Lecture 9, Multirate Signal Processing, z-domain Effects
|
|
|
- Brenda McGee
- 9 years ago
- Views:
Transcription
1 Lecture 9, Multirate Signal Processing, z-domain Effects Last time we saw the effects of downsampling and upsampling. Observe that we can perfectly reconstruct the high pass signal in our example if we use ideal filters, using upsampling and ideal high pass filtering. In this way we have for the analysis and synthesis the following picture -pi pi -pi pi -pi pi Analysis -pi pi Synthesis Observe that we violate the conventional Nyquist criterium, because our high pass passes the high frequencies. But then the sampling mirrors those frequencies to the lower range, such that we can apply the traditional Nyquist sampling theorem. This method is also
2 known as bandpass Nyquist. This is an important principle for filter banks and wavelets. It says that we can perfectly reconstruct a bandpass signal in a filter bank, if we sample with twice the rate as the bandwidth of our bandpass signal (assuming ideal filters). Observe that this simple assumption only works for real valued filters if we have bandpass filters which start at frequencies / N k (integer multiples of / N ). Otherwise we could have overlap to the aliased components! Example: We have a real valued bandpass filter which starts its passband at and ends at / N (since it is real values the passband also appears at the same negative frequencies, to / N ). After multiplication with the delta train, we get one (out of N) aliasing component by shifting the negative passband by 2 / N to the positive frequencies, which results to the range of / N to 2 / N. Hence we have an overlap from / N to / N and we could not perfectly reconstruct our signal! Hence, sampling of twice the bandwidth for real valued signals only works if the bandwidths are aligned with / N k. What could we do otherwise to avoid overlapping aliasing components? We could simply increas the
3 sampling rate, for instance to twice the usual sampling rate (4 times the bandwidth), to have a "safety margin". Another possibility would be to shift the bandpass signals in frequency, such that they are now aligned with the above mentioned grid. Observe that this restriction is not needed for complex signals or filter banks. That is also why complex filter banks are used for instance in acoustic echo cancellation, because there the sampling rate can be increased by a certain fraction (less than a factor of 2) to reduce aliasing artifacts, and still have a lower complexity. overlap Summary: if our band boarders are alligned with multiples of / N then we can donwsample by N, otherwise we are on the save side by using N/2 as downsampling rate for real valued signals. For complex signals we can always downsample by N, regardles of the exact placement of the bandpass filter.
4 Compare with the standard Nyquist case: here we have a lowpass signal which we downsample and reconstruct: Lowpass Lowpass Lowpass filtered input spectrum (original) Aliasing Component Reconstruc. Original spectrum Matlab/Octave Example: Just take an audio signal and read it into Matlab/Octave, and filter it with our previous low pass filter (e.g. Kaiser Window with Beta=8), x=wavread('04_topchart.wav'); %listen to it: sound(x,32000) %Look at its spectrum: freqz(x)
5 This is the spectrum of our original. Observe its already low pass characteristic. Now we can low pass filter it. We take our Kaiser Window low pass filter design from slides Nr. 6, n=0:31; %ideal impulse response: h=sin(0.33*pi*(n-15.5))./(pi*(n-15.5)); %Kaiser window: hk=kaiser(32,8)'; %multiply ideal filter and Kaiser window: hfilt=hk.*h;
6 xlp=conv(x,hfilt); freqz(xlp) Observe that beginning at frequency 0.5 we have indeed much attenuation and hardly any signal left. Now we can down-sample it by a factor of N=2, xds=xlp(1:2:end); freqz(xds)
7 Observe that we now obtain the streched spectrum. Listen to it: sound(xds,16000) It should sound more muffled, but otherwise the same, but at now half the sampling rate! Now we can upsample again, xups=zeros(2*max(size(xds)),1); xups(1:2:end)=xds; freqz(xups);
8 Observe the shrinking and periodic continuation of the spectrum, the aliasing component at the high frequencies. Listen to the signal including aliasing, sound(xups,32000); Now low pass filter the result, xupslp=conv(xups,hfilt); freqz(xupslp)
9 Observe that now we removed the aliasing component at high frequencies. Now listen to it, sound(xupslp,32000); Observe: it should now sound the same as at the lower sampling rate, but now at the higher sampling rate of 32 khz! (Possible differences are due to not sufficiently attenuated aliasing).
