Fourier series. Learning outcomes

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Fourier series. Learning outcomes"

Transcription

1 Fourier series 23 Conens. Periodic funcions 2. Represening ic funcions by Fourier Series 3. Even and odd funcions 4. Convergence 5. Half-range series 6. The complex form 7. Applicaion of Fourier series Learning oucomes needs doing Time allocaion You are expeced o spend approximaely hireen hours of independen sudy on he maerial presened in his workbook. However, depending upon your abiliy o concenrae and on your previous experience wih cerain mahemaical opics his ime may vary considerably.

2 Periodic Funcions 23. Inroducion You should already know how o ake a funcion of a single variable f(x) and represen i by apower series in x abou any poin x 0 of ineres. Such a series is known as a Taylor series or Taylor expansion or, if x 0 =0,asaMaclaurin series. This expansion is only possible if he funcion is sufficienly smooh (ha is, if i can be differeniaed as ofen as required). Geomerically his means ha here are no jumps or spikes in he curve y = f(x) near he poin of expansion. However, in many pracical siuaions he funcions we have o deal wih are no as well behaved as his and so no power series expansion in x is possible. Neverheless, if he funcion is ic, so ha i repeas over and over again, hen, irrespecive of he funcion s behaviour, (ha is, no maer how many jumps or spikes i has) he funcion may be expressed as a series of sines and cosines. Such a series is called a Fourier series. Fourier series have many applicaions in mahemaics, in physics and in engineering. For example hey are someimes essenial in solving problems (in hea conducion, wave propagaion ec) ha involve parial differenial equaions. Also, using Fourier series he analysis of many engineering sysems (such as elecric circuis or mechanical vibraing sysems) can be exended from he case where he inpu o he sysem is a sinusoidal funcion o he more general case where he inpu is ic bu non-sinsusoidal. Prerequisies Before saring his Secion you should... Learning Oucomes Afer compleing his Secion you should be able o... be familiar wih rigonomeric funcions recognise ic funcions be able o deermine he frequency, he ampliude and he of a sinusoid be able o represen common ic funcions by rigonomeric Fourier series.

3 . Inroducion Youhave me in earlier Mahemaics courses he concep of represening a funcion by an infinie series of simpler funcions such as polynomials. For example, he Maclaurin series represening e x has he form e x =+x + x2 2! + x3 3! +... or, in he more concise sigma noaion, e x = n=0 (remembering ha 0! is defined as ). The basic idea is ha for hose values of x for which he series converges we may approximae he funcion by using only he firs few erms of he series. Fourier series, which we discuss in his and he following Secions, are also usually infinie series bu involve sine and cosine funcions (or heir complex exponenial equivalens) raher han polynomials. They are widely used for approximaing ic funcions. Such approximaions are of considerable use in science and engineering. For example, elemenary a.c. heory provides echniques for analyzing elecrical circuis when he currens and volages presen are assumed o be sinusoidal. Fourier Series enable us o exend such echniques o he siuaion where he funcions (or signals) involved are ic bu no acually sinusoidal. You may also see in Workbook 25 ha Fourier series someimes have o be used when solving parial differenial equaions. x n n! 2. Periodic Funcions A funcion f() is ic if he funcion values repea a regular inervals of he independen variable. The regular inerval is referred o as he. See Figure. f() If P denoes he we have Figure f( + P )=f() for any value of. The mos obvious examples of ic funcions are he rigonomeric funcions sin and cos, boh of which have 2 (using radian measure as we shall do hroughou his uni.) This follows since sin( + 2) = sin and cos( + 2) = cos 3 HELM (VERSION : April 8, 2004): Workbook Level 2 23.: Periodic Funcions

