Keldysh Formalism: Nonequilibrium Green s Function


 Iris Barber
 1 years ago
 Views:
Transcription
1 Keldysh Formalism: Nonequilibrium Green s Funcion Jinshan Wu Deparmen of Physics & Asronomy, Universiy of Briish Columbia, Vancouver, B.C. Canada, V6T 1Z1 (Daed: November 28, 2005) A review of Nonequilibrium Green s Funcion (NEGF), also named as Keldysh Formalism, is presened here. Perurbaion heory is also builded up sep by sep on he basis of nonineracing NEGF, and hen leads o he Dyson s Equaion. Finally, applicaion of NEGF on ighbinding model wih random impuriy is explicily calculaed as an example. I. DEFINITION, FREE FIELD AND PERTURBATION When only he properies of ground sae is concerned, Zeroemperaure (single and manyparicle) Green s funcion ogeher wih is perurbaion heory principally gives all he informaion. Also if he equilibrium hermal disribuion is concerned, we can urn o Masubara Green s funcion and is perurbaion heory[2]. However, we may need o consider some more general saes, such as a saionary nonequilibrium sae for example a sae wih nonzero curren, or even an arbirary sae ρ, how o ge correlaion funcion for such sysem and hen how o do he corresponding perurbaion expansion? In experimens of conduciviy, here are such nonequilibrium sysem, which has nonzero curren and includes ineracion beween paricles. So in his noe I will shorly review he idea and echnics of Nonequilibrium Green s funcion, also known as Keldysh Formalism. All he formulas defined in his noe is only for fermions, alhough i is no hard o make hem o also cover bosons. Generally we need o calculae he Green s funcion G (x, ; x, ) = i } ) (T T r ψ H (x, ) ψ H (x, ) ρ H, (1) where ψ H (x, ) is he annihilaion operaor in Heisenberg picure, and ρ is he densiy marix also in Heisenberg picure. We will se = 1 for a while. We also assume ρ is diagonal under paricle number basis, [N, ρ] = 0. More general densiy marix could be possible, bu no used anywhere ye. For free field, his can be calculaed quie srai forward, ha ψh (x, ) = k e iω(k)+ikx c k ψ H (x, ) = k eiω(k) ikx c, (2) k hen G 0 (x, ; x, ) = iθ ( ) k 1 n k e iω(k)( )+ik(x x ) iθ ( ) k n k e iω(k)( )+ik(x x ) (3) Following he roadmap of zeroemperaure Green s funcion, nex sep would be o urn ψ H (x, ) ino ineracion picure ψ I (x, ) and o somehow replace he real sae ρ H wih sae of nonineracing sysem ρ 0 H. Le s firs organize he above mapping for zeroemperaure Green s funcion and hen see if he same procedure can be applied ono NEGF. Zeroemperaure Green s funcion is defined as a special case of eq(1), ρ H = Ω Ω, } G (x, ; x, ) = i Ω T ψ H (x, ) ψ H (x, ) Ω, (4) Firs, express T A H ( 1 ) B H ( 2 )} in ineracion picure. and H = H 0 + e ɛ 0 H 1, (5) A H () = e ih( 0) e ih0( 0) A I () e ih0( 0) e ih( 0). (6)
2 2 FIG. 1: The imeloop inegraion pah. Define uniary operaor U (, ) = e ih0( 0) e ih( 0) e ih0( 0), (7) which is he formal soluion of where H I () = e ih0( 0) H 1 e ih0( 0). Or he explici form is Then for 1 > 2 he imeordered operaors, i U (, ) = H I () U (, ), (8) U (, ) = T exp i dh I (). (9) T A H ( 1 ) B H ( 2 )} = A H ( 1 ) B H ( 2 ) = U ( 1, 0 ) A I ( 1 ) U ( 1, 0 ) U ( 2, 0 ) B I ( 2 ) U ( 2, 0 ) = U ( 0, 1 ) A I ( 1 ) U ( 1, 2 ) B I ( 2 ) U ( 2, 0 ). (10) = U ( 0, ) U (, 1 ) A I ( 1 ) U ( 1, 2 ) B I ( 2 ) U ( 2, ) U (, 0 ) Nex for rue ground sae Ω, we can relae i wih 0, he ground sae of nonineracing field, U ( 0, ) 0 = lim T eih( T 0) e ih0( T 0) 0 = lim T e ih(t +0) 0. (11) According o GellMann and Low Theorem, for adiabaic coupling, back in Schrödinger picure, ground sae is sable, φ 0 ( f ) U ( f, i ) φ 0 ( i ). In our case, Ω ( 0 ) U ( 0, T ) 0 ( T ), so up o some consan, U ( 0, ) 0 Ω U (, 0 ) Ω 0, (12) and similarly, U (, 0 ) Ω 0. Therefore, when 1 > 2 } Ω T ψ H (x, ) ψ H (x, ) Ω 0 U (, 1 ) A I () U ( 1, 2 ) B I () U ( 2, ) 0. (13) Finally, he consan can be eliminaed as 0 T G (x, ; x, ) = i } ψ I (x, ) ψ I (x, ) U (, ) 0 U (, ) 0 0, (14) where now all he quaniies are from free field, and herefore can be calculaed order by order by perurbaion. However, when we