10 Effects in the z-domain The z-transform is a more general transform than the Fourier transform, and we will use it to obtain perfect reconstruction in filter banks and wavelets. Hence we will now look at the effects of sampling and some more tools in the z- domain. Since we usually deal with causal systems in practice, we use the 1-sided z-transform, defined as X z = n=0 x n z n First observe that we get our usual frequency response if we evaluate the z-tranform along the unit circle in the z-domain, z=e j What is now the effect of multiplying our signal with the delta impulse train in the z- domain? To see this we simply apply the z- transform, X d z = = 1 N k=0 n=0 N 1 n=0 x n N n z n x n e j 2 N k z n N 1 = 1 N k=0 X e j 2 N k z or, in short, N 1 X e j 2 N k z X d z = 1 N k=0
11 This is very similar to the Fourier transform formulation, just that we now don't have frequency shifts for the aliasing terms, but a multiplication of their exponential functions to z. The next effect is the removal or re-insertion of the zeros from or into the signal. Let's again use our definition y m =x d mn, meaning the y(m) is the signal without the zeros. Then the z-transform becomes, Y Z = y m z m = = m=0 m=0 x d mn z m = Replacing the sum index m (the lower sampling rate) by the higher sampling rate n=mn, and observing that the sequence x d n contains the zeros, with x d n =0 for n mn, this results in = n=0 x d n z n/ N = X d z 1/ N Observe the 1/N in the exponent of z! In short, we get Y Z = X d z 1/ N This exponent 1/N of z now correponds to the stretching of our frequency scale in the Fourier spectrum.
12 Another very useful new tool is the so-called modulation. This is the multiplication of our signal with a periodic function, for instance an exponential function. It can be written as x M n :=x n e j n M. Observe that the modulation function here has a periodicity of 2 / M. Its z-transform hence becomes j n X M z = x n e M n z n=0 X M z = X e j M z here again we have this rotation of z by an exponential factor. Observe that this has the effect of simply shifting the frequency response by M in the Fourier spectrum, which can be seen by simply replacing z by e j to obtain the frequency response. But instead of multiple frequency shifts and adds in the downsampled case, here we only have a single shift. An intersting case is obtained if we set M =. Then the modulating function is just a sequence of +1,-1,+1,..., (as can be seen by using e j n as a signal, with n=0,1,2,...) and multiplying this with our signal results in a frequency shift of. If we have a real valued low pass signal, for instance, this will then be shifted by, and we will obtain a high pass. In this way we can turn the impulse response of
13 a low pass into a high pass, and vice versa. We see that this is a simple method to obtain a high pass filter from a low pass filter. We simply design a low pass, the take its impulse response, and invert the sign of every second sample, and the result is a high pass! In a similar way we can also obtain a band pass from a low pass, we just need the general modulating function e j M n and multiply it with the impulse response of our low pass filter. What was around frequency zero now after modulation appears around frequency M, and we have a bandpass with center frequeny M. This is a useful "trick", because there are many design methods for low pass filters, but not so many for the other types, and because we can obtain filters with the same properties at multiple frequencys (we simply "copy" a filter to different frequencies). Observe that in general we will obtain a complex valued
14 impulse response using this approach. The resulting spectrum becomes one-sided. If we want to obtain real valued filters and impulse responses, we have to make the spectrum symmetric around zero again. We can do this by simple take the real parts of the complex impulse response (in that case that symmetric extension has the same sign as the original spectrum components) or we take the imaginary part (in that case we obtain the opposite sign for the symmetric extension). In summary: with modulation we can shift a low pass spectrum to any desired frequency to obtain a desired filter, and using the real or imaginary part we can then obtain a real valued filter. Another important tool is the reversal of the ordering of a finite length signal sequence, with length L (meaning x(n) is non-zero only for n=0,..., L 1 ), x r n :=x L 1 n. Its z-transform is X r z = n=0 x L 1 n z n we can now reverse the order of the summation (of course without affecting the result) by starting at the highest index, going to the lowest, replacing the index n by the expression L 1 n' (index substitution),
15 or, in short, X r z = n' =0 L 1 n' x n' z =z L 1 X z 1 X r z =z L 1 X z 1 So what we obtain is the inverse of z in the z- transform (which signifies the time reversal), and a factor of z L 1, which is simply a delay of L-1 samples! Important here is the inverse of z. What difference does this make in our Fourier spectrum, replacing z by e j? We obtain X instead of X. For real valued signals this only makes a difference for the signs (phases) of our frequency responses, because of the spectral symmetries for real valued signals. The magnitudes are identical. This can still be of importance, for instance in filter banks with aliasing cancellation. Here the different signs also change the sign of the aliasing components, and that can make the difference between aliasing components cancelling between different bands or adding up! An example is the 2 band Haar filter bank, where the high pass impulse responese on one side has to be time reversed to obtain perfect reconstruction. For complex valued signals, the negative and
16 positive frequencies can be completely different, and hence time-reversal would make a bigger difference.
