Introduction to Flight

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Introduction to Flight"

Transcription

1 Introduction to Flight Sixth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

2 CONTENTS About the Author iii Preface to the Sixth Edition Preface to the First Edition xv Chapter 1 The First Aeronautical Engineers Introduction Very Early Developments Sir George Cayley ( ) The True Inventor of the Airplane The Interregnum From 1853 to Otto Lilienthal ( ) The Glider Man Percy Pilcher ( ) Extending the Glider Tradition Aeronautics Comes to America Wilbur ( ) and Orville ( ) Wright Inventors of the First Practical Airplane The Aeronautical Triangle Langley, the Wrights, and Glenn Curtiss The Problem of Propulsion Faster and Higher Summary 49 Bibliography 50 Chapter 2 Fundamental Thoughts Fundamental Physical Quantities of a Flowing Gas Pressure 56 xiii Density Temperature Flow Velocity and Streamlines The Source of All Aerodynamic Forces Equation of State for a Perfect Gas Discussion of Units Specific Volume Anatomy of the Airplane Anatomy of a Space Vehicle Historical Note: The NACA and NASA Summary 101 Bibliography 101 Problems 102 Chapter 3 The Standard Atmosphere Definition of Altitude Hydrostatic Equation Relation between Geopotential and Geometric Altitudes Definition of the Standard Atmosphere Pressure, Temperature, and Density Altitudes Historical Note: The Standard Atmosphere Summary 123 Bibliography 124 Problems 124

3 Chapter 4 Basic Aerodynamics Continuity Equation Incompressible and Compressible Flow Momentum Equation A Comment Elementary Thermodynamics Isentropic Flow Energy Equation Summary of Equations Speed of Sound Low-Speed Subsonic Wind Tunnels Measurement of Airspeed Incompressible Flow Subsonic Compressible Flow Supersonic Flow Summary Some Additional Considerations More about Compressible Flow More about Equivalent Airspeed Supersonic Wind Tunnels and Rocket Engines Discussion of Compressibility Introduction to Viscous Flow Results for a Laminar Boundary Layer Results for a Turbulent Boundary Layer Compressibility Effects on Skin Friction Transition Flow Separation Summary of Viscous Effects on Drag Historical Note: Bernoulli and Euler Historical Note: The Pitot Tube Historical Note: The First Wind Tunnels Historical Note: Osborne Reynolds and His Number Historical Note: Prandtl and the Development of the Boundary Layer Concept Summary 247 Bibliography 250 Problems 250 Chapter 5 Airfoils, Wings, and Other Aerodynamic Shapes Introduction Airfoil Nomenclature Lift, Drag, and Moment Coefficients Airfoil Data Infinite Versus Finite Wings Pressure Coefficient Obtaining Lift Coefficient from C p Compressibility Correction for Lift Coefficient Critical Mach Number and Critical Pressure Coefficient Drag-Divergence Mach Number Wave Drag (at Supersonic Speeds) Summary of Airfoil Drag Finite Wings Calculation of Induced Drag Change in the Lift Slope Swept Wings Flaps A Mechanism for High Lift Aerodynamics of Cylinders and Spheres How Lift Is Produced Some Alternative Explanations Historical Note: Airfoils and Wings The Wright Brothers 374* British and U.S. Airfoils ( ) 374

4 Contents Early NACA Four-Digit Airfoils Later NACA Airfoils Modem Airfoil Work Finite Wings Historical Note: Ernst Mach and His Number Historical Note: The First Manned Supersonic Flight Historical Note: The X-15 First Manned Hypersonic Airplane and Stepping-Stone to the Space Shuttle Summary 390 Bibliography 391 Problems 391 Chapter 6 Elements of Airplane Performance Introduction: The Drag Polar Equations of Motion Thrust Required for Level, Unaccelerated Flight Thrust Available and Maximum Velocity Power Required for Level, Unaccelerated Flight Power Available and Maximum Velocity Reciprocating Engine-Propeller Combination Jet Engine Altitude Effects on Power Required and Available Rate of Climb Gliding Flight Absolute and Service Ceilings Time to Climb Range and Endurance Propeller-Driven Airplane Physical Considerations Quantitative Formulation Breguet Formulas (Propeller-Driven Airplane) Range and Endurance Jet Airplane Physical Considerations Quantitative Formulation Relations between Cp,o and C D j Takeoff Performance Landing Performance Turning Flight and the V-n Diagram Accelerated Rate of Climb (Energy Method) Special Considerations for Supersonic Airplanes Uninhabited Aerial Vehicles (UAVs) A Philosophy of Conceptual Airplane Design A Comment, and More about the Aspect Ratio Historical Note: Drag Reduction The NACA Cowling and the Fillet Historical Note: Early Predictions of Airplane Performance Historical Note: Breguet and the Range Formula Historical Note: Aircraft Design Evolution and Revolution Summary 522 Bibliography 524 Problems 525 Chapter 7 Principles of Stability and Control Introduction Definition of Stability and Control Static Stability Dynamic Stability Control Partial Derivative 539

