Lecture 9, Multirate Signal Processing, z-domain Effects

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 9, Multirate Signal Processing, z-domain Effects"

Transcription

1 Lecture 9, Multirate Signal Processing, z-domain Effects Last time we saw the effects of downsampling and upsampling. Observe that we can perfectly reconstruct the high pass signal in our example if we use ideal filters, using upsampling and ideal high pass filtering. In this way we have for the analysis and synthesis the following picture -pi pi -pi pi -pi pi Analysis -pi pi Synthesis Observe that we violate the conventional Nyquist criterium, because our high pass passes the high frequencies. But then the sampling mirrors those frequencies to the lower range, such that we can apply the traditional Nyquist sampling theorem. This method is also

2 known as bandpass Nyquist. This is an important principle for filter banks and wavelets. It says that we can perfectly reconstruct a bandpass signal in a filter bank, if we sample with twice the rate as the bandwidth of our bandpass signal (assuming ideal filters). Observe that this simple assumption only works for real valued filters if we have bandpass filters which start at frequencies / N k (integer multiples of / N ). Otherwise we could have overlap to the aliased components! Example: We have a real valued bandpass filter which starts its passband at and ends at / N (since it is real values the passband also appears at the same negative frequencies, to / N ). After multiplication with the delta train, we get one (out of N) aliasing component by shifting the negative passband by 2 / N to the positive frequencies, which results to the range of / N to 2 / N. Hence we have an overlap from / N to / N and we could not perfectly reconstruct our signal! Hence, sampling of twice the bandwidth for real valued signals only works if the bandwidths are aligned with / N k. What could we do otherwise to avoid overlapping aliasing components? We could simply increas the

3 sampling rate, for instance to twice the usual sampling rate (4 times the bandwidth), to have a "safety margin". Another possibility would be to shift the bandpass signals in frequency, such that they are now aligned with the above mentioned grid. Observe that this restriction is not needed for complex signals or filter banks. That is also why complex filter banks are used for instance in acoustic echo cancellation, because there the sampling rate can be increased by a certain fraction (less than a factor of 2) to reduce aliasing artifacts, and still have a lower complexity. overlap Summary: if our band boarders are alligned with multiples of / N then we can donwsample by N, otherwise we are on the save side by using N/2 as downsampling rate for real valued signals. For complex signals we can always downsample by N, regardles of the exact placement of the bandpass filter.

4 Compare with the standard Nyquist case: here we have a lowpass signal which we downsample and reconstruct: Lowpass Lowpass Lowpass filtered input spectrum (original) Aliasing Component Reconstruc. Original spectrum Matlab/Octave Example: Just take an audio signal and read it into Matlab/Octave, and filter it with our previous low pass filter (e.g. Kaiser Window with Beta=8), x=wavread('04_topchart.wav'); %listen to it: sound(x,32000) %Look at its spectrum: freqz(x)

5 This is the spectrum of our original. Observe its already low pass characteristic. Now we can low pass filter it. We take our Kaiser Window low pass filter design from slides Nr. 6, n=0:31; %ideal impulse response: h=sin(0.33*pi*(n-15.5))./(pi*(n-15.5)); %Kaiser window: hk=kaiser(32,8)'; %multiply ideal filter and Kaiser window: hfilt=hk.*h;

6 xlp=conv(x,hfilt); freqz(xlp) Observe that beginning at frequency 0.5 we have indeed much attenuation and hardly any signal left. Now we can down-sample it by a factor of N=2, xds=xlp(1:2:end); freqz(xds)

7 Observe that we now obtain the streched spectrum. Listen to it: sound(xds,16000) It should sound more muffled, but otherwise the same, but at now half the sampling rate! Now we can upsample again, xups=zeros(2*max(size(xds)),1); xups(1:2:end)=xds; freqz(xups);

8 Observe the shrinking and periodic continuation of the spectrum, the aliasing component at the high frequencies. Listen to the signal including aliasing, sound(xups,32000); Now low pass filter the result, xupslp=conv(xups,hfilt); freqz(xupslp)

9 Observe that now we removed the aliasing component at high frequencies. Now listen to it, sound(xupslp,32000); Observe: it should now sound the same as at the lower sampling rate, but now at the higher sampling rate of 32 khz! (Possible differences are due to not sufficiently attenuated aliasing).