SIGNAL PROCESSING & SIMULATION NEWSLETTER
1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Analysis/resynthesis with the short time Fourier transform
Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis
Lecture 18: The Time-Bandwidth Product
WAVELETS AND MULTIRATE DIGITAL SIGNAL PROCESSING Lecture 18: The Time-Bandwih Product Prof.Prof.V.M.Gadre, EE, IIT Bombay 1 Introduction In this lecture, our aim is to define the time Bandwih Product,
14: FM Radio Receiver
(1) (2) (3) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 (1) (2) (3) FM spectrum: 87.5 to 108 MHz Each channel: ±100 khz Baseband signal: Mono (L + R): ±15kHz Pilot tone: 19 khz Stereo (L R):
Introduction to IQ-demodulation of RF-data
Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced
Time series analysis Matlab tutorial. Joachim Gross
Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,
Aliasing, Image Sampling and Reconstruction
Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is
The Z transform (3) 1
The Z transform (3) 1 Today Analysis of stability and causality of LTI systems in the Z domain The inverse Z Transform Section 3.3 (read class notes first) Examples 3.9, 3.11 Properties of the Z Transform
Short-time FFT, Multi-taper analysis & Filtering in SPM12
Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier
Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201
Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem
DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION
DESIGN AND SIMULATION OF TWO CHANNEL QMF FILTER BANK FOR ALMOST PERFECT RECONSTRUCTION Meena Kohli 1, Rajesh Mehra 2 1 M.E student, ECE Deptt., NITTTR, Chandigarh, India 2 Associate Professor, ECE Deptt.,
First, we show how to use known design specifications to determine filter order and 3dB cut-off
Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
(Refer Slide Time: 01:11-01:27)
Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,
PYKC Jan-7-10. Lecture 1 Slide 1
Aims and Objectives E 2.5 Signals & Linear Systems Peter Cheung Department of Electrical & Electronic Engineering Imperial College London! By the end of the course, you would have understood: Basic signal
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Lecture 8 ELE 301: Signals and Systems
Lecture 8 ELE 3: Signals and Systems Prof. Paul Cuff Princeton University Fall 2-2 Cuff (Lecture 7) ELE 3: Signals and Systems Fall 2-2 / 37 Properties of the Fourier Transform Properties of the Fourier
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Introduction to Digital Filters
CHAPTER 14 Introduction to Digital Filters Digital filters are used for two general purposes: (1) separation of signals that have been combined, and (2) restoration of signals that have been distorted
Frequency Response of FIR Filters
Frequency Response of FIR Filters Chapter 6 This chapter continues the study of FIR filters from Chapter 5, but the emphasis is frequency response, which relates to how the filter responds to an input
Lecture - 4 Diode Rectifier Circuits
Basic Electronics (Module 1 Semiconductor Diodes) Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Lecture - 4 Diode Rectifier Circuits
L9: Cepstral analysis
L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,
How To Understand The Nyquist Sampling Theorem
Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier
Design of Efficient Digital Interpolation Filters for Integer Upsampling. Daniel B. Turek
Design of Efficient Digital Interpolation Filters for Integer Upsampling by Daniel B. Turek Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements
Design of FIR Filters
Design of FIR Filters Elena Punskaya www-sigproc.eng.cam.ac.uk/~op205 Some material adapted from courses by Prof. Simon Godsill, Dr. Arnaud Doucet, Dr. Malcolm Macleod and Prof. Peter Rayner 68 FIR as
The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.
Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
Math 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
SGN-1158 Introduction to Signal Processing Test. Solutions
SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.
This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Transcription of polyphonic signals using fast filter bank( Accepted version ) Author(s) Foo, Say Wei;
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW
FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
Introduction to Digital Audio
Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.
Simulation of Frequency Response Masking Approach for FIR Filter design
Simulation of Frequency Response Masking Approach for FIR Filter design USMAN ALI, SHAHID A. KHAN Department of Electrical Engineering COMSATS Institute of Information Technology, Abbottabad (Pakistan)
Probability and Random Variables. Generation of random variables (r.v.)
Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly
HYBRID FIR-IIR FILTERS By John F. Ehlers
HYBRID FIR-IIR FILTERS By John F. Ehlers Many traders have come to me, asking me to make their indicators act just one day sooner. They are convinced that this is just the edge they need to make a zillion
AM Receiver. Prelab. baseband
AM Receiver Prelab In this experiment you will use what you learned in your previous lab sessions to make an AM receiver circuit. You will construct an envelope detector AM receiver. P1) Introduction One
1.1 Discrete-Time Fourier Transform
1.1 Discrete-Time Fourier Transform The discrete-time Fourier transform has essentially the same properties as the continuous-time Fourier transform, and these properties play parallel roles in continuous
Negative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.
Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.
The Fourier Analysis Tool in Microsoft Excel
The Fourier Analysis Tool in Microsoft Excel Douglas A. Kerr Issue March 4, 2009 ABSTRACT AD ITRODUCTIO The spreadsheet application Microsoft Excel includes a tool that will calculate the discrete Fourier
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
This material is posted here with permission of the IEEE Such permission of the IEEE does not in any way imply IEEE endorsement of any of Helsinki University of Technology's products or services Internal
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
Digital Signal Processing IIR Filter Design via Impulse Invariance
Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
Non-Data Aided Carrier Offset Compensation for SDR Implementation
Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center
Motorola Digital Signal Processors
Motorola Digital Signal Processors Principles of Sigma-Delta Modulation for Analog-to- Digital Converters by Sangil Park, Ph. D. Strategic Applications Digital Signal Processor Operation MOTOROLA APR8
The Calculation of G rms
The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving
chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective
Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything
FFT Algorithms. Chapter 6. Contents 6.1
Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT
Lecture 9. Poles, Zeros & Filters (Lathi 4.10) Effects of Poles & Zeros on Frequency Response (1) Effects of Poles & Zeros on Frequency Response (3)
Effects of Poles & Zeros on Frequency Response (1) Consider a general system transfer function: zeros at z1, z2,..., zn Lecture 9 Poles, Zeros & Filters (Lathi 4.10) The value of the transfer function
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
CHAPTER 6 Frequency Response, Bode Plots, and Resonance
ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal
Expression. Variable Equation Polynomial Monomial Add. Area. Volume Surface Space Length Width. Probability. Chance Random Likely Possibility Odds
Isosceles Triangle Congruent Leg Side Expression Equation Polynomial Monomial Radical Square Root Check Times Itself Function Relation One Domain Range Area Volume Surface Space Length Width Quantitative
Matlab GUI for WFB spectral analysis
Matlab GUI for WFB spectral analysis Jan Nováček Department of Radio Engineering K13137, CTU FEE Prague Abstract In the case of the sound signals analysis we usually use logarithmic scale on the frequency
Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs
Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in
CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator.
CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2008/2009 Examination Period: Examination Paper Number: Examination Paper Title: SOLUTIONS Duration: Autumn CM0340 SOLNS Multimedia 2 hours Do not turn
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
north seattle community college
INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
SWISS ARMY KNIFE INDICATOR John F. Ehlers
SWISS ARMY KNIFE INDICATOR John F. Ehlers The indicator I describe in this article does all the common functions of the usual indicators, such as smoothing and momentum generation. It also does some unusual
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY
3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important
Impedance Matching and Matching Networks. Valentin Todorow, December, 2009
Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
Auto-Tuning Using Fourier Coefficients
Auto-Tuning Using Fourier Coefficients Math 56 Tom Whalen May 20, 2013 The Fourier transform is an integral part of signal processing of any kind. To be able to analyze an input signal as a superposition
Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis
Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?