5 Contents 7.3 Moments on the Airplane Absolute Angle of Attack Criteria for Longitudinal Static Stability Quantitative Discussion: Contribution of the Wing to M cg Contribution of the Tail to M cg Total Pitching Moment about the Center of Gravity Equations for Longitudinal Static Stability Neutral Point Static Margin Concept of Static Longitudinal Control Calculation of Elevator Angle to Trim Stick-Fixed versus Stick-Free Static Stability Elevator Hinge Moment Stick-Free Longitudinal Static Stability Directional Static Stability Lateral Static Stability A Comment Historical Note: The Wright Brothers versus the European Philosophy of Stability and Control Historical Note: The Development of Flight Controls Historical Note: The "Tuck-Under" Problem Summary 586 Bibliography 587 Problems 587 Chapter 8 Space Flight (Astronautics) Introduction Differential Equations Lagrange's Equation Orbit Equation Force and Energy Equation of Motion Space Vehicle Trajectories Some Basic Aspects Kepler's Laws The Vis-Viva (Energy) Equation Some Orbital Maneuvers Plane Changes Orbital Transfers: Single-Impulse and Hohmann Transfers Interplanetary Trajectories Hyperbolic Trajectories Sphere of Influence Heliocentric Trajectories Method of Patched Conies Gravity-Assist Trajectories Lunar Transfer Spacecraft Attitude Control Introduction to Earth and Planetary Entry Exponential Atmosphere General Equations of Motion for Atmospheric Entry Application to Ballistic Entry Entry Heating Lifting Entry, with Application to the Space Shuttle Historical Note: Kepler Historical Note: Newton and the Law of Gravitation Historical Note: Lagrange Historical Note: Unmanned Space Flight Historical Note: Manned Space Flight Summary 685 Bibliography 687 Problems 687

6 Contents XI Chapter 9 Propulsion Introduction Propeller Reciprocating Engine Jet Propulsion The Thrust Equation Turbojet Engine Thrust Buildup for a Turbojet Engine Turbofan Engine Ramjet Engine Rocket Engine Rocket Propellants Some Considerations Liquid Propellants Solid Propellants A Comment Rocket Equation Rocket Staging Propellant Requirements for Spacecraft Trajectory Maneuvers Electric Propulsion Electron-Ion Thruster Magnetoplasmadynamic Thruster Arc-Jet Thruster A Comment Historical Note: Early Propeller Development Historical Note: Early Development of the Internal Combustion Engine for Aviation Historical Note: Inventors of Early Jet Engines Historical Note: Early History of Rocket Engines Summary 766 Bibliography 767 Problems 767 Chapter 10 Flight Vehicle Structures and Materials Introduction Some Physics of Solid Materials Stress Strain Other Cases Stress-Strain Diagram Some Elements of an Aircraft Structure Beams Box Structures Materials Fatigue Some Comments Historical Note: Evolution of Flight Structures 794 Bibliography 805 Problems 806 Chapter 11 Hypersonic Vehicles Introduction Physical Aspects of Hypersonic Flow Thin Shock Layers Entropy Layer Viscous Interaction High-Temperature Effects Low-Density Flow Recapitulation Newtonian Law for Hypersonic Flow Some Comments about Hypersonic Airplanes Summary 834 Bibliography 834 Problems 834

7 xii Contents Appendix A Standard Atmosphere, Appendix D Airfoil Data 855 SI Units 836 T, QQA Index 884 Appendix B Standard Atmosphere, English Engineering Units 846 Appendix C Symbols and Conversion Factors 854

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

Fundamentals of Aerodynamics

Fundamentals of Aerodynamics Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr.; Curator of Aerodynamics National Air arid Space Museum Smithsonian Institution * and Professor Emeritus University of Maryland Mc Graw

More information

Fundamentals of THERMAL-FLUID SCIENCES

Fundamentals of THERMAL-FLUID SCIENCES Fundamentals of THERMAL-FLUID SCIENCES THIRD EDITION YUNUS A. CENGEL ROBERT H. TURNER Department of Mechanical JOHN M. CIMBALA Me Graw Hill Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl

More information

Forces on a Model Rocket

Forces on a Model Rocket Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

More information

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering

9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering 9210-228 Level 7 Post Graduate Diploma in Mechanical Engineering Aerospace engineering You should have the following for this examination one answer book non-programmable calculator pen, pencil, drawing

More information

AE 430 - Stability and Control of Aerospace Vehicles

AE 430 - Stability and Control of Aerospace Vehicles AE 430 - Stability and Control of Aerospace Vehicles Atmospheric Flight Mechanics 1 Atmospheric Flight Mechanics Performance Performance characteristics (range, endurance, rate of climb, takeoff and landing

More information

Introduction to Aerospace Engineering Formulas

Introduction to Aerospace Engineering Formulas Introduction to Aerospace Engineering Formulas Aerodynamics Formulas. Definitions p = The air pressure. (P a = N/m 2 ) ρ = The air density. (kg/m 3 ) g = The gravitational constant. (Value at sea level

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators

Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators Performance 4. Fluid Statics, Dynamics, and Airspeed Indicators From our previous brief encounter with fluid mechanics we developed two equations: the one-dimensional continuity equation, and the differential

More information

CORE STANDARDS, OBJECTIVES, AND INDICATORS

CORE STANDARDS, OBJECTIVES, AND INDICATORS Aerospace Engineering - PLtW Levels: 11-12 Units of Credit: 1.0 CIP Code: 14.0201 Core Code: 38-01-00-00-150 Prerequisite: Principles of Engineering, Introduction to Engineering Design Test: #967 Course

More information

AEROSPACE PROPULSION & AERODYNAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE. Total Hours HOURS BY TYPE 48 52 100 200

AEROSPACE PROPULSION & AERODYNAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE. Total Hours HOURS BY TYPE 48 52 100 200 MODULE DESCRIPTOR TITLE AEROSPACE PROPULSIO & AERODAMICS SI MODULE CODE 55-5922 CREDITS 20 LEVEL 5 JACS CODE H450 SUBJECT GROUP Mechanical engineering DEPARTMET Engineering and Mathematics MODULE LEADER

More information

The Purpose and Function of Airplane Parts

The Purpose and Function of Airplane Parts The Purpose and Function of Airplane Parts Warm-Up Questions CPS Questions 1-2 Lesson Overview How the fuselage and wing shape correspond to an aircraft s mission The types, purpose, and function of airfoil

More information

CLASSIFICATION OF AIRCRAFT AND SPACECRAFT

CLASSIFICATION OF AIRCRAFT AND SPACECRAFT TYPES OF AIRCRAFT CLASSIFICATION OF AIRCRAFT AND SPACECRAFT Aircraft can be classified into various types based on the mode of classification. In the following slide, a general classification of aircraft

More information

Summary of Aerodynamics A Formulas

Summary of Aerodynamics A Formulas Summary of Aerodynamics A Formulas 1 Relations between height, pressure, density and temperature 1.1 Definitions g = Gravitational acceleration at a certain altitude (g 0 = 9.81m/s 2 ) (m/s 2 ) r = Earth

More information

Numerical Methods for Engineers

Numerical Methods for Engineers Steven C. Chapra Berger Chair in Computing and Engineering Tufts University RaymondP. Canale Professor Emeritus of Civil Engineering University of Michigan Numerical Methods for Engineers With Software

More information

Mechanical & Aerospace Engineering (MAE)

Mechanical & Aerospace Engineering (MAE) The University of Alabama in Huntsville 1 Mechanical & Aerospace Engineering (MAE) MAE 100 - INTRO MECHANICAL ENGINEERING Introduction to mechanical and aerospace engineering fields, the tools and facilities

More information

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere:

AOE 3104 Aircraft Performance Problem Sheet 2 (ans) Find the Pressure ratio in a constant temperature atmosphere: AOE 3104 Aircraft Performance Problem Sheet 2 (ans) 6. The atmosphere of Jupiter is essentially made up of hydrogen, H 2. For Hydrogen, the specific gas constant is 4157 Joules/(kg)(K). The acceleration

More information

Performance. 10. Thrust Models

Performance. 10. Thrust Models Performance 10. Thrust Models In order to determine the maximum speed at which an aircraft can fly at any given altitude, we must solve the simple-looking equations for : (1) We have previously developed

More information

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1

APPENDIX 3-B Airplane Upset Recovery Briefing. Briefing. Figure 3-B.1 APPENDIX 3-B Airplane Upset Recovery Briefing Industry Solutions for Large Swept-Wing Turbofan Airplanes Typically Seating More Than 100 Passengers Briefing Figure 3-B.1 Revision 1_August 2004 Airplane

More information

is the stagnation (or total) pressure, constant along a streamline.

is the stagnation (or total) pressure, constant along a streamline. 70 Incompressible flow (page 60): Bernoulli s equation (steady, inviscid, incompressible): p 0 is the stagnation (or total) pressure, constant along a streamline. Pressure tapping in a wall parallel to

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables 123 David G. Hull The University of Texas at Austin Aerospace Engineering

More information

CHAPTER 1. Fundamental Mathematics

CHAPTER 1. Fundamental Mathematics Volume 9 Performance (JAR Ref 032) Table of Contents CHAPTER 1 Fundamental Mathematics Introduction...1-1 Equations...1-1 The Principle of an Equation...1-1 Transposing Equations...1-1 Adding and Subtracting...1-1

More information

T AC EA HER R S GU G IDE UID

T AC EA HER R S GU G IDE UID TEACHER S GUIDE The FORCES OF FLIGHT lessons were produced by The Boeing Company, under the direction of project leader James Newcomb. For more information and posters to download, go to www.boeing.com/education.

More information

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry

NACA Nomenclature NACA 2421. NACA Airfoils. Definitions: Airfoil Geometry 0.40 m 0.21 m 0.02 m NACA Airfoils 6-Feb-08 AE 315 Lesson 10: Airfoil nomenclature and properties 1 Definitions: Airfoil Geometry z Mean camber line Chord line x Chord x=0 x=c Leading edge Trailing edge

More information

FUNDAMENTALS OF AERODYNAMICS

FUNDAMENTALS OF AERODYNAMICS TRAINEE GUIDE FOR PREFLIGHT C-9B-0020 Unit 1 FUNDAMENTALS OF AERODYNAMICS Prepared by NAVAL AVIATION SCHOOLS COMMAND 181 CHAMBERS AVE SUITE C PENSACOLA, FL 32508 Prepared for CENTER FOR NAVAL AVIATION

More information

Performance. 15. Takeoff and Landing

Performance. 15. Takeoff and Landing Performance 15. Takeoff and Landing The takeoff distance consists of two parts, the ground run, and the distance from where the vehicle leaves the ground to until it reaches 50 ft (or 15 m). The sum of

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

Ideal Jet Propulsion Cycle

Ideal Jet Propulsion Cycle Ideal Jet ropulsion Cycle Gas-turbine engines are widely used to power aircrafts because of their light-weight, compactness, and high power-to-weight ratio. Aircraft gas turbines operate on an open cycle

More information

ME 239: Rocket Propulsion Introductory Remarks

ME 239: Rocket Propulsion Introductory Remarks ME 239: Rocket Propulsion Introductory Remarks 1 Propulsion Propulsion: The act of changing a body s motion from mechanisms providing force to that body Jet Propulsion: Reaction force imparted to device

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics Sixth Edition Robert L. Mott University of Dayton PEARSON Prentkv Pearson Education International CHAPTER 1 THE NATURE OF FLUIDS AND THE STUDY OF FLUID MECHANICS 1.1 The Big Picture

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Summary. Engine Sizing & Selection. Propulsion Integration Extremely Important. Airframe Integrator s Motto. Piston Engine.