apply he same procedure o general ρ H, we require he GellMann and Low heorem holds for excied saes for boh = ±. This condiion is oo srong. The idea o solve above problem is o remove some special poins from he hree special poins = (, 0, ), for example by seing 0. In his way we require ha only φ 0 () = 0 insead of boh φ 0 (± ) = 0. The pah is o sar along = o = 0 and hen come back along = 0 o =. And finally le 0, a picured in fig(1). As inhe case of usual Green s funcion, le firsly reorganize T A ( 1 ) B ( 2 )}, and hen he relaion beween ρ H and ρ 0 H. For 1 > 2, inser U (, ) ino eq(10), T A H ( 1 ) B H ( 2 )} = U ( 0, ) U (, ) U (, 1 ) A I ( 1 ) U ( 1, 2 ) B I ( 2 ) U ( 2, )} U (, 0 ). (15) Then boh sides relaes only wih U (, 0 ), which sill link he rue eigensaes n wih freefield eigensaes n 0, ha U (, 0 ) n n 0. (16)
3 3 (a) G + (, ) and G (, ) (b)g c (, ) (c) G c (, ) s (d) Impuriy Scaering FIG. 2: One possible Feynman rules for NEGF. Therefore, we arrive G (x, ; x, ) = i T r(u(, )Tψ I (x,)ψ I(x, )U(,)}ρ 0 H) T r(u(,)ρ 0 H) = i T r(tcψ I (x,)ψ I(x, )U(,)}ρ 0 H) T r(u(,)ρ 0 H), (17) where T c is he loop order as shown in fig(1) o order he ime along he loop from o. For example, a he above branch i s he same wih ime order T c = T, while a he lower branch i s aniime order T c = T. And U (, ) = T c exp i dhi (). (18) One hing need o be noiced ha in he final expression of Green s funcion, all he ime spos should be reaed as poins a above branch (also call posiive branch). However, laer on, we will see ha when we ry o calculae such Green s funcion, we will need o do inegral also over he lower branch (also call negaive branch). This means generally no all he ime spos are a he posiive branch, and he second line of eq(17) could no be separaed as U (, ) and U (, ) ouside and inside usual ime order T. Therefore, generally we need o define Green s funcion according o he branches of and. There are four differen configuraions of hem, as picured in fig(2). They are less and greaer Green s funcion[1], G + (x, ; x, ) = it r (ρ H T c ψ H (x, + ) ψ ( ) ( ) H x, = it r ρ H ψ H (x, ) ψ H (x, ) G (x, ; x, ) = it r (ρ H T c ψ H (x, ) ψ ( ) ( ), (19) H x, + = it r ρ H ψ H (x, ) ψ H (x, ) where ± means he ime is on posiive/negaive branch; ime ordered and aniime ordered Green s funcion, G c (x, ; x, ) = it r (ρ H T c ψ H (x, + ) ψ ( ) ( H x, + = it r ρ H T ψ H (x, ) ψ H (x, ) G c (x, ; x, ) = it r (ρ H T c ψ H (x, ) ψ ( ) ( ; (20) H x, = it r ρ H T ψ H (x, ) ψ H (x, )
4 and rearded and advanced Green s funcion, G r (x, ; x, ) = iθ ( ) T r (ρ H ψ H (x, ), ψ H (x, ). (21) G a (x, ; x, ) = iθ ( ) T r (ρ H ψ H (x, ), ψ H (x, ) Only hree of hem are independen, G r = G c G + = G G c, G a = G c G = G + G c. (22) This can be seen easily by separaing G ± as four pars, θ ( ) G ± and θ ( + ) G ±. Then G c = θ ( + ) G + + θ ( ) G G c = θ ( ) G + + θ ( + ) G (23) So G c + G c = G + + G. Noice for greaer/less Green s funcion, differen definiions and noaions are used in lieraure, for example, G > G and G < G + in [2]. Before we go furher o perurbaion calculaion of ineracing field, le s firs lis all he freefield Nonequilibrium Green s funcions. 4 G 0,+ (x, ; x, ) = i k n k e iω(k)( )+ik(x x ) G 0, (x, ; x, ) = i k 1 n k e iω(k)( )+ik(x x ) G 0,c (x, ; x, ) = i k θ ( ) n k e iω(k)( )+ik(x x ) G 0, c (x, ; x, ) = i k θ ( ) n k e iω(k)( )+ik(x x ) G 0,r (x, ; x, ) = iθ ( ) k e iω(k)( )+ik(x x ) G 0,a (x, ; x, ) = iθ ( ) k e iω(k)( )+ik(x x ) (24) Abou Eq(16), he expression similar wih of GellMann and Low Theorem, i should be undersood in a kind inverse logic order. For an ineracing field H = H 0 + H 1, he nonequilibrium densiy marix ρ H is no clearly defined, while ρ 0 H of he corresponding free filed H 0 could be well defined. Then he meaning of eq(16) is ha we sar from ρ 0 H a = and arrive a sae a = 0, and hen jus use his new sae as ρ H. I s no guaraneed ha his reamen will correspond o he rue nonequilibrium disribuion ρ H. So for NEGF, even concepually insead of saring from he rue ρ H, we build up he heory from ρ 0 H. This could be a disadvanage of NEGF. Also several advanages need o be noiced. Firs, his NEGF can be used for sysem a hermal equilibrium sae, which is usually he subjec of Masubara Green s funcion. We will use as an example in III. Second, even H 1 explicily depends on, his NEFG is sill applicable, because we only se one end as H 1 () = 0, H 1 ( ) could be arbirary. A las, for nonequilibrium sysem as long as a unambiguous freefield corresponding nonequilibrium sae could be defined, we could always do he perurbaion calculaion order by order. II. SELFENERGY AND DYSON S EQUATION In order o arrive a he Dyson s equaion, we would firsly go o a lile pracice of firs and second order calculaion. Consider an example wih V = αβ M αβc αc β [2]. Then he firs order perurbaion gives, G + (µ, ; ν, ) = G 0,+ (µ, ; ν, ) dsm αβ T r ( T c Cµ () C ν ( ) C α (s) C β (s). (25) αβ The second erm has one disconneced erm and one nonzero conneced erm, which includes αβ dsmαβ Tc Cµ () C α (s) } T c C ν ( ) C β (s) } = [ αβ dsg0,c (µ, ; α, s) M αβ G 0,+ (β, s; ν, ) + ] dsg0,+ (µ, ; α, s) M αβ G 0, c (β, s; ν, ) (26) A he nex order, more erms will be coupled ino his expansion series. Similarly G also couples wih all oher Gs. We will work ou explicily a special case of his ineracion in he nex secion III. Skipping some deailed calculaion here, overall hese expansion series could be represened by a marix equaion, in he form of ( ) Ĝ = Ĝ0ΣĜ0 + Ĝ0ΣĜ0ΣĜ0 + = Ĝ0 1 + ΣĜ (27)
5 5 Like he example abou disordered sysem in lecure noes[3], concep of selfenergy Σ can be inroduced. Then he Dyson s equaion of NEGF could be organized as Ĝ (, ) = Ĝ0 (, ) + d 1 d 2 Ĝ 0 (, 1 ) ˆΣ ( 1, 2 ) Ĝ ( 2, ), (28) where ( Ĝc Ĝ Ĝ = Ĝ + Ĝ c ), (29) and Ĝ (, ) is he operaor form of G (x, ; x, ) = x Ĝ (, ) x ; Ĝ 0 = ˆD is he freefield NEGF; and ˆΣ is he selfenergy erm coming from ineracion, ( ) ˆΣc ˆΣ ˆΣ = ˆΣ +. (30) ˆΣ c We will explain boh heoreically and by examples how o ge he selfenergy erm from ineracion laer. Le s emporally suppose hey are known. Because only hree are independen of hese six NEGFs, he above formula can be simplified furher by choosing he righ hree independen ones. Le s use Ĝa, Ĝr and From eq(22) i is easy o see ha his ransformaion is uniary, ( Ĝc Ĝ U Ĝ + Ĝ c ˆF = Ĝc + Ĝ c. (31) ) ( ) U 0 Ĝ = a Ĝ r Ǧ, (32) ˆF where U = 1 ( ) 1 1. (33) Induced by his ransformaion, he selfenergy erm will ransform as ( ) ˆΣc ˆΣ ˇΣ U ˆΣ + U, (34) ˆΣ c And finally, as we will see from he example in secion III, because generally Σ c + Σ c = (Σ + + Σ ), ( ) Ω Σ r ˇΣ Σ a, (35) 0 Therefore, eq(28) sill holds, bu in a new form, or simply denoed as, Ǧ = Ǧ0 + Ǧ0 ˇΣǦ. (36) Then he calculaion of Green s funcion becomes calculaion of selfenergy, where differen approximaions, such as Born or SelfConsisen Born approximaion, could be used. III. EXAMPLE Le s apply he general procedure above ono he following problem, he random impuriy, a special case of he example in secion II, H = k ɛ (k) C k C k + k,q,x M (q) e iq X C k+q V C k, (37)
6 6 s s FIG. 3: Firs order expansion on loop pah, LHS for s on posiive branch, RHS for s on negaive branch. Boh of hem are zero if M (0) = 0. s 1 s 2 s 1 s 2 FIG. 4: Second order expansion of G + on loop pah, for s 1, s 2 boh on posiive branch. wih M (0) = 0 means average effec of impuriy is zero. X is uniformly disribued so ha k is sill a good quanum number, so G 0 (k, ; k, ) = G 0 (k, ; k, ) δ (k k ) and G (k, ; k, ) = G (k, ; k, ) δ (k k ). Le s firs work in ime domain, laer on we will do he Fourier ransformaion o work in he frequency domain. Firs order expansion of G +, eq(26) for our special case will be X 1 V [ dsg 0,c (k, ; k, s) M (0) G 0,+ (k, s; k, ) + ] dsg 0,+ (k, ; k, s) M (0) G 0, c (k, s; k, ) = 0. (38) Or equivalenly by Feynman Diagram, as in fig(3). The second order expansion of G + is, i 2V 2 ds 1 ds 2 e iq1 X1 iq2 X2 M (q 1 ) M (q 2 ) C k 1,q 1,X 1 k 2,q 2,X 2 T r (T, (39) c C k () C k ( ) C k 1+q 1 (s 1 ) C k1 (s 1 ) C k 2+q 2 (s 2 ) C k2 (s 2 ) where by Wick s Theorem, = T r +T r C k () C k 2+q 2 (s 2 ) T r T r C k () C k 1+q 1 (s 1 ) T r C k () C k ( ) C k 1+q 1 (s 1 ) C k1 (s 1 ) C k 2+q 2 (s 2 ) C k2 (s 2 ) C k1 (s 1 ) C k ( ) T r T r C k2 (s 2 ) C k ( ) C k2 (s 2 ) C k 1+q 1 (s 1 ). (40) C k1 (s 1 ) C k 2+q 2 (s 2 ) This has o be calculaed for he four configuraions of s 1, s 2. For example, here le s work ou for case of boh s 1, s 2 on posiive branch. i 2V 2 ds 1 ds 2 M (q 1 ) 2 e iq1 X1+iq1 X2 G 0,c (k, ; k, s 2 ) G 0,+ (k, s 1 ; k, ) G 0,c (k + q 1, s 2 ; k + q 1, s 1 ) q 1,X 1,X 2 + i 2V 2 ds 1 ds 2 M (q 2 ) 2 e iq2 X1 iq2 X2 G 0,c (k, ; k, s 1 ) G 0,+ (k, s 2 ; k, ) G 0,c (k + q 2, s 1 ; k + q 2, s 2 ). (41) q 2,X 1,X 2 = i V 2 ds 1 ds 2 M (q) 2 e iq X1 iq X2 G 0,c (k, ; k, s 1 ) G 0,+ (k, s 2 ; k, ) G 0,c (k + q, s 1 ; k + q, s 2 ) q,x 1,X 2 Those wo erm give he same conribuion because of he inegraion and summaion over s 1, s 2, q 1,2. Excep ha here G + couples wih G 0,c and ec, his expression has exacly he same form wih he second order of he usual
7 7 G + G G c G c NonZero Impuriy Line = Σ 1,c Σ 1, Σ 1, Σ 1, c FIG. 5: Anoher se of Feynman rules for NEGF, second order expansion is shown as example o express in hese new rules. Furher perurbaion could be done in his diagram form. Green s funcion wih impuriy. Similarly, G + also coupled wih G 0,, G 0, c and obviously G 0,+ iself. So par of he firs order of selfenergy erm could be defined as Σ c (k; s 2, s 1 ) i 2V 2 M (q 1 ) 2 e iq1 X1+iq1 X2 G 0,c (k + q, s 2 ; k + q, s 1 ). (42) q 1,X 1,X 2 So we ge a erm of G + a he second order in he form of If we check he erm abou G + in eq(28), we will ge G 2,+ = G 0,+ Σ 1,c G 0,c +... (43) G 2,+ = G 0,+ Σ 1,c G 0,c + G 0, c Σ 1,+ G 0,c + G 0,+ Σ 1, G 0,+ + G 0, c Σ 1, c G 0,+, (44) which does include he above erm we already calculaed. The diagram expression of all hose four erms are shown in he follow fig(5). A deail calculaion include all he configuraion of s 1, s 2 will give us he lef hree erms. Similarly we can do he second order expansion of G,c c. Then he hird order expansion will give us more selfenergy erms. Finally, we can ge he Dyson s equaion, which afer Fourier ransformaion will lead us o frequency domain Dyson s equaion. In he Feynman diagrams in fig(2), where he ime loop is explicily down o be an indicaor of he ype of Green s funcion. Besides his, considering he characer of our specific case, M (0) = 0, we may jus use differen lines o represen differen Green s funcions, so ha he diagrams could be simpler, Here we skip he boring derivaion of eq(36), he marix form Dyson s equaion, hopefully his will no sop one undersanding he general picure of NEGF. IV. SUMMARY Keldysh NEGF Formula is a generalizaion of he usual zero and nonzero emperaure Green s funcion. I can be applied ono he usual equilibrium cases and nonequilibrium case. The way we derive such formula here is o consruc a loop from o and back o, and inroducing Green s funcions G (, ) corresponding o he differen configuraion of (, ) over branches. Formally he srucure of Green s funcion and heir Dyson s Equaion
8 looks equivalen wih he one for usual Green s Funcion. So all he perurbaion calculaion is quie sraighforward. However, in order o do he perurbaion, a welldefined nonineracing sae and Green s funcion is a necessary saring poin. Wheher such saring poin leads o he real nonequilibrium sae is quesionable, and relies on he comparison beween calculaion and experimens. There is anoher way o ge his formula in [4], where he auhors use conour pah over complex plan o replace above loop pah. The derivaion is more elegan in a sense, bu he problem of picking up he righ saring poin sill exiss, alhough he auhors claim heir reamen is exac more or less. 8 [1] C. Caroli and R. Combresco and P. Nozieres and D. SainJames, Direc calculaion of he unneling curren, J. Phys. C: Solid S. Phys, 4(1971), [2] G. D. Manhan, ManyParicle Physics(1990 New York), Plenum Press. [3] M. Berciu, Lecure noes for Phys503, 2005, hp://www.physics.ubc.ca/ berciu/. [4] H. Haug and A.P. Jauho, Quanum Kineics in Transpor and Opics of Semiconducors(1996 Berlin Heidelberg), Springer Verlag.
Random Walk in 1D. 3 possible paths x vs n. 5 For our random walk, we assume the probabilities p,q do not depend on time (n)  stationary
Random Walk in D Random walks appear in many cones: diffusion is a random walk process undersanding buffering, waiing imes, queuing more generally he heory of sochasic processes gambling choosing he bes
More information17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
More informationThe Transport Equation
The Transpor Equaion Consider a fluid, flowing wih velociy, V, in a hin sraigh ube whose cross secion will be denoed by A. Suppose he fluid conains a conaminan whose concenraion a posiion a ime will be
More informationInductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College  Physics 2426  Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
More informationPROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE
Profi Tes Modelling in Life Assurance Using Spreadshees PROFIT TEST MODELLING IN LIFE ASSURANCE USING SPREADSHEETS PART ONE Erik Alm Peer Millingon 2004 Profi Tes Modelling in Life Assurance Using Spreadshees
More informationChapter 7. Response of FirstOrder RL and RC Circuits
Chaper 7. esponse of FirsOrder L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
More informationMTH6121 Introduction to Mathematical Finance Lesson 5
26 MTH6121 Inroducion o Mahemaical Finance Lesson 5 Conens 2.3 Brownian moion wih drif........................... 27 2.4 Geomeric Brownian moion........................... 28 2.5 Convergence of random
More informationDuration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVAF38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
More information11/6/2013. Chapter 14: Dynamic ADAS. Introduction. Introduction. Keeping track of time. The model s elements
Inroducion Chaper 14: Dynamic DS dynamic model of aggregae and aggregae supply gives us more insigh ino how he economy works in he shor run. I is a simplified version of a DSGE model, used in cuingedge
More informationEntropy: From the Boltzmann equation to the Maxwell Boltzmann distribution
Enropy: From he Bolzmann equaion o he Maxwell Bolzmann disribuion A formula o relae enropy o probabiliy Ofen i is a lo more useful o hink abou enropy in erms of he probabiliy wih which differen saes are
More informationSignal Processing and Linear Systems I
Sanford Universiy Summer 214215 Signal Processing and Linear Sysems I Lecure 5: Time Domain Analysis of Coninuous Time Sysems June 3, 215 EE12A:Signal Processing and Linear Sysems I; Summer 1415, Gibbons
More informationANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS
ANALYSIS AND COMPARISONS OF SOME SOLUTION CONCEPTS FOR STOCHASTIC PROGRAMMING PROBLEMS R. Caballero, E. Cerdá, M. M. Muñoz and L. Rey () Deparmen of Applied Economics (Mahemaics), Universiy of Málaga,
More informationChabot College Physics Lab RC Circuits Scott Hildreth
Chabo College Physics Lab Circuis Sco Hildreh Goals: Coninue o advance your undersanding of circuis, measuring resisances, currens, and volages across muliple componens. Exend your skills in making breadboard
More informationTerm Structure of Prices of Asian Options
Term Srucure of Prices of Asian Opions Jirô Akahori, Tsuomu Mikami, Kenji Yasuomi and Teruo Yokoa Dep. of Mahemaical Sciences, Risumeikan Universiy 111 Nojihigashi, Kusasu, Shiga 5258577, Japan Email:
More informationChapter 2 Problems. 3600s = 25m / s d = s t = 25m / s 0.5s = 12.5m. Δx = x(4) x(0) =12m 0m =12m
Chaper 2 Problems 2.1 During a hard sneeze, your eyes migh shu for 0.5s. If you are driving a car a 90km/h during such a sneeze, how far does he car move during ha ime s = 90km 1000m h 1km 1h 3600s = 25m
More informationMathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
More informationPrincipal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, bouzaev@ya.ru Why principal componens are needed Objecives undersand he evidence of more han one
More informationAP Calculus BC 2010 Scoring Guidelines
AP Calculus BC Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in, he College Board
More informationTEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS
TEMPORAL PATTERN IDENTIFICATION OF TIME SERIES DATA USING PATTERN WAVELETS AND GENETIC ALGORITHMS RICHARD J. POVINELLI AND XIN FENG Deparmen of Elecrical and Compuer Engineering Marquee Universiy, P.O.
More informationCircuit Types. () i( t) ( )
Circui Types DC Circuis Idenifying feaures: o Consan inpus: he volages of independen volage sources and currens of independen curren sources are all consan. o The circui does no conain any swiches. All
More informationLectures # 5 and 6: The Prime Number Theorem.
Lecures # 5 and 6: The Prime Number Theorem Noah Snyder July 8, 22 Riemann s Argumen Riemann used his analyically coninued ζfuncion o skech an argumen which would give an acual formula for π( and sugges
More informationWhy Did the Demand for Cash Decrease Recently in Korea?
Why Did he Demand for Cash Decrease Recenly in Korea? Byoung Hark Yoo Bank of Korea 26. 5 Absrac We explores why cash demand have decreased recenly in Korea. The raio of cash o consumpion fell o 4.7% in
More informationINTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES
INTEREST RATE FUTURES AND THEIR OPTIONS: SOME PRICING APPROACHES OPENGAMMA QUANTITATIVE RESEARCH Absrac. Exchangeraded ineres rae fuures and heir opions are described. The fuure opions include hose paying
More informationCHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
More informationChapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
More informationEmergence of FokkerPlanck Dynamics within a Closed Finite Spin System
Emergence of FokkerPlanck Dynamics wihin a Closed Finie Spin Sysem H. Niemeyer(*), D. Schmidke(*), J. Gemmer(*), K. Michielsen(**), H. de Raed(**) (*)Universiy of Osnabrück, (**) Supercompuing Cener Juelich
More information2.5 Life tables, force of mortality and standard life insurance products
Soluions 5 BS4a Acuarial Science Oford MT 212 33 2.5 Life ables, force of moraliy and sandard life insurance producs 1. (i) n m q represens he probabiliy of deah of a life currenly aged beween ages + n
More information1 HALFLIFE EQUATIONS
R.L. Hanna Page HALFLIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of halflives, and / log / o calculae he age (# ears): age (halflife)
More informationCointegration: The Engle and Granger approach
Coinegraion: The Engle and Granger approach Inroducion Generally one would find mos of he economic variables o be nonsaionary I(1) variables. Hence, any equilibrium heories ha involve hese variables require
More informationIndividual Health Insurance April 30, 2008 Pages 167170
Individual Healh Insurance April 30, 2008 Pages 167170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
More informationcooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
More informationOptimal Investment and Consumption Decision of Family with Life Insurance
Opimal Invesmen and Consumpion Decision of Family wih Life Insurance Minsuk Kwak 1 2 Yong Hyun Shin 3 U Jin Choi 4 6h World Congress of he Bachelier Finance Sociey Torono, Canada June 25, 2010 1 Speaker
More information9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
More informationSinglemachine Scheduling with Periodic Maintenance and both Preemptive and. Nonpreemptive jobs in Remanufacturing System 1
Absrac number: 050407 Singlemachine Scheduling wih Periodic Mainenance and boh Preempive and Nonpreempive jobs in Remanufacuring Sysem Liu Biyu hen Weida (School of Economics and Managemen Souheas Universiy
More informationPresent Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
More informationA Reexamination of the Joint Mortality Functions
Norh merican cuarial Journal Volume 6, Number 1, p.166170 (2002) Reeaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali
More informationMaking a Faster Cryptanalytic TimeMemory TradeOff
Making a Faser Crypanalyic TimeMemory TradeOff Philippe Oechslin Laboraoire de Securié e de Crypographie (LASEC) Ecole Polyechnique Fédérale de Lausanne Faculé I&C, 1015 Lausanne, Swizerland philippe.oechslin@epfl.ch
More informationModule 4. Singlephase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Singlephase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
More informationPhysics 111 Fall 2007 Electric Currents and DC Circuits
Physics 111 Fall 007 Elecric Currens and DC Circuis 1 Wha is he average curren when all he sodium channels on a 100 µm pach of muscle membrane open ogeher for 1 ms? Assume a densiy of 0 sodium channels
More informationOn the degrees of irreducible factors of higher order Bernoulli polynomials
ACTA ARITHMETICA LXII.4 (1992 On he degrees of irreducible facors of higher order Bernoulli polynomials by Arnold Adelberg (Grinnell, Ia. 1. Inroducion. In his paper, we generalize he curren resuls on
More informationAcceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
More informationLife insurance cash flows with policyholder behaviour
Life insurance cash flows wih policyholder behaviour Krisian Buchard,,1 & Thomas Møller, Deparmen of Mahemaical Sciences, Universiy of Copenhagen Universiesparken 5, DK2100 Copenhagen Ø, Denmark PFA Pension,
More informationDifferential Equations. Solving for Impulse Response. Linear systems are often described using differential equations.
Differenial Equaions Linear sysems are ofen described using differenial equaions. For example: d 2 y d 2 + 5dy + 6y f() d where f() is he inpu o he sysem and y() is he oupu. We know how o solve for y given
More informationUsing RCtime to Measure Resistance
Basic Express Applicaion Noe Using RCime o Measure Resisance Inroducion One common use for I/O pins is o measure he analog value of a variable resisance. Alhough a builin ADC (Analog o Digial Converer)
More informationMeasuring macroeconomic volatility Applications to export revenue data, 19702005
FONDATION POUR LES ETUDES ET RERS LE DEVELOPPEMENT INTERNATIONAL Measuring macroeconomic volailiy Applicaions o expor revenue daa, 1970005 by Joël Cariolle Policy brief no. 47 March 01 The FERDI is a
More informationMaking Use of Gate Charge Information in MOSFET and IGBT Data Sheets
Making Use of ae Charge Informaion in MOSFET and IBT Daa Shees Ralph McArhur Senior Applicaions Engineer Advanced Power Technology 405 S.W. Columbia Sree Bend, Oregon 97702 Power MOSFETs and IBTs have
More informationRC Circuit and Time Constant
ircui and Time onsan 8M Objec: Apparaus: To invesigae he volages across he resisor and capacior in a resisorcapacior circui ( circui) as he capacior charges and discharges. We also wish o deermine he
More informationA Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
More informationChapter 2 Kinematics in One Dimension
Chaper Kinemaics in One Dimension Chaper DESCRIBING MOTION:KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings moe how far (disance and displacemen), how fas (speed and elociy), and how
More informationCapacitors and inductors
Capaciors and inducors We coninue wih our analysis of linear circuis by inroducing wo new passive and linear elemens: he capacior and he inducor. All he mehods developed so far for he analysis of linear
More informationSupplementary Appendix for Depression Babies: Do Macroeconomic Experiences Affect RiskTaking?
Supplemenary Appendix for Depression Babies: Do Macroeconomic Experiences Affec RiskTaking? Ulrike Malmendier UC Berkeley and NBER Sefan Nagel Sanford Universiy and NBER Sepember 2009 A. Deails on SCF
More informationDependent Interest and Transition Rates in Life Insurance
Dependen Ineres and ransiion Raes in Life Insurance Krisian Buchard Universiy of Copenhagen and PFA Pension January 28, 2013 Absrac In order o find marke consisen bes esimaes of life insurance liabiliies
More informationStatistical Analysis with Little s Law. Supplementary Material: More on the Call Center Data. by SongHee Kim and Ward Whitt
Saisical Analysis wih Lile s Law Supplemenary Maerial: More on he Call Cener Daa by SongHee Kim and Ward Whi Deparmen of Indusrial Engineering and Operaions Research Columbia Universiy, New York, NY 1799
More informationForecasting and Information Sharing in Supply Chains Under QuasiARMA Demand
Forecasing and Informaion Sharing in Supply Chains Under QuasiARMA Demand Avi Giloni, Clifford Hurvich, Sridhar Seshadri July 9, 2009 Absrac In his paper, we revisi he problem of demand propagaion in
More informationStochastic Optimal Control Problem for Life Insurance
Sochasic Opimal Conrol Problem for Life Insurance s. Basukh 1, D. Nyamsuren 2 1 Deparmen of Economics and Economerics, Insiue of Finance and Economics, Ulaanbaaar, Mongolia 2 School of Mahemaics, Mongolian
More informationReturn Calculation of U.S. Treasury Constant Maturity Indices
Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion
More informationAnswer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prinou should hae 1 quesions. Muliplechoice quesions may coninue on he ne column or page find all choices before making your selecion. The
More informationMorningstar Investor Return
Morningsar Invesor Reurn Morningsar Mehodology Paper Augus 31, 2010 2010 Morningsar, Inc. All righs reserved. The informaion in his documen is he propery of Morningsar, Inc. Reproducion or ranscripion
More informationApplied Intertemporal Optimization
. Applied Ineremporal Opimizaion Klaus Wälde Universiy of Mainz CESifo, Universiy of Brisol, UCL Louvain la Neuve www.waelde.com These lecure noes can freely be downloaded from www.waelde.com/aio. A prin
More informationEconomics Honors Exam 2008 Solutions Question 5
Economics Honors Exam 2008 Soluions Quesion 5 (a) (2 poins) Oupu can be decomposed as Y = C + I + G. And we can solve for i by subsiuing in equaions given in he quesion, Y = C + I + G = c 0 + c Y D + I
More informationRC (ResistorCapacitor) Circuits. AP Physics C
(ResisorCapacior Circuis AP Physics C Circui Iniial Condiions An circui is one where you have a capacior and resisor in he same circui. Suppose we have he following circui: Iniially, he capacior is UNCHARGED
More informationA Probability Density Function for Google s stocks
A Probabiliy Densiy Funcion for Google s socks V.Dorobanu Physics Deparmen, Poliehnica Universiy of Timisoara, Romania Absrac. I is an approach o inroduce he Fokker Planck equaion as an ineresing naural
More information3 RungeKutta Methods
3 RungeKua Mehods In conras o he mulisep mehods of he previous secion, RungeKua mehods are singlesep mehods however, muliple sages per sep. They are moivaed by he dependence of he Taylor mehods on he
More informationFourier Series & The Fourier Transform
Fourier Series & The Fourier Transform Wha is he Fourier Transform? Fourier Cosine Series for even funcions and Sine Series for odd funcions The coninuous limi: he Fourier ransform (and is inverse) The
More informationInventory Planning with Forecast Updates: Approximate Solutions and Cost Error Bounds
OPERATIONS RESEARCH Vol. 54, No. 6, November December 2006, pp. 1079 1097 issn 0030364X eissn 15265463 06 5406 1079 informs doi 10.1287/opre.1060.0338 2006 INFORMS Invenory Planning wih Forecas Updaes:
More information4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discreeime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.11.
More informationAP Calculus AB 2010 Scoring Guidelines
AP Calculus AB 1 Scoring Guidelines The College Board The College Board is a noforprofi membership associaion whose mission is o connec sudens o college success and opporuniy. Founded in 1, he College
More informationTable of contents Chapter 1 Interest rates and factors Chapter 2 Level annuities Chapter 3 Varying annuities
Table of conens Chaper 1 Ineres raes and facors 1 1.1 Ineres 2 1.2 Simple ineres 4 1.3 Compound ineres 6 1.4 Accumulaed value 10 1.5 Presen value 11 1.6 Rae of discoun 13 1.7 Consan force of ineres 17
More informationLLC Resonant Converter Reference Design using the dspic DSC
LLC Resonan Converer Reference Design using he dspic DSC 2010 Microchip Technology Incorporaed. All Righs Reserved. LLC Resonan Converer Webinar Slide 1 Hello, and welcome o his web seminar on Microchip
More informationMotion Along a Straight Line
Moion Along a Sraigh Line On Sepember 6, 993, Dave Munday, a diesel mechanic by rade, wen over he Canadian edge of Niagara Falls for he second ime, freely falling 48 m o he waer (and rocks) below. On his
More informationNewton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
More informationTSGRAN Working Group 1 (Radio Layer 1) meeting #3 Nynashamn, Sweden 22 nd 26 th March 1999
TSGRAN Working Group 1 (Radio Layer 1) meeing #3 Nynashamn, Sweden 22 nd 26 h March 1999 RAN TSGW1#3(99)196 Agenda Iem: 9.1 Source: Tile: Documen for: Moorola Macrodiversiy for he PRACH Discussion/Decision
More informationChapter 1.6 Financial Management
Chaper 1.6 Financial Managemen Par I: Objecive ype quesions and answers 1. Simple pay back period is equal o: a) Raio of Firs cos/ne yearly savings b) Raio of Annual gross cash flow/capial cos n c) = (1
More informationNiche Market or Mass Market?
Niche Marke or Mass Marke? Maxim Ivanov y McMaser Universiy July 2009 Absrac The de niion of a niche or a mass marke is based on he ranking of wo variables: he monopoly price and he produc mean value.
More informationDifferential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
More informationGraduate Macro Theory II: Notes on Neoclassical Growth Model
Graduae Macro Theory II: Noes on Neoclassical Growh Model Eric Sims Universiy of Nore Dame Spring 2011 1 Basic Neoclassical Growh Model The economy is populaed by a large number of infiniely lived agens.
More informationConceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...
Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The BlackScholes Shl Ml Moel... pricing opions an calculaing
More informationModeling VIX Futures and Pricing VIX Options in the Jump Diusion Modeling
Modeling VIX Fuures and Pricing VIX Opions in he Jump Diusion Modeling Faemeh Aramian Maseruppsas i maemaisk saisik Maser hesis in Mahemaical Saisics Maseruppsas 2014:2 Maemaisk saisik April 2014 www.mah.su.se
More informationJournal Of Business & Economics Research September 2005 Volume 3, Number 9
Opion Pricing And Mone Carlo Simulaions George M. Jabbour, (Email: jabbour@gwu.edu), George Washingon Universiy YiKang Liu, (yikang@gwu.edu), George Washingon Universiy ABSTRACT The advanage of Mone Carlo
More informationThe Torsion of Thin, Open Sections
EM 424: Torsion of hin secions 26 The Torsion of Thin, Open Secions The resuls we obained for he orsion of a hin recangle can also be used be used, wih some qualificaions, for oher hin open secions such
More informationNikkei Stock Average Volatility Index Realtime Version Index Guidebook
Nikkei Sock Average Volailiy Index Realime Version Index Guidebook Nikkei Inc. Wih he modificaion of he mehodology of he Nikkei Sock Average Volailiy Index as Nikkei Inc. (Nikkei) sars calculaing and
More informationTwo Compartment Body Model and V d Terms by Jeff Stark
Two Comparmen Body Model and V d Terms by Jeff Sark In a onecomparmen model, we make wo imporan assumpions: (1) Linear pharmacokineics  By his, we mean ha eliminaion is firs order and ha pharmacokineic
More informationPricing FixedIncome Derivaives wih he ForwardRisk Adjused Measure Jesper Lund Deparmen of Finance he Aarhus School of Business DK8 Aarhus V, Denmark Email: jel@hha.dk Homepage: www.hha.dk/~jel/ Firs
More informationChapter 6: Business Valuation (Income Approach)
Chaper 6: Business Valuaion (Income Approach) Cash flow deerminaion is one of he mos criical elemens o a business valuaion. Everyhing may be secondary. If cash flow is high, hen he value is high; if he
More informationII.1. Debt reduction and fiscal multipliers. dbt da dpbal da dg. bal
Quarerly Repor on he Euro Area 3/202 II.. Deb reducion and fiscal mulipliers The deerioraion of public finances in he firs years of he crisis has led mos Member Saes o adop sizeable consolidaion packages.
More informationFourier Series and Fourier Transform
Fourier Series and Fourier ransform Complex exponenials Complex version of Fourier Series ime Shifing, Magniude, Phase Fourier ransform Copyrigh 2007 by M.H. Perro All righs reserved. 6.082 Spring 2007
More informationSection 7.1 Angles and Their Measure
Secion 7.1 Angles and Their Measure Greek Leers Commonly Used in Trigonomery Quadran II Quadran III Quadran I Quadran IV α = alpha β = bea θ = hea δ = dela ω = omega γ = gamma DEGREES The angle formed
More informationµ r of the ferrite amounts to 1000...4000. It should be noted that the magnetic length of the + δ
Page 9 Design of Inducors and High Frequency Transformers Inducors sore energy, ransformers ransfer energy. This is he prime difference. The magneic cores are significanly differen for inducors and high
More informationDYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS
DYNAMIC MODELS FOR VALUATION OF WRONGFUL DEATH PAYMENTS Hong Mao, Shanghai Second Polyechnic Universiy Krzyszof M. Osