimer All data provided on the following slides is for information purposes only, explicitly non-binding and subject to changes without

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc.

CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. CENTRIFUGAL PUMP OVERVIEW Presented by Matt Prosoli Of Pumps Plus Inc. 1 Centrifugal Pump- Definition Centrifugal Pump can be defined as a mechanical device used to transfer liquid of various types. As

More information

Waterjets. propulsors. courtesy of Austal

Waterjets. propulsors. courtesy of Austal Waterjets The Rolls-Royce Kamewa waterjet range is the broadest in the business. Manufactured in aluminium and stainless steel, they are available in powers from kw to above 36MW. Using the latest design

More information

Chapter 3.5: Fans and Blowers

Chapter 3.5: Fans and Blowers Part I: Objective type questions and answers Chapter 3.5: Fans and Blowers 1. The parameter used by ASME to define fans, blowers and compressors is a) Fan ration b) Specific ratio c) Blade ratio d) Twist

More information

Model Aircraft Design

Model Aircraft Design Model Aircraft Design A teaching series for secondary students Contents Introduction Learning Module 1 How do planes fly? Learning Module 2 How do pilots control planes? Learning Module 3 What will my

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information

RECYCLING OLD WEIGHT ASSESSMENT METHODS AND GIVING THEM NEW LIFE IN AIRCRAFT CONCEPTUAL DESIGN

RECYCLING OLD WEIGHT ASSESSMENT METHODS AND GIVING THEM NEW LIFE IN AIRCRAFT CONCEPTUAL DESIGN 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES Abstract RECYCLING OLD WEIGHT ASSESSMENT METHODS AND GIVING THEM NEW LIFE IN AIRCRAFT CONCEPTUAL DESIGN Aircraft conceptual design is an iterative

More information

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps

2. Parallel pump system Q(pump) = 300 gpm, h p = 270 ft for each of the two pumps Pumping Systems: Parallel and Series Configurations For some piping system designs, it may be desirable to consider a multiple pump system to meet the design requirements. Two typical options include parallel

More information

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM

FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM FEASIBILITY OF A BRAYTON CYCLE AUTOMOTIVE AIR CONDITIONING SYSTEM L. H. M. Beatrice a, and F. A. S. Fiorelli a a Universidade de São Paulo Escola Politécnica Departamento de Engenharia Mecânica Av. Prof.

More information

Airbreathing Rotating Detonation Wave Engine Cycle Analysis

Airbreathing Rotating Detonation Wave Engine Cycle Analysis 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 5-8 July 010, Nashville, TN AIAA 010-7039 Airbreathing Rotating Detonation Wave Engine Cycle Analysis Eric M. Braun, Frank K. Lu, Donald R.

More information

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s)

Content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) nn Ferguson, K., and Thomson, D. (2015) Performance comparison between a conventional helicopter and compound helicopter configurations. Proceedings of the Institution of Mechanical Engineers, Part G:

More information