Summary. Engine Sizing & Selection. Propulsion Integration Extremely Important. Airframe Integrator s Motto. Piston Engine. Engine Sizing & Selection Copyright 2006 by Don Edberg Summary Engine Sizing & Arrangement Introduction Performance Requirements Engine Geometric Characteristics & Placement Airframe Integrator s Motto

More information

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur

High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur High Speed Aerodynamics Prof. K. P. Sinhamahapatra Department of Aerospace Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 06 One-dimensional Gas Dynamics (Contd.) We

More information

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE

ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE ESTIMATING R/C MODEL AERODYNAMICS AND PERFORMANCE Adapted from Dr. Leland M. Nicolai s Write-up (Technical Fellow, Lockheed Martin Aeronautical Company) by Dr. Murat Vural (Illinois Institute of Technology)

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Flightlab Ground School 5. Longitudinal Static Stability

Flightlab Ground School 5. Longitudinal Static Stability Flightlab Ground School 5. Longitudinal Static Stability Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Longitudinal

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

Jets in Flight. Science Topic: Physics

Jets in Flight. Science Topic: Physics 1 Jets in Flight Science Topic: Physics Grades: 9 th 12 th Essential Questions: How is it possible for a vehicle that weighs 20,000 pounds to fly? What conditions are needed to make this plane take flight

More information

Managerial Accounting

Managerial Accounting Managerial Accounting 2010 Edition John J. Wild University of Wisconsin at Madison Ken W. Shaw University of Missouri at Columbia McGraw-Hill Irwin Boston Burr Ridge, IL Dubuque, IA New York San Francisco

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Aerospace Propulsion Systems

Aerospace Propulsion Systems Brochure More information from http://www.researchandmarkets.com/reports/1288672/ Aerospace Propulsion Systems Description: Aerospace Propulsion Systems is a unique book focusing on each type of propulsion

More information

ExpressJet Airlines Pilot Job Knowledge Test Outline

ExpressJet Airlines Pilot Job Knowledge Test Outline ExpressJet Airlines Pilot Job Knowledge Test Outline The job knowledge test administered as part of the pilot interview process consists of questions in four major knowledge areas essential to piloting

More information

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma

Forces on the Rocket. Rocket Dynamics. Equation of Motion: F = Ma Rocket Dynamics orces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors Thrust orces on the Rocket Equation of otion: = a orces at through the Center of ass Center of

More information

CFD Analysis on Airfoil at High Angles of Attack

CFD Analysis on Airfoil at High Angles of Attack CFD Analysis on Airfoil at High Angles of Attack Dr.P.PrabhakaraRao¹ & Sri Sampath.V² Department of Mechanical Engineering,Kakatiya Institute of Technology& Science Warangal-506015 1 chantifft@rediffmail.com,

More information

IV. Rocket Propulsion Systems. A. Overview

IV. Rocket Propulsion Systems. A. Overview IV. Rocket Propulsion Systems A. Overview by J. M. Seitzman for AE 4451 Jet and Rocket Propulsion Seitzman Rocket Overview-1 Rocket Definition Rocket Device that provides thrust to a vehicle by accelerating

More information

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter

High-Lift Systems. High Lift Systems -- Introduction. Flap Geometry. Outline of this Chapter High-Lift Systems Outline of this Chapter The chapter is divided into four sections. The introduction describes the motivation for high lift systems, and the basic concepts underlying flap and slat systems.