4 y = sin y = cos 2 2 Figure 2 The ampliude of hese sinusoidal funcions is he maximum displacemen from y = 0and is clearly. (Noe ha we use he erm sinusoidal o include cosine as well as sine funcions.) More generally we can consider a sinusoid y = A sin n which has maximum value, or ampliude, A and where n is usually a posiive ineger. For example y = sin 2 is a sinusoid of ampliude and 2 2 =. The fac ha he is follows because sin 2( + ) =sin(2 +2) =sin 2 for any value of. y = sin 2 2 Figure 3 We see ha y = sin 2 has half he of sin ( as opposed o 2). This can alernaively be phrased by saing ha sin 2 oscillaes wice as rapidly (or has wice he frequency) ofsin. HELM (VERSION : April 8, 2004): Workbook Level 2 23.: Periodic Funcions 4

5 y = sin y = sin 2 2 Figure 4 In general y = A sin n has ampliude A, 2 and complees n oscillaions when changes by 2. n Formally, we define he frequency of a sinusoid as he reciprocal of he : frequency = and he angular frequency (ofen denoed he Greek Leer ω (omega)) as Thus has frequency n 2 angular frequency = 2 frequency = 2 and angular frequency n. y = A sin n Sae he ampliude,, frequency and angular frequency of (i) y =5cos 4 (ii) y =6sin 2. 3 Your soluion For (i) we have Your soluion, angular frequency 4 ampliude 5, 2 4 = 2, frequency 2 For (ii) we have ampliude 6, 3, frequency, angular frequency HELM (VERSION : April 8, 2004): Workbook Level 2 23.: Periodic Funcions

6 Harmonics In represening a non-sinusoidal funcion of 2 by a Fourier Series we shall see shorly ha only cerain sinusoids will be required: (a) A cos (and B sin ) These also have 2 and ogeher are referred o as he firs (or fundamenal) harmonic. (b) A 2 cos 2 (and B 2 sin 2) These have half he, or double he frequency of he firs harmonic and are referred o as he second harmonic. (c) A 3 cos 3 (and B 3 sin 3) These have 2 and consiue he hird harmonic. 3 In general he Fourier Series of a funcion of 2 will require harmonics of he ype A n cos n (and B n sin n) where n =, 2, 3,... Non-sinusoidal ic funcions. The following are examples of such funcions (hey are ofen called waves ): Square Wave f() 2 Figure 5 Analyically we can describe his funcion as follows: { <<0 f() = + 0 << (which gives he definiion over one.) f( +2) =f() (which ells us ha he funcion has 2). HELM (VERSION : April 8, 2004): Workbook Level 2 23.: Periodic Funcions 6

7 Saw-ooh wave f() Figure 6 In his case we can describe he funcion as follows: f() = 2 0 <<2 f( +2) = f() Here he is 2, he frequency is 2 and he angular frequency is 2 2 =. Triangular wave f() 2 Figure 7 Here we can convenienly define he funcion using <<as he basic : { <<0 f() = 0 << or, more concisely, f() = << ogeher wih he usual saemen on iciy f( +2) =f(). Wrie down an analyic definiion for he following ic funcion: 2 f() Figure 8 7 HELM (VERSION : April 8, 2004): Workbook Level 2 23.: Periodic Funcions

8 Your soluion We have f() = { 2 0 <<3 3 <<5 f( +5)=f() Skech he graph of he following ic funcions showing all relevan values: (i) f() = 2 0 << <<6 0 6 <<8 f( +8)=f() (ii) f() = <<2 f( +2)=f() Your soluion (i) 8 f() (ii) f() 2 Figure 9 HELM (VERSION : April 8, 2004): Workbook Level 2 23.: Periodic Funcions 8

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1

Representing Periodic Functions by Fourier Series. (a n cos nt + b n sin nt) n=1 Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes Even and Odd Funcions 3.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

More information

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes

23.3. Even and Odd Functions. Introduction. Prerequisites. Learning Outcomes Even and Odd Funcions 23.3 Inroducion In his Secion we examine how o obain Fourier series of periodic funcions which are eiher even or odd. We show ha he Fourier series for such funcions is considerabl

More information

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that

Complex Fourier Series. Adding these identities, and then dividing by 2, or subtracting them, and then dividing by 2i, will show that Mah 344 May 4, Complex Fourier Series Par I: Inroducion The Fourier series represenaion for a funcion f of period P, f) = a + a k coskω) + b k sinkω), ω = π/p, ) can be expressed more simply using complex

More information

Fourier Series Solution of the Heat Equation

Fourier Series Solution of the Heat Equation Fourier Series Soluion of he Hea Equaion Physical Applicaion; he Hea Equaion In he early nineeenh cenury Joseph Fourier, a French scienis and mahemaician who had accompanied Napoleon on his Egypian campaign,

More information

Differential Equations and Linear Superposition

Differential Equations and Linear Superposition Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y

More information

Chapter 7. Response of First-Order RL and RC Circuits

Chapter 7. Response of First-Order RL and RC Circuits Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

CHARGE AND DISCHARGE OF A CAPACITOR

CHARGE AND DISCHARGE OF A CAPACITOR REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULY OF MAHEMAICAL SUDIES MAHEMAICS FOR PAR I ENGINEERING Lecures MODULE 3 FOURIER SERIES Periodic signals Whole-range Fourier series 3 Even and odd uncions Periodic signals Fourier series are used in

More information

Circuit Types. () i( t) ( )

Circuit Types. () i( t) ( ) Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All

More information

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations

DIFFERENTIAL EQUATIONS with TI-89 ABDUL HASSEN and JAY SCHIFFMAN. A. Direction Fields and Graphs of Differential Equations DIFFERENTIAL EQUATIONS wih TI-89 ABDUL HASSEN and JAY SCHIFFMAN We will assume ha he reader is familiar wih he calculaor s keyboard and he basic operaions. In paricular we have assumed ha he reader knows

More information

11. Properties of alternating currents of LCR-electric circuits

11. Properties of alternating currents of LCR-electric circuits WS. Properies of alernaing currens of L-elecric circuis. Inroducion So-called passive elecric componens, such as ohmic resisors (), capaciors () and inducors (L), are widely used in various areas of science

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Sysems Fourier Represenaions Ocober 27, 20 2 Fourier Represenaions Fourier series represen signals in erms of sinusoids. leads o a new represenaion for sysems as filers. 3 Fourier Series

More information

Relative velocity in one dimension

Relative velocity in one dimension Connexions module: m13618 1 Relaive velociy in one dimension Sunil Kumar Singh This work is produced by The Connexions Projec and licensed under he Creaive Commons Aribuion License Absrac All quaniies

More information

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay

4.8 Exponential Growth and Decay; Newton s Law; Logistic Growth and Decay 324 CHAPTER 4 Exponenial and Logarihmic Funcions 4.8 Exponenial Growh and Decay; Newon s Law; Logisic Growh and Decay OBJECTIVES 1 Find Equaions of Populaions Tha Obey he Law of Uninhibied Growh 2 Find

More information

Newton's second law in action

Newton's second law in action Newon's second law in acion In many cases, he naure of he force acing on a body is known I migh depend on ime, posiion, velociy, or some combinaion of hese, bu is dependence is known from experimen In

More information

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)

Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer) Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions

More information

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance.

5.8 Resonance 231. The study of vibrating mechanical systems ends here with the theory of pure and practical resonance. 5.8 Resonance 231 5.8 Resonance The sudy of vibraing mechanical sysems ends here wih he heory of pure and pracical resonance. Pure Resonance The noion of pure resonance in he differenial equaion (1) ()

More information

The Transport Equation

The Transport Equation The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be

More information

Fourier Series Approximation of a Square Wave

Fourier Series Approximation of a Square Wave OpenSax-CNX module: m4 Fourier Series Approximaion of a Square Wave Don Johnson his work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License. Absrac Shows how o use Fourier

More information

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University

State Machines: Brief Introduction to Sequencers Prof. Andrew J. Mason, Michigan State University Inroducion ae Machines: Brief Inroducion o equencers Prof. Andrew J. Mason, Michigan ae Universiy A sae machine models behavior defined by a finie number of saes (unique configuraions), ransiions beween

More information

HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed.