USB 3.0 CDR Model White Paper Revision 0.5
USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
Analog Representations of Sound
Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur
Probability and Statistics Prof. Dr. Somesh Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #15 Special Distributions-VI Today, I am going to introduce
T = 10-' s. p(t)= ( (t-nt), T= 3. n=-oo. Figure P16.2
16 Sampling Recommended Problems P16.1 The sequence x[n] = (-1)' is obtained by sampling the continuous-time sinusoidal signal x(t) = cos oot at 1-ms intervals, i.e., cos(oont) = (-1)", Determine three
MATH 4330/5330, Fourier Analysis Section 11, The Discrete Fourier Transform
MATH 433/533, Fourier Analysis Section 11, The Discrete Fourier Transform Now, instead of considering functions defined on a continuous domain, like the interval [, 1) or the whole real line R, we wish
Doppler. Doppler. Doppler shift. Doppler Frequency. Doppler shift. Doppler shift. Chapter 19
Doppler Doppler Chapter 19 A moving train with a trumpet player holding the same tone for a very long time travels from your left to your right. The tone changes relative the motion of you (receiver) and
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
Speech Signal Processing: An Overview
Speech Signal Processing: An Overview S. R. M. Prasanna Department of Electronics and Electrical Engineering Indian Institute of Technology Guwahati December, 2012 Prasanna (EMST Lab, EEE, IITG) Speech
The Algorithms of Speech Recognition, Programming and Simulating in MATLAB
FACULTY OF ENGINEERING AND SUSTAINABLE DEVELOPMENT. The Algorithms of Speech Recognition, Programming and Simulating in MATLAB Tingxiao Yang January 2012 Bachelor s Thesis in Electronics Bachelor s Program
Lecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
14: FM Radio Receiver
(1) (2) DSP and Digital Filters (2015-7310) FM Radio: 14 1 / 12 FM Radio Block Diagram (1) (2) FM spectrum: 87.5 to108mhz [This example is taken from Ch 13 of Harris: Multirate Signal Processing] DSP and
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction
Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya ([email protected]) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper
Chapter 8 Integers 8.1 Addition and Subtraction
Chapter 8 Integers 8.1 Addition and Subtraction Negative numbers Negative numbers are helpful in: Describing temperature below zero Elevation below sea level Losses in the stock market Overdrawn checking
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
AVR127: Understanding ADC Parameters. Introduction. Features. Atmel 8-bit and 32-bit Microcontrollers APPLICATION NOTE
Atmel 8-bit and 32-bit Microcontrollers AVR127: Understanding ADC Parameters APPLICATION NOTE Introduction This application note explains the basic concepts of analog-to-digital converter (ADC) and the
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Zero and Negative Exponents. Section 7-1
Zero and Negative Exponents Section 7-1 Goals Goal To simplify expressions involving zero and negative exponents. Rubric Level 1 Know the goals. Level 2 Fully understand the goals. Level 3 Use the goals
Frequency Response of Filters
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 2 Frequency Response of Filters 1 Introduction Objectives To
8 Filtering. 8.1 Mathematical operation
8 Filtering The estimated spectrum of a time series gives the distribution of variance as a function of frequency. Depending on the purpose of analysis, some frequencies may be of greater interest than
Audio Engineering Society. Convention Paper. Presented at the 119th Convention 2005 October 7 10 New York, New York USA
Audio Engineering Society Convention Paper Presented at the 119th Convention 2005 October 7 10 New York, New York USA This convention paper has been reproduced from the author's advance manuscript, without
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
6.2 Permutations continued
6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of
CS321. Introduction to Numerical Methods
CS3 Introduction to Numerical Methods Lecture Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506-0633 August 7, 05 Number in
Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain
Digital Signal Processing Complete Bandpass Filter Design Example
Digital Signal Processing Complete Bandpass Filter Design Example D. Richard Brown III D. Richard Brown III 1 / 10 General Filter Design Procedure discrete-time filter specifications prewarp DT frequency
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