More information

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014

Aerospace Engineering 3521: Flight Dynamics. Prof. Eric Feron Homework 6 due October 20, 2014 Aerospace Engineering 3521: Flight Dynamics Prof. Eric Feron Homework 6 due October 20, 2014 1 Problem 1: Lateral-directional stability of Navion With the help of Chapter 2 of Nelson s textbook, we established

More information

6.1 AIRCRAFT TECHNICAL AND GENERAL AEROPLANE AIRFRAME AND SYSTEMS Fuselage. types of construction

6.1 AIRCRAFT TECHNICAL AND GENERAL AEROPLANE AIRFRAME AND SYSTEMS Fuselage. types of construction 6.1 IRCRFT TECHNICL ND GENERL EROPLNE 6.1.1 IRFRME ND SYSTEMS 6.1.1.1 Fuselage types of construction structural components and materials used stress 6.1.1.2 Cockpit and passenger cabin windows construction

More information

Force & Motion. Force & Mass. Friction

Force & Motion. Force & Mass. Friction 1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

More information

CO 2 41.2 MPa (abs) 20 C

CO 2 41.2 MPa (abs) 20 C comp_02 A CO 2 cartridge is used to propel a small rocket cart. Compressed CO 2, stored at a pressure of 41.2 MPa (abs) and a temperature of 20 C, is expanded through a smoothly contoured converging nozzle

More information

Turn off all electronic devices

Turn off all electronic devices Balloons 1 Balloons 2 Observations about Balloons Balloons Balloons are held taut by the gases inside Some balloon float in air while others don t Hot-air balloons don t have to be sealed Helium balloons

More information

AERODYNAMIC STUDY OF A NEW CONFIGURATION OF SPOILER ON A MODEL WING IN LOW SUBSONIC WIND TUNNEL

AERODYNAMIC STUDY OF A NEW CONFIGURATION OF SPOILER ON A MODEL WING IN LOW SUBSONIC WIND TUNNEL AERODYNAMIC STUDY OF A NEW CONFIGURATION OF SPOILER ON A MODEL WING IN LOW SUBSONIC WIND TUNNEL Asst.Prof.Dr.Eng. Mohammed Kheir-aldeen Abbas 1Dr.mohammed askar@yahoo.com, 009647803836248 Eng. AMER QADER

More information

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of

SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE. A thesis presented to. the faculty of SIX DEGREE-OF-FREEDOM MODELING OF AN UNINHABITED AERIAL VEHICLE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillment of the requirement

More information

ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD

ME 239: Rocket Propulsion. Nozzle Thermodynamics and Isentropic Flow Relations. J. M. Meyers, PhD ME 39: Rocket Propulsion Nozzle Thermodynamics and Isentropic Flow Relations J. M. Meyers, PhD 1 Assumptions for this Analysis 1. Steady, one-dimensional flow No motor start/stopping issues to be concerned

More information

Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity

Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity Principles of Flight There are four major forces acting on an aircraft: Gravity Lift Drag Thrust Gravity Gravity is the downward force that keeps the airplane on the ground or pulls the airplane toward

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

What did the Wright brothers invent?

What did the Wright brothers invent? What did the Wright brothers invent? The airplane, right? Well, not exactly. Page 1 of 15 The Wrights never claimed to have invented the airplane, or even the first airplane to fly. In their own words,

More information

Fluid Mechanics Definitions

Fluid Mechanics Definitions Definitions 9-1a1 Fluids Substances in either the liquid or gas phase Cannot support shear Density Mass per unit volume Specific Volume Specific Weight % " = lim g#m ( ' * = +g #V $0& #V ) Specific Gravity

More information

Principles of glider flight

Principles of glider flight Principles of glider flight [ Lift, drag & glide performance ] Richard Lancaster R.Lancaster@carrotworks.com ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH & Co. All other content Copyright

More information

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist

Wing Design: Major Decisions. Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design: Major Decisions Wing Area / Wing Loading Span / Aspect Ratio Planform Shape Airfoils Flaps and Other High Lift Devices Twist Wing Design Parameters First Level Span Area Thickness Detail Design

More information

Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

More information

Understanding Drag, Thrust, and Airspeed relationships

Understanding Drag, Thrust, and Airspeed relationships Understanding Drag, Thrust, and Airspeed relationships Wayne Pratt May 30, 2010 CFII 1473091 The classic curve of drag verses airspeed can be found in any aviation textbook. However, there is little discussion

More information

Introduction to Aerospace Propulsion A course under NPTEL-II Prof. Bhaskar Roy ; Prof. A.M.Pradeep,

Introduction to Aerospace Propulsion A course under NPTEL-II Prof. Bhaskar Roy ; Prof. A.M.Pradeep, Introduction to Aerospace Propulsion A course under NPTEL-II Prof. Bhaskar Roy ; Prof. A.M.Pradeep, 1. Introduction to Propulsion (Prof B Roy) Jet Propulsion 1.1. The making of thrust to fly science and

More information

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft.

Propeller Fundamentals. A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 28 1 Propeller Fundamentals A propeller is an interface between an engine and an aircraft. It creates thrust for flying an aircraft. 2 Propeller blade 4-bladed propeller 3-bladed propeller 3 All propulsors

More information

AIRCRAFT - BASICS. What is aeronautics?

AIRCRAFT - BASICS. What is aeronautics? AIRCRAFT - BASICS What is aeronautics? Aeronautics is typically defined as the art or science of flight, or the science of operating aircraft. This includes a branch of aeronautics called aerodynamics.

More information

Aeronautics and Space

Aeronautics and Space 0 GENERAL INTRODUCTION Historically, the Aeronautics and Aerospace specialization is the oldest one offered to students by EPF, in fact, Aeronautical studies were introduced in 1933 and are still part

More information

Performance. 12. Gliding Flight (Steady State)

Performance. 12. Gliding Flight (Steady State) Performance 12. Gliding Flight (Steady State) If the engine is turned off, (T = 0), and one desires to maintain airspeed, it is necessary to put the vehicle at such an attitude that the component of the

More information

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design

Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA. CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Aeronautical Testing Service, Inc. 18820 59th DR NE Arlington, WA 98223 USA CFD and Wind Tunnel Testing: Complimentary Methods for Aircraft Design Background Introduction ATS Company Background New and

More information

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon

Computational Aerodynamic Analysis on Store Separation from Aircraft using Pylon International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 www.ijesi.org ǁ PP.27-31 Computational Aerodynamic Analysis on Store Separation from Aircraft

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM Pag.: 1 TEM: 0114 TP - (HP. 03) ERODYNMIS OD_PREG: PREGUNT: RPT: 8324 When are inboard ailerons normally used? OPION : Low-speed

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Multiengine: Engine-Inoperative Principles 1/8

Multiengine: Engine-Inoperative Principles 1/8 Multiengine: Engine-Inoperative Principles 1/8 Multiengine: engine-inoperative principles Side slip vs. zero side slip With a multiengine airplane with all its engines operating, sideslip is eliminated

More information

AOE 3134 Complete Aircraft Equations

AOE 3134 Complete Aircraft Equations AOE 3134 Complete Aircraft Equations The requirements for balance and stability that we found for the flying wing carry over directly to a complete aircraft. In particular we require the zero-lift pitch

More information

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation

CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation Page1 CFD Analysis of Supersonic Exhaust Diffuser System for Higher Altitude Simulation ABSTRACT Alan Vincent E V P G Scholar, Nehru Institute of Engineering and Technology, Coimbatore Tamil Nadu A high

More information

Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F. C. Zavatson

Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F. C. Zavatson Experimental Evaluation of Cruise Flap Deflection on Total Aircraft Drag using the NLF(1)-0215F C. Zavatson 3-16-2013 Table of Contents Introduction... 3 Objective and Testing Approach... 3 The Test Aircraft...

More information

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series National Aeronautics and Space Administration GRADES K-2 Aeronautics Research Mission Directorate Museum in a BOX Series www.nasa.gov parts of an airplane Getting on an Airplane MUSEUM IN A BOX Getting

More information

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

Atmospheric Reentry. Introduction, Mathematical Model and Simulation

Atmospheric Reentry. Introduction, Mathematical Model and Simulation Atmospheric Reentry Introduction, Mathematical Model and Simulation Julian Köllermeier Theodor-Heuss Akademie, August 23rd 2014 A short history of human spaceflight 1944 V2 is first rocket in space 1957

More information

An Introduction to Object-Oriented Programming with

An Introduction to Object-Oriented Programming with An Introduction to Object-Oriented Programming with TM Java C. Thomas Wu Naval Postgraduate School Ml McGraw-Hill Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok

More information

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide.

These slides contain some notes, thoughts about what to study, and some practice problems. The answers to the problems are given in the last slide. Fluid Mechanics FE Review Carrie (CJ) McClelland, P.E. cmcclell@mines.edu Fluid Mechanics FE Review These slides contain some notes, thoughts about what to study, and some practice problems. The answers

More information

Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1. Governing Equations of Fluid Flow and Heat Transfer Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

More information

A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE

A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE A MONTE CARLO DISPERSION ANALYSIS OF A ROCKET FLIGHT SIMULATION SOFTWARE F. SAGHAFI, M. KHALILIDELSHAD Department of Aerospace Engineering Sharif University of Technology E-mail: saghafi@sharif.edu Tel/Fax:

More information

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight

A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight e-περιοδικό Επιστήμης & Τεχνολογίας 33 A Simple Model for Ski Jump Flight Mechanics Used as a Tool for Teaching Aircraft Gliding Flight Vassilios McInnes Spathopoulos Department of Aircraft Technology

More information

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

Lecture L17 - Orbit Transfers and Interplanetary Trajectories S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

More information

Principles of Flight. Chapter 3. Introduction. Structure of the Atmosphere

Principles of Flight. Chapter 3. Introduction. Structure of the Atmosphere Chapter 3 Principles of Flight Introduction This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what effect these natural laws and forces have

More information

Spacecraft Dynamics and Control. An Introduction

Spacecraft Dynamics and Control. An Introduction Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude

More information

CHAPTER 7 CLIMB PERFORMANCE

CHAPTER 7 CLIMB PERFORMANCE CHAPTER 7 CLIMB PERFORMANCE 7 CHAPTER 7 CLIMB PERFORMANCE PAGE 7.1 INTRODUCTION 7.1 7.2 PURPOSE OF TEST 7.1 7.3 THEORY 7.2 7.3.1 SAWTOOTH CLIMBS 7.2 7.3.2 STEADY STATE APPROACH TO CLIMB PERFORMANCE 7.4

More information

NACA airfoil geometrical construction

NACA airfoil geometrical construction The NACA airfoil series The early NACA airfoil series, the 4-digit, 5-digit, and modified 4-/5-digit, were generated using analytical equations that describe the camber (curvature) of the mean-line (geometric

More information

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology

Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Fundamentals of Pulse Detonation Engine (PDE) and Related Propulsion Technology Dora E. Musielak, Ph.D. Aerospace Engineering Consulting Arlington, TX All rights reserved. No part of this publication may

More information

Direct Marketing AN INTEGRATED APPROACH

Direct Marketing AN INTEGRATED APPROACH Direct Marketing AN INTEGRATED APPROACH William J. McDonald, Ph.p. Hofstra UmyCrsity New Thinking An International Direct Marketing Agency fü lrwin islwcgraw-hhi Boston Buir Ridge, IL Dubuque, IA Madison,

More information

THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS

THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS THE MODIFICATION OF WIND-TUNNEL RESULTS BY THE WIND-TUNNEL DIMENSIONS 13\' MAX M. MONK, Ph.D., Dr.Eng. Technical Assistant, National Advisory Committee for Aeronautics RIlPRINTED FROM THII JOURNAL OF THE

More information

CFD Analysis of Civil Transport Aircraft

CFD Analysis of Civil Transport Aircraft IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 CFD Analysis of Civil Transport Aircraft Parthsarthi A Kulkarni 1 Dr. Pravin V Honguntikar

More information

How Rockets Work Newton s Laws of Motion

How Rockets Work Newton s Laws of Motion How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

More information

220027 - Flight Mechanics

220027 - Flight Mechanics Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2015 220 - ETSEIAT - Terrassa School of Industrial and Aeronautical Engineering 220 - ETSEIAT - Terrassa School of Industrial and

More information

Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe. Motion, Force, and Gravity Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

More information

ASYMMETRIC FLIGHT INTRODUCTION

ASYMMETRIC FLIGHT INTRODUCTION ASYMMETRIC FLIGHT INTRODUCTION This section provides a discussion of the asymmetric flight of multi-engine airplanes following loss of power from an engine(s) mounted laterally either side of the centerline.

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

1.1. School of Aerospace and Mechanical Engineering

1.1. School of Aerospace and Mechanical Engineering 1.1. School of Aerospace and Mechanical Engineering General Information The School of Aerospace and Mechanical Engineering aims to train students to become experts in the rapidly-growing aerospace and

More information