HANDOUT 14. A.) Introduction: Many actions in life are reversible. * Examples: Simple One: a closed door can be opened and an open door can be closed. Inverse Funcions Reference Angles Inverse Trig Problems Trig Indeniies HANDOUT 4 INVERSE FUNCTIONS KEY POINTS A.) Inroducion: Many acions in life are reversible. * Examples: Simple One: a closed door can

More information

4 Convolution. Recommended Problems. x2[n] 1 2[n]

4 Convolution. Recommended Problems. x2[n] 1 2[n] 4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.

More information

A Mathematical Description of MOSFET Behavior

A Mathematical Description of MOSFET Behavior 10/19/004 A Mahemaical Descripion of MOSFET Behavior.doc 1/8 A Mahemaical Descripion of MOSFET Behavior Q: We ve learned an awful lo abou enhancemen MOSFETs, bu we sill have ye o esablished a mahemaical

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,

More information

MTH6121 Introduction to Mathematical Finance Lesson 5

MTH6121 Introduction to Mathematical Finance Lesson 5 26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random

More information

4.2 Trigonometric Functions; The Unit Circle

4.2 Trigonometric Functions; The Unit Circle 4. Trigonomeric Funcions; The Uni Circle Secion 4. Noes Page A uni circle is a circle cenered a he origin wih a radius of. Is equaion is as shown in he drawing below. Here he leer represens an angle measure.

More information

Inductance and Transient Circuits

Inductance and Transient Circuits Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual

More information

Renewal processes and Poisson process

Renewal processes and Poisson process CHAPTER 3 Renewal processes and Poisson process 31 Definiion of renewal processes and limi heorems Le ξ 1, ξ 2, be independen and idenically disribued random variables wih P[ξ k > 0] = 1 Define heir parial

More information

9. Capacitor and Resistor Circuits

9. Capacitor and Resistor Circuits ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren

More information

A Curriculum Module for AP Calculus BC Curriculum Module

A Curriculum Module for AP Calculus BC Curriculum Module Vecors: A Curriculum Module for AP Calculus BC 00 Curriculum Module The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy.

More information

4. The Poisson Distribution

4. The Poisson Distribution Virual Laboraories > 13. The Poisson Process > 1 2 3 4 5 6 7 4. The Poisson Disribuion The Probabiliy Densiy Funcion We have shown ha he k h arrival ime in he Poisson process has he gamma probabiliy densiy

More information

t t t Numerically, this is an extension of the basic definition of the average for a discrete

t t t Numerically, this is an extension of the basic definition of the average for a discrete Average and alues of a Periodic Waveform: (Nofziger, 8) Begin by defining he average value of any ime-varying funcion over a ime inerval as he inegral of he funcion over his ime inerval, divided by : f

More information

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar

Analogue and Digital Signal Processing. First Term Third Year CS Engineering By Dr Mukhtiar Ali Unar Analogue and Digial Signal Processing Firs Term Third Year CS Engineering By Dr Mukhiar Ali Unar Recommended Books Haykin S. and Van Veen B.; Signals and Sysems, John Wiley& Sons Inc. ISBN: 0-7-380-7 Ifeachor

More information

Chabot College Physics Lab RC Circuits Scott Hildreth

Chabot College Physics Lab RC Circuits Scott Hildreth Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard

More information

and Decay Functions f (t) = C(1± r) t / K, for t 0, where

and Decay Functions f (t) = C(1± r) t / K, for t 0, where MATH 116 Exponenial Growh and Decay Funcions Dr. Neal, Fall 2008 A funcion ha grows or decays exponenially has he form f () = C(1± r) / K, for 0, where C is he iniial amoun a ime 0: f (0) = C r is he rae

More information

Chapter 2: Principles of steady-state converter analysis

Chapter 2: Principles of steady-state converter analysis Chaper 2 Principles of Seady-Sae Converer Analysis 2.1. Inroducion 2.2. Inducor vol-second balance, capacior charge balance, and he small ripple approximaion 2.3. Boos converer example 2.4. Cuk converer

More information

Brown University PHYS 0060 INDUCTANCE

Brown University PHYS 0060 INDUCTANCE Brown Universiy PHYS 6 Physics Deparmen Sudy Guide Inducance Sudy Guide INTODUCTION INDUCTANCE Anyone who has ever grabbed an auomobile spark-plug wire a he wrong place, wih he engine running, has an appreciaion

More information

6.003 Homework #4 Solutions

6.003 Homework #4 Solutions 6.3 Homewk #4 Soluion Problem. Laplace Tranfm Deermine he Laplace ranfm (including he region of convergence) of each of he following ignal: a. x () = e 2(3) u( 3) X = e 3 2 ROC: Re() > 2 X () = x ()e d

More information

UMR EMC Laboratory UMR EMC Laboratory Technical Report: TR

UMR EMC Laboratory UMR EMC Laboratory Technical Report: TR UMR EMC Laboraory UMR EMC Laboraory Dep. of Elecrical & Compuer Engineering 870 Miner Circle Universiy of Missouri Rolla Rolla, MO 65409-0040 UMR EMC Laboraory Technical Repor: TR0-8-00 Effec of Delay

More information

2 Electric Circuits Concepts Durham

2 Electric Circuits Concepts Durham Chaper 3 - Mehods Chaper 3 - Mehods... 3. nroducion... 2 3.2 Elecrical laws... 2 3.2. Definiions... 2 3.2.2 Kirchhoff... 2 3.2.3 Faraday... 3 3.2.4 Conservaion... 3 3.2.5 Power... 3 3.2.6 Complee... 4

More information

5.5 Modeling Harmonic Motion

5.5 Modeling Harmonic Motion 44 CHAPTER 5 Trigonomeric Funcions of Real Numbers 77(b)Skech a graph of he funcion d for. (c) Wha happens o he disance d as approaches? (c) From he graph deermine he values of a which he lengh of he shadow

More information

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides

17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides 7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion

More information

Fourier Series & The Fourier Transform

Fourier Series & The Fourier Transform Fourier Series & The Fourier Transform Wha is he Fourier Transform? Fourier Cosine Series for even funcions and Sine Series for odd funcions The coninuous limi: he Fourier ransform (and is inverse) The

More information

Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m

Equation for a line. Synthetic Impulse Response 0.5 0.5. 0 5 10 15 20 25 Time (sec) x(t) m Fundamenals of Signals Overview Definiion Examples Energy and power Signal ransformaions Periodic signals Symmery Exponenial & sinusoidal signals Basis funcions Equaion for a line x() m x() =m( ) You will

More information

Chapter 2 Kinematics in One Dimension

Chapter 2 Kinematics in One Dimension Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how

More information

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation

A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion

More information

Section 7.1 Angles and Their Measure

Section 7.1 Angles and Their Measure Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed

More information

Fourier Series and Fourier Transform

Fourier Series and Fourier Transform Fourier Series and Fourier ransform Complex exponenials Complex version of Fourier Series ime Shifing, Magniude, Phase Fourier ransform Copyrigh 2007 by M.H. Perro All righs reserved. 6.082 Spring 2007

More information

Signal Rectification

Signal Rectification 9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal

More information

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow.

Lecture 2: Telegrapher Equations For Transmission Lines. Power Flow. Whies, EE 481 Lecure 2 Page 1 of 13 Lecure 2: Telegraher Equaions For Transmission Lines. Power Flow. Microsri is one mehod for making elecrical connecions in a microwae circui. I is consruced wih a ground

More information

Understanding Sequential Circuit Timing

Understanding Sequential Circuit Timing ENGIN112: Inroducion o Elecrical and Compuer Engineering Fall 2003 Prof. Russell Tessier Undersanding Sequenial Circui Timing Perhaps he wo mos disinguishing characerisics of a compuer are is processor

More information

AP Calculus BC 2010 Scoring Guidelines

AP Calculus BC 2010 Scoring Guidelines AP Calculus BC Scoring Guidelines The College Board The College Board is a no-for-profi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board

More information

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t,

1. y 5y + 6y = 2e t Solution: Characteristic equation is r 2 5r +6 = 0, therefore r 1 = 2, r 2 = 3, and y 1 (t) = e 2t, Homework6 Soluions.7 In Problem hrough 4 use he mehod of variaion of parameers o find a paricular soluion of he given differenial equaion. Then check your answer by using he mehod of undeermined coeffiens..

More information

LAB 6: SIMPLE HARMONIC MOTION

LAB 6: SIMPLE HARMONIC MOTION 1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:

More information

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment.

YTM is positively related to default risk. YTM is positively related to liquidity risk. YTM is negatively related to special tax treatment. . Two quesions for oday. A. Why do bonds wih he same ime o mauriy have differen YTM s? B. Why do bonds wih differen imes o mauriy have differen YTM s? 2. To answer he firs quesion les look a he risk srucure

More information

2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity

2.6 Limits at Infinity, Horizontal Asymptotes Math 1271, TA: Amy DeCelles. 1. Overview. 2. Examples. Outline: 1. Definition of limits at infinity .6 Limis a Infiniy, Horizonal Asympoes Mah 7, TA: Amy DeCelles. Overview Ouline:. Definiion of is a infiniy. Definiion of horizonal asympoe 3. Theorem abou raional powers of. Infinie is a infiniy This

More information

2. Waves in Elastic Media, Mechanical Waves

2. Waves in Elastic Media, Mechanical Waves 2. Waves in Elasic Media, Mechanical Waves Wave moion appears in almos ever branch of phsics. We confine our aenion o waves in deformable or elasic media. These waves, for eample ordinar sound waves in

More information

Laboratory #3 Diode Basics and Applications (I)

Laboratory #3 Diode Basics and Applications (I) Laboraory #3 iode asics and pplicaions (I) I. Objecives 1. Undersand he basic properies of diodes. 2. Undersand he basic properies and operaional principles of some dioderecifier circuis. II. omponens

More information

Week #9 - The Integral Section 5.1

Week #9 - The Integral Section 5.1 Week #9 - The Inegral Secion 5.1 From Calculus, Single Variable by Hughes-Halle, Gleason, McCallum e. al. Copyrigh 005 by John Wiley & Sons, Inc. This maerial is used by permission of John Wiley & Sons,

More information

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)

cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins) Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer

More information

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling

Name: Algebra II Review for Quiz #13 Exponential and Logarithmic Functions including Modeling Name: Algebra II Review for Quiz #13 Exponenial and Logarihmic Funcions including Modeling TOPICS: -Solving Exponenial Equaions (The Mehod of Common Bases) -Solving Exponenial Equaions (Using Logarihms)

More information

ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS

ELECTRICAL CIRCUITS 7. NON-LINEAR COMPARATOR OSCILLATORS 87 ELETIAL IUITS 7. NON-LEA OMPAATO OSILLATOS Inroducion A linear oscillaor is a basic feedback conrol sysem ha has been made deliberaely unsable a he frequency of oscillaion. The linear oscillaor sysem

More information

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.

Differential Equations. Solving for Impulse Response. Linear systems are often described using differential equations. Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given

More information

Capacitors and inductors

Capacitors and inductors Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear

More information

3 Runge-Kutta Methods

3 Runge-Kutta Methods 3 Runge-Kua Mehods In conras o he mulisep mehods of he previous secion, Runge-Kua mehods are single-sep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he

More information

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements

11/6/2013. Chapter 14: Dynamic AD-AS. Introduction. Introduction. Keeping track of time. The model s elements Inroducion Chaper 14: Dynamic D-S dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuing-edge

More information

Using RCtime to Measure Resistance

Using RCtime to Measure Resistance Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a buil-in ADC (Analog o Digial Converer)

More information

Journal Of Business & Economics Research September 2005 Volume 3, Number 9

Journal Of Business & Economics Research September 2005 Volume 3, Number 9 Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy Yi-Kang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo

More information

Math 201 Lecture 12: Cauchy-Euler Equations

Math 201 Lecture 12: Cauchy-Euler Equations Mah 20 Lecure 2: Cauchy-Euler Equaions Feb., 202 Many examples here are aken from he exbook. The firs number in () refers o he problem number in he UA Cusom ediion, he second number in () refers o he problem

More information

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary Random Walk in -D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 67 - FURTHER ELECTRICAL PRINCIPLES NQF LEVEL 3 OUTCOME 2 TUTORIAL 1 - TRANSIENTS EDEXEL NAIONAL ERIFIAE/DIPLOMA UNI 67 - FURHER ELERIAL PRINIPLE NQF LEEL 3 OUOME 2 UORIAL 1 - RANIEN Uni conen 2 Undersand he ransien behaviour of resisor-capacior (R) and resisor-inducor (RL) D circuis

More information

1 The basic circulation problem

1 The basic circulation problem 2WO08: Graphs and Algorihms Lecure 4 Dae: 26/2/2012 Insrucor: Nikhil Bansal The Circulaion Problem Scribe: Tom Slenders 1 The basic circulaion problem We will consider he max-flow problem again, bu his

More information

Intro to Fourier Series

Intro to Fourier Series Inro o Fourier Series Vecor decomposiion Even and Odd funcions Fourier Series definiion and examples Copyrigh 27 by M.H. Perro All righs reserved. M.H. Perro 27 Inro o Fourier Series, Slide 1 Review of

More information

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The

More information

Damped Harmonic Motion Closing Doors and Bumpy Rides

Damped Harmonic Motion Closing Doors and Bumpy Rides Prerequisies and Goal Damped Harmonic Moion Closing Doors and Bumpy Rides Andrew Forreser May 4, 21 Assuming you are familiar wih simple harmonic moion, is equaion of moion, and is soluions, we will now

More information

Graphing the Von Bertalanffy Growth Equation

Graphing the Von Bertalanffy Growth Equation file: d:\b173-2013\von_beralanffy.wpd dae: Sepember 23, 2013 Inroducion Graphing he Von Beralanffy Growh Equaion Previously, we calculaed regressions of TL on SL for fish size daa and ploed he daa and

More information

4 Fourier series. y(t) = h(τ)x(t τ)dτ = h(τ)e jω(t τ) dτ = h(τ)e jωτ e jωt dτ. = h(τ)e jωτ dτ e jωt = H(ω)e jωt.

4 Fourier series. y(t) = h(τ)x(t τ)dτ = h(τ)e jω(t τ) dτ = h(τ)e jωτ e jωt dτ. = h(τ)e jωτ dτ e jωt = H(ω)e jωt. 4 Fourier series Any LI sysem is compleely deermined by is impulse response h(). his is he oupu of he sysem when he inpu is a Dirac dela funcion a he origin. In linear sysems heory we are usually more

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Profi Tes Modelling in Life Assurance Using Spreadshees, par wo PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART TWO Erik Alm Peer Millingon Profi Tes Modelling in Life Assurance Using Spreadshees,

More information

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE

PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees

More information

Time variant processes in failure probability calculations

Time variant processes in failure probability calculations Time varian processes in failure probabiliy calculaions A. Vrouwenvelder (TU-Delf/TNO, The Neherlands) 1. Inroducion Acions on srucures as well as srucural properies are usually no consan, bu will vary

More information

On the degrees of irreducible factors of higher order Bernoulli polynomials

On the degrees of irreducible factors of higher order Bernoulli polynomials ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on

More information

Steps for D.C Analysis of MOSFET Circuits

Steps for D.C Analysis of MOSFET Circuits 10/22/2004 Seps for DC Analysis of MOSFET Circuis.doc 1/7 Seps for D.C Analysis of MOSFET Circuis To analyze MOSFET circui wih D.C. sources, we mus follow hese five seps: 1. ASSUME an operaing mode 2.

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Sysems Signals and Sysems Sepember 8, 2011 1 6.003: Signals and Sysems Today s handous: Single package conaining Slides for Lecure 1 Subjec Informaion & Calendar Lecurer: Insrucors:

More information

A Probability Density Function for Google s stocks

A Probability Density Function for Google s stocks A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural

More information

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM)

A Brief Introduction to the Consumption Based Asset Pricing Model (CCAPM) A Brief Inroducion o he Consumpion Based Asse Pricing Model (CCAPM We have seen ha CAPM idenifies he risk of any securiy as he covariance beween he securiy's rae of reurn and he rae of reurn on he marke

More information

Lectures # 5 and 6: The Prime Number Theorem.