10 Effects in the z-domain The z-transform is a more general transform than the Fourier transform, and we will use it to obtain perfect reconstruction in filter banks and wavelets. Hence we will now look at the effects of sampling and some more tools in the z- domain. Since we usually deal with causal systems in practice, we use the 1-sided z-transform, defined as X z = n=0 x n z n First observe that we get our usual frequency response if we evaluate the z-tranform along the unit circle in the z-domain, z=e j What is now the effect of multiplying our signal with the delta impulse train in the z- domain? To see this we simply apply the z- transform, X d z = = 1 N k=0 n=0 N 1 n=0 x n N n z n x n e j 2 N k z n N 1 = 1 N k=0 X e j 2 N k z or, in short, N 1 X e j 2 N k z X d z = 1 N k=0

11 This is very similar to the Fourier transform formulation, just that we now don't have frequency shifts for the aliasing terms, but a multiplication of their exponential functions to z. The next effect is the removal or re-insertion of the zeros from or into the signal. Let's again use our definition y m =x d mn, meaning the y(m) is the signal without the zeros. Then the z-transform becomes, Y Z = y m z m = = m=0 m=0 x d mn z m = Replacing the sum index m (the lower sampling rate) by the higher sampling rate n=mn, and observing that the sequence x d n contains the zeros, with x d n =0 for n mn, this results in = n=0 x d n z n/ N = X d z 1/ N Observe the 1/N in the exponent of z! In short, we get Y Z = X d z 1/ N This exponent 1/N of z now correponds to the stretching of our frequency scale in the Fourier spectrum.

12 Another very useful new tool is the so-called modulation. This is the multiplication of our signal with a periodic function, for instance an exponential function. It can be written as x M n :=x n e j n M. Observe that the modulation function here has a periodicity of 2 / M. Its z-transform hence becomes j n X M z = x n e M n z n=0 X M z = X e j M z here again we have this rotation of z by an exponential factor. Observe that this has the effect of simply shifting the frequency response by M in the Fourier spectrum, which can be seen by simply replacing z by e j to obtain the frequency response. But instead of multiple frequency shifts and adds in the downsampled case, here we only have a single shift. An intersting case is obtained if we set M =. Then the modulating function is just a sequence of +1,-1,+1,..., (as can be seen by using e j n as a signal, with n=0,1,2,...) and multiplying this with our signal results in a frequency shift of. If we have a real valued low pass signal, for instance, this will then be shifted by, and we will obtain a high pass. In this way we can turn the impulse response of

13 a low pass into a high pass, and vice versa. We see that this is a simple method to obtain a high pass filter from a low pass filter. We simply design a low pass, the take its impulse response, and invert the sign of every second sample, and the result is a high pass! In a similar way we can also obtain a band pass from a low pass, we just need the general modulating function e j M n and multiply it with the impulse response of our low pass filter. What was around frequency zero now after modulation appears around frequency M, and we have a bandpass with center frequeny M. This is a useful "trick", because there are many design methods for low pass filters, but not so many for the other types, and because we can obtain filters with the same properties at multiple frequencys (we simply "copy" a filter to different frequencies). Observe that in general we will obtain a complex valued

14 impulse response using this approach. The resulting spectrum becomes one-sided. If we want to obtain real valued filters and impulse responses, we have to make the spectrum symmetric around zero again. We can do this by simple take the real parts of the complex impulse response (in that case that symmetric extension has the same sign as the original spectrum components) or we take the imaginary part (in that case we obtain the opposite sign for the symmetric extension). In summary: with modulation we can shift a low pass spectrum to any desired frequency to obtain a desired filter, and using the real or imaginary part we can then obtain a real valued filter. Another important tool is the reversal of the ordering of a finite length signal sequence, with length L (meaning x(n) is non-zero only for n=0,..., L 1 ), x r n :=x L 1 n. Its z-transform is X r z = n=0 x L 1 n z n we can now reverse the order of the summation (of course without affecting the result) by starting at the highest index, going to the lowest, replacing the index n by the expression L 1 n' (index substitution),

15 or, in short, X r z = n' =0 L 1 n' x n' z =z L 1 X z 1 X r z =z L 1 X z 1 So what we obtain is the inverse of z in the z- transform (which signifies the time reversal), and a factor of z L 1, which is simply a delay of L-1 samples! Important here is the inverse of z. What difference does this make in our Fourier spectrum, replacing z by e j? We obtain X instead of X. For real valued signals this only makes a difference for the signs (phases) of our frequency responses, because of the spectral symmetries for real valued signals. The magnitudes are identical. This can still be of importance, for instance in filter banks with aliasing cancellation. Here the different signs also change the sign of the aliasing components, and that can make the difference between aliasing components cancelling between different bands or adding up! An example is the 2 band Haar filter bank, where the high pass impulse responese on one side has to be time reversed to obtain perfect reconstruction. For complex valued signals, the negative and

16 positive frequencies can be completely different, and hence time-reversal would make a bigger difference.

Module 4. Contents. Digital Filters - Implementation and Design. Signal Flow Graphs. Digital Filter Structures. FIR and IIR Filter Design Techniques

Module 4. Contents. Digital Filters - Implementation and Design. Signal Flow Graphs. Digital Filter Structures. FIR and IIR Filter Design Techniques Module 4 Digital Filters - Implementation and Design Digital Signal Processing. Slide 4.1 Contents Signal Flow Graphs Basic filtering operations Digital Filter Structures Direct form FIR and IIR filters

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

(Refer Slide Time: 2:08)

(Refer Slide Time: 2:08) Digital Voice and Picture Communication Prof. S. Sengupta Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 30 AC - 3 Decoder In continuation with

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

Chapter 3 Discrete-Time Fourier Series. by the French mathematician Jean Baptiste Joseph Fourier in the early 1800 s. The

Chapter 3 Discrete-Time Fourier Series. by the French mathematician Jean Baptiste Joseph Fourier in the early 1800 s. The Chapter 3 Discrete-Time Fourier Series 3.1 Introduction The Fourier series and Fourier transforms are mathematical correlations between the time and frequency domains. They are the result of the heat-transfer

More information

1 1. The ROC of the z-transform H(z) of the impulse response sequence h[n] is defined

1 1. The ROC of the z-transform H(z) of the impulse response sequence h[n] is defined A causal LTI digital filter is BIBO stable if and only if its impulse response h[ is absolutely summable, i.e., S h [ < n We now develop a stability condition in terms of the pole locations of the transfer

More information

This is the 39th lecture and our topic for today is FIR Digital Filter Design by Windowing.

This is the 39th lecture and our topic for today is FIR Digital Filter Design by Windowing. Digital Signal Processing Prof: S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 39 FIR Digital Filter Design by Windowing This is the 39th lecture and

More information

Digital Signal Processing 2/ Advanced Digital Signal Processing, Audio/Video Signal Processing Lecture 10, Frequency Warping, Example

Digital Signal Processing 2/ Advanced Digital Signal Processing, Audio/Video Signal Processing Lecture 10, Frequency Warping, Example Digital Signal Processing 2/ Advanced Digital Signal Processing, Audio/Video Signal Processing Lecture 10, Gerald Schuller, TU Ilmenau Frequency Warping, Example Example: Design a warped low pass filter

More information

Lecture 18: The Time-Bandwidth Product

Lecture 18: The Time-Bandwidth Product WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,

More information

14: FM Radio Receiver

14: FM Radio Receiver (1) (2) (3) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R):

More information

Digital Filter Plus User's Guide. Version January, 2015

Digital Filter Plus User's Guide. Version January, 2015 Digital Filter Plus User's Guide Version 2.50 3 January, 2015 2014 Numerix Ltd. Email : mailto:numerix@numerix-dsp.com WWW : http://www.numerix-dsp.com/ INTRODUCTION 3 INSTALLATION 4 USING DIGITAL FILTER

More information

Department of Electronics and Communication Engineering 1

Department of Electronics and Communication Engineering 1 DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING III Year ECE / V Semester EC 6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING QUESTION BANK Department of

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

Image Enhancement in the Frequency Domain

Image Enhancement in the Frequency Domain Image Enhancement in the Frequency Domain Jesus J. Caban Outline! Assignment #! Paper Presentation & Schedule! Frequency Domain! Mathematical Morphology %& Assignment #! Questions?! How s OpenCV?! You

More information

Understand the principles of operation and characterization of digital filters

Understand the principles of operation and characterization of digital filters Digital Filters 1.0 Aim Understand the principles of operation and characterization of digital filters 2.0 Learning Outcomes You will be able to: Implement a digital filter in MATLAB. Investigate how commercial

More information

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION

DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION Meena Kohli 1, Rajesh Mehra 2 1 M.E student, ECE Deptt., NITTTR, Chandigarh, India 2 Associate Professor, ECE Deptt.,

More information

Continuous time vs Discrete time. Lecture 13. Sampling & Discrete signals (Lathi ) Sampling Process. Sampling Theorem. f s. = 500Hz ELECTRONICS

Continuous time vs Discrete time. Lecture 13. Sampling & Discrete signals (Lathi ) Sampling Process. Sampling Theorem. f s. = 500Hz ELECTRONICS Lecture 13 Sampling & Discrete signals (Lathi 8.1-8.2) Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.imperial.ac.uk/pcheung/teaching/ee2_signals E-mail:

More information

There are four common ways of finding the inverse z-transform:

There are four common ways of finding the inverse z-transform: Inverse z-transforms and Difference Equations Preliminaries We have seen that given any signal x[n], the two-sided z-transform is given by n x[n]z n and X(z) converges in a region of the complex plane

More information

Chapter 4: Problem Solutions

Chapter 4: Problem Solutions Chapter 4: Problem s Digital Filters Problems on Non Ideal Filters à Problem 4. We want to design a Discrete Time Low Pass Filter for a voice signal. The specifications are: Passband F p 4kHz, with 0.8dB

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial. Joachim Gross Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1. Spirou et Fantasio

The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1. Spirou et Fantasio The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1 Date: October 14, 2016 Course: EE 445S Evans Name: Spirou et Fantasio Last, First The exam is scheduled to last

More information

(Refer Slide Time: 01:11-01:27)

(Refer Slide Time: 01:11-01:27) Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,

More information

APPLICATION OF FILTER BANK THEORY TO SUBBAND CODING OF IMAGES

APPLICATION OF FILTER BANK THEORY TO SUBBAND CODING OF IMAGES EC 623 ADVANCED DIGITAL SIGNAL PROCESSING TERM-PROJECT APPLICATION OF FILTER BANK THEORY TO SUBBAND CODING OF IMAGES Y. PRAVEEN KUMAR 03010240 KANCHAN MISHRA 03010242 Supervisor: Dr. S.R.M. Prasanna Department

More information

The Z transform (3) 1

The Z transform (3) 1 The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform

More information

Introduction to IQ-demodulation of RF-data

Introduction to IQ-demodulation of RF-data Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced

More information

Windowed-Sinc Filters

Windowed-Sinc Filters CHAPTER 16 Windowed-Sinc Filters Windowed-sinc filters are used to separate one band of frequencies from another. They are very stable, produce few surprises, and can be pushed to incredible performance

More information

FIR and IIR Transfer Functions

FIR and IIR Transfer Functions FIR and IIR Transfer Functions the input output relation of an LTI system is: the output in the z domain is: yn [ ] = hkxn [ ] [ k] k = Y( z) = H( z). X( z) Where H( z) = h[ n] z n= n so we can write the

More information

Elec 484 Final Project Report. Marlon Smith

Elec 484 Final Project Report. Marlon Smith Elec 484 Final Project Report Marlon Smith Abstract This report discusses the implementation of a variety of audio effects using a phase vocoder. Effects such as time stretching, pitch shifting, and robotization

More information

FIR Filter Design. FIR Filters and the z-domain. The z-domain model of a general FIR filter is shown in Figure 1. Figure 1

FIR Filter Design. FIR Filters and the z-domain. The z-domain model of a general FIR filter is shown in Figure 1. Figure 1 FIR Filters and the -Domain FIR Filter Design The -domain model of a general FIR filter is shown in Figure. Figure Each - box indicates a further delay of one sampling period. For example, the input to

More information

Basics on Digital Signal Processing

Basics on Digital Signal Processing Basics on Digital Signal Processing Introduction Vassilis Anastassopoulos Electronics Laboratory, Physics Department, University of Patras Outline of the Course 1. Introduction (sampling quantization)

More information

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur-603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6502 PRINCIPAL OF DIGITAL SIGNAL PROCESSING YEAR / SEMESTER: III / V ACADEMIC

More information

PHASE ALIGNMENT BETWEEN SUBWOOFERS AND MID-HIGH CABINETS

PHASE ALIGNMENT BETWEEN SUBWOOFERS AND MID-HIGH CABINETS PHASE ALIGNMENT BETWEEN SUBWOOFERS AND MID-HIGH CABINETS Introduction FFT based field measurement systems have made it possible for us to do phase alignment at fixed installations as well as at live events,

More information

Recursive Filters. The Recursive Method

Recursive Filters. The Recursive Method CHAPTER 19 Recursive Filters Recursive filters are an efficient way of achieving a long impulse response, without having to perform a long convolution. They execute very rapidly, but have less performance

More information

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201 Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information

A Tutorial on Fourier Analysis

A Tutorial on Fourier Analysis A Tutorial on Fourier Analysis Douglas Eck University of Montreal NYU March 26 1.5 A fundamental and three odd harmonics (3,5,7) fund (freq 1) 3rd harm 5th harm 7th harmm.5 1 2 4 6 8 1 12 14 16 18 2 1.5

More information

Purpose of Time Series Analysis. Autocovariance Function. Autocorrelation Function. Part 3: Time Series I

Purpose of Time Series Analysis. Autocovariance Function. Autocorrelation Function. Part 3: Time Series I Part 3: Time Series I Purpose of Time Series Analysis (Figure from Panofsky and Brier 1968) Autocorrelation Function Harmonic Analysis Spectrum Analysis Data Window Significance Tests Some major purposes

More information

Outline. FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples

Outline. FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples FIR Filter Design Outline FIR Filter Characteristics Linear Phase Windowing Method Frequency Sampling Method Equiripple Optimal Method Design Examples FIR Filter Characteristics FIR difference equation

More information

Short-time FFT, Multi-taper analysis & Filtering in SPM12

Short-time FFT, Multi-taper analysis & Filtering in SPM12 Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier

More information

Frequency Response of FIR Filters

Frequency Response of FIR Filters Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input

More information

Moving Average Filters

Moving Average Filters CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average

More information

Grade 7/8 Math Circles October 7/8, Exponents and Roots - SOLUTIONS

Grade 7/8 Math Circles October 7/8, Exponents and Roots - SOLUTIONS Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles October 7/8, 2014 Exponents and Roots - SOLUTIONS This file has all the missing

More information

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek

Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The Discrete Fourier Transform Introduction The discrete Fourier transform (DFT) is a fundamental transform in digital signal processing, with applications in frequency analysis, fast convolution, image

More information

PYKC Jan-7-10. Lecture 1 Slide 1

PYKC Jan-7-10. Lecture 1 Slide 1 Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal

More information

Nyquist Sampling Theorem. By: Arnold Evia

Nyquist Sampling Theorem. By: Arnold Evia Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier

More information

Digital Filter Design

Digital Filter Design Digital Filter Design Objective - Determination of a realiable transfer function G() approximating a given frequency response specification is an important step in the development of a digital filter If

More information

Topic 4: Continuous-Time Fourier Transform (CTFT)

Topic 4: Continuous-Time Fourier Transform (CTFT) ELEC264: Signals And Systems Topic 4: Continuous-Time Fourier Transform (CTFT) Aishy Amer Concordia University Electrical and Computer Engineering o Introduction to Fourier Transform o Fourier transform

More information

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL Saurabh Singh Rajput, Dr.S.S. Bhadauria Department of Electronics, Madhav Institute of Technology

More information

Design of FIR Filters

Design of FIR Filters Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as

More information

BIL Computer Vision Mar 5, 2014

BIL Computer Vision Mar 5, 2014 BIL 719 - Computer Vision Mar 5, 2014 Image pyramids Aykut Erdem Dept. of Computer Engineering Hacettepe University Image Scaling This image is too big to fit on the screen. How can we reduce it? How to

More information

The Filter Wizard issue 25: Sample Multiple Channels Simultaneously With A Single ADC Kendall Castor-Perry

The Filter Wizard issue 25: Sample Multiple Channels Simultaneously With A Single ADC Kendall Castor-Perry The Filter Wizard issue 25: Sample Multiple Channels Simultaneously With A Single ADC Kendall Castor-Perry Despite its title, this is indeed an article about a filtering technique. Using it, you can sample

More information

First, we show how to use known design specifications to determine filter order and 3dB cut-off

First, we show how to use known design specifications to determine filter order and 3dB cut-off Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters

CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters CONVERTERS Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters Filters Filters are used to remove unwanted bandwidths from a signal Filter classification according

More information

Why z-transform? Convolution becomes a multiplication of polynomials

Why z-transform? Convolution becomes a multiplication of polynomials z-transform Why z-transform? The z-transform introduces polynomials and rational functions in the analysis of linear time-discrete systems and has a similar importance as the Laplace transform for continuous

More information

Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Basic review Writing fractions in simplest form Comparing fractions Converting between Improper fractions and whole/mixed numbers Operations

More information

The continuous and discrete Fourier transforms

The continuous and discrete Fourier transforms FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1

More information

Limits at Infinity Limits at Infinity for Polynomials Limits at Infinity for the Exponential Function Function Dominance More on Asymptotes

Limits at Infinity Limits at Infinity for Polynomials Limits at Infinity for the Exponential Function Function Dominance More on Asymptotes Lecture 5 Limits at Infinity and Asymptotes Limits at Infinity Horizontal Asymptotes Limits at Infinity for Polynomials Limit of a Reciprocal Power The End Behavior of a Polynomial Evaluating the Limit

More information

Math 115 Spring 2011 Written Homework 5 Solutions

Math 115 Spring 2011 Written Homework 5 Solutions . Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence

More information

Analysis and Design of FIR filters using Window Function in Matlab

Analysis and Design of FIR filters using Window Function in Matlab International Journal of Computer Engineering and Information Technology VOL. 3, NO. 1, AUGUST 2015, 42 47 Available online at: www.ijceit.org E-ISSN 2412-8856 (Online) Analysis and Design of FIR filters

More information

Introduction to Digital Filters

Introduction to Digital Filters CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted

More information

L9: Cepstral analysis

L9: Cepstral analysis L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,

More information

Lecture 06: Design of Recursive Digital Filters

Lecture 06: Design of Recursive Digital Filters Lecture 06: Design of Recursive Digital Filters John Chiverton School of Information Technology Mae Fah Luang University 1st Semester 2009/ 2552 Lecture Contents Introduction IIR Filter Design Pole-Zero

More information

Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur

Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Advanced 3G and 4G Wireless Communication Prof. Aditya K. Jagannatham Department of Electrical Engineering Indian Institute of Technology, Kanpur Lecture - 3 Rayleigh Fading and BER of Wired Communication

More information

Design and Implementation of an Interpolation Filter for Hearing-Aid Application

Design and Implementation of an Interpolation Filter for Hearing-Aid Application Design and Implementation of an Interpolation Filter for Hearing-Aid Application Pere Llimós Muntal Supervisors: Erik Bruun [DTU] Peter Pracný[DTU] Master Project, June 2012 Technical University of Denmark

More information

Chapter 9 DESIGN OF NONRECURSIVE (FIR) FILTERS. 9.3 Design Using the Fourier Series 9.4 Use of Window Functions

Chapter 9 DESIGN OF NONRECURSIVE (FIR) FILTERS. 9.3 Design Using the Fourier Series 9.4 Use of Window Functions Chapter 9 DESIGN OF NONRECURSIVE (FIR) FILTERS 9.3 Design Using the Fourier Series 9.4 Use of Window Functions Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org October

More information

The Fourier Analysis Tool in Microsoft Excel

The Fourier Analysis Tool in Microsoft Excel The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier

More information

EE3414 Multimedia Communication Systems Part I. Spring 2003, Lecture 2 Signal Representation in Temporal and Frequency Domain

EE3414 Multimedia Communication Systems Part I. Spring 2003, Lecture 2 Signal Representation in Temporal and Frequency Domain EE344 Multimedia Communication Systems Part I Spring 23, Lecture 2 Signal Representation in Temporal and Frequency Domain Yao Wang Electrical and Computer Engineering Polytechnic University Signal Representation

More information

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to

More information

BPSK - BINARY PHASE SHIFT KEYING

BPSK - BINARY PHASE SHIFT KEYING BPSK - BINARY PHASE SHIFT KEYING PREPARATION... 70 generation of BPSK... 70 bandlimiting... 71 BPSK demodulation... 72 phase ambiguity...72 EXPERIMENT... 73 the BPSK generator... 73 BPSK demodulator...

More information

Simulation of Frequency Response Masking Approach for FIR Filter design

Simulation of Frequency Response Masking Approach for FIR Filter design Simulation of Frequency Response Masking Approach for FIR Filter design USMAN ALI, SHAHID A. KHAN Department of Electrical Engineering COMSATS Institute of Information Technology, Abbottabad (Pakistan)

More information

Double Sideband (DSB) and Amplitude Modulation (AM)

Double Sideband (DSB) and Amplitude Modulation (AM) Double Sideband (DSB) and Amplitude Modulation (AM) Modules: Audio Oscillator, Wideband True RMS Meter, Multiplier, Adder, Utilities, Phase Shifter, Tuneable LPFs (2), Quadrature Utilities, Twin Pulse

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

OSE801 Engineering System Identification Fall 2012 Lecture 5: Fourier Analysis: Introduction

OSE801 Engineering System Identification Fall 2012 Lecture 5: Fourier Analysis: Introduction OSE801 Engineering System Identification Fall 2012 Lecture 5: Fourier Analysis: Introduction Instructors: K. C. Park and I. K. Oh (Division of Ocean Systems Engineering) System-Identified State Space Model

More information

Diagonal, Symmetric and Triangular Matrices

Diagonal, Symmetric and Triangular Matrices Contents 1 Diagonal, Symmetric Triangular Matrices 2 Diagonal Matrices 2.1 Products, Powers Inverses of Diagonal Matrices 2.1.1 Theorem (Powers of Matrices) 2.2 Multiplying Matrices on the Left Right by

More information

What is a Filter? Output Signal. Input Signal Amplitude. Frequency. Low Pass Filter

What is a Filter? Output Signal. Input Signal Amplitude. Frequency. Low Pass Filter What is a Filter? Input Signal Amplitude Output Signal Frequency Time Sequence Low Pass Filter Time Sequence What is a Filter Input Signal Amplitude Output Signal Frequency Signal Noise Signal Noise Frequency

More information

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 18. Filtering

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 18. Filtering SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 18. Filtering By Tom Irvine Email: tomirvine@aol.com Introduction Filtering is a tool for resolving signals. Filtering can be performed on either analog

More information

Text: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold)

Text: A Graphical Approach to College Algebra (Hornsby, Lial, Rockswold) Students will take Self Tests covering the topics found in Chapter R (Reference: Basic Algebraic Concepts) and Chapter 1 (Linear Functions, Equations, and Inequalities). If any deficiencies are revealed,

More information

Property: Rule: Example:

Property: Rule: Example: Math 1 Unit 2, Lesson 4: Properties of Exponents Property: Rule: Example: Zero as an Exponent: a 0 = 1, this says that anything raised to the zero power is 1. Negative Exponent: Multiplying Powers with

More information

Groups 1. Definition 1 A Group G is a set with an operation which satisfies the following: e a = a e = e. a a 1 = a 1 a = e.

Groups 1. Definition 1 A Group G is a set with an operation which satisfies the following: e a = a e = e. a a 1 = a 1 a = e. Groups 1 1 Introduction to Groups Definition 1 A Group G is a set with an operation which satisfies the following: 1. there is an identity element e G, such that for every a G e a = a e = e 2. every element

More information

!"#$%&'(#)%"*#% +),"-./*-"& +0/#12/

!#$%&'(#)%*#% +),-./*-& +0/#12/ !"#$%&'(#)%"*#% +),"-./*-"& +0/#12/ 343*5678*91(#'$1*:%#1/ +;$)",*5877, "/#0! + + #!"#$% &'()*!,!"#$% &'()*! -!"#$% &'()*!. $/#0! +!,!-!. +, -. # 2006 2011 Mark A. Wickert Contents Introduction and Course

More information

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

More information

Techniques for Extending Real-Time Oscilloscope Bandwidth

Techniques for Extending Real-Time Oscilloscope Bandwidth Techniques for Extending Real-Time Oscilloscope Bandwidth Over the past decade, data communication rates have increased by a factor well over 10X. Data rates that were once 1Gb/sec and below are now routinely

More information

Lecture - 4 Diode Rectifier Circuits

Lecture - 4 Diode Rectifier Circuits Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits

More information

Identify examples of field properties: commutative, associative, identity, inverse, and distributive.

Identify examples of field properties: commutative, associative, identity, inverse, and distributive. Topic: Expressions and Operations ALGEBRA II - STANDARD AII.1 The student will identify field properties, axioms of equality and inequality, and properties of order that are valid for the set of real numbers

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION

ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION ANTI-ALIASING FILTERS WITH ZERO PHASE DISTORTION How-to, version: 3.1, Date: 04.05.2016 DEWESoft d.o.o. Gabrsko 11a, 1420 Trbovlje, Slovenia support@dewesoft.com Dewesoft has a possibility to set different

More information

CM2202: Scientific Computing and Multimedia Applications Fourier Transform 1: Digital Signal and Image Processing Fourier Theory

CM2202: Scientific Computing and Multimedia Applications Fourier Transform 1: Digital Signal and Image Processing Fourier Theory CM2202: Scientific Computing and Multimedia Applications Fourier Transform 1: Digital Signal and Image Processing Fourier Theory Prof. David Marshall School of Computer Science & Informatics Fourier Transform

More information

26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order 26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

More information

Speech Signal Processing Handout 4 Spectral Analysis & the DFT

Speech Signal Processing Handout 4 Spectral Analysis & the DFT Speech Signal Processing Handout 4 Spectral Analysis & the DFT Signal: N samples Spectrum: DFT Result: N complex values Frequency resolution = 1 (Hz) NT Magnitude 1 Symmetric about Hz 2T frequency (Hz)

More information

A Brief Introduction to Sigma Delta Conversion

A Brief Introduction to Sigma Delta Conversion A Brief Introduction to Sigma Delta Conversion Application Note May 995 AN954 Author: David Jarman Introduction The sigma delta conversion techniue has been in existence for many years, but recent technological

More information

Grade 6 Math Circles. Exponents

Grade 6 Math Circles. Exponents Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles November 4/5, 2014 Exponents Quick Warm-up Evaluate the following: 1. 4 + 4 + 4 +

More information

Digital Signal Processing ADC and DAC

Digital Signal Processing ADC and DAC Digital Signal Processing ADC and DAC Moslem Amiri, Václav Přenosil Masaryk University Resource: The Scientist and Engineer's Guide to Digital Signal Processing (www.dspguide.com) By Steven W. Smith Quantization

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 18 1/25/2008 3:42 AM DC Spectrum Information Signal term 2w on c signal the positive negative x-axis Half is up shifted. This half is down shifted. Charan Langton, The Carrier Editor -9, fc -9, -8,

More information

Application Note 9. Digital FIR Decimator & Analog Lowpass

Application Note 9. Digital FIR Decimator & Analog Lowpass Application Note 9 App Note Application Note 9 Highlights Multirate FIR Design Cascade Analog Lowpass Circuit Optimization Comb Filter Correction Sin(x)/x Correction n Design Objective 16:1 FIR Decimation

More information

1.1 Discrete-Time Fourier Transform

1.1 Discrete-Time Fourier Transform 1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous

More information