Lectures # 5 and 6: The Prime Number Theorem. Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζ-funcion o skech an argumen which would give an acual formula for π( and sugges

More information

Power Electronics Introduction

Power Electronics Introduction Power Elecronics nroducion Y. Baghzouz EE 442-642 1-1 Power Elecronics: an Overview Power elecronics is an inerdisciplinary subjec wihin elecrical engineering. 1-2 Power Elecronic Sysem A power elecronic

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur Module Single-phase AC Circuis Version EE, Kharagpur Lesson Generaion of Sinusoidal Volage Wavefor (AC) and Soe Fundaenal Conceps Version EE, Kharagpur n his lesson, firsly, how a sinusoidal wavefor (ac)

More information

6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes

6.5. Modelling Exercises. Introduction. Prerequisites. Learning Outcomes Modelling Exercises 6.5 Inroducion This Secion provides examples and asks employing exponenial funcions and logarihmic funcions, such as growh and decay models which are imporan hroughou science and engineering.

More information

Chapter 8 Copyright Henning Umland All Rights Reserved

Chapter 8 Copyright Henning Umland All Rights Reserved Chaper 8 Copyrigh 1997-2004 Henning Umland All Righs Reserved Rise, Se, Twiligh General Visibiliy For he planning of observaions, i is useful o know he imes during which a cerain body is above he horizon

More information

On the paper Is Itô calculus oversold? by A. Izmailov and B. Shay

On the paper Is Itô calculus oversold? by A. Izmailov and B. Shay On he paper Is Iô calculus oversold? by A. Izmailov and B. Shay M. Rukowski and W. Szazschneider March, 1999 The main message of he paper Is Iô calculus oversold? by A. Izmailov and B. Shay is, we quoe:

More information

Stochastic Optimal Control Problem for Life Insurance

Stochastic Optimal Control Problem for Life Insurance Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian

More information

POWER SUMS, BERNOULLI NUMBERS, AND RIEMANN S. 1. Power sums

POWER SUMS, BERNOULLI NUMBERS, AND RIEMANN S. 1. Power sums POWER SUMS, BERNOULLI NUMBERS, AND RIEMANN S ζ-function.. Power sus We begin wih a definiion of power sus, S (n. This quaniy is defined for posiive inegers > 0 and n > as he su of -h powers of he firs

More information

Fair games, and the Martingale (or "Random walk") model of stock prices

Fair games, and the Martingale (or Random walk) model of stock prices Economics 236 Spring 2000 Professor Craine Problem Se 2: Fair games, and he Maringale (or "Random walk") model of sock prices Sephen F LeRoy, 989. Efficien Capial Markes and Maringales, J of Economic Lieraure,27,

More information

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.

Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613. Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised

More information

CHAPTER 3: ELECTRICAL MEASUREMENTS IN CONCRETE MATERIALS

CHAPTER 3: ELECTRICAL MEASUREMENTS IN CONCRETE MATERIALS 26 CHAPTER 3: ELECTRICAL MEASUREMENTS IN CONCRETE MATERIALS This chaper provides a review of he hisory and applicaion of elecrical measuremens in concree. The definiion of elecrical conduciviy and he principles

More information

Markov Models and Hidden Markov Models (HMMs)

Markov Models and Hidden Markov Models (HMMs) Markov Models and Hidden Markov Models (HMMs (Following slides are modified from Prof. Claire Cardie s slides and Prof. Raymond Mooney s slides. Some of he graphs are aken from he exbook. Markov Model

More information

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur

Module 3. R-L & R-C Transients. Version 2 EE IIT, Kharagpur Module 3 - & -C Transiens esson 0 Sudy of DC ransiens in - and -C circuis Objecives Definiion of inducance and coninuiy condiion for inducors. To undersand he rise or fall of curren in a simple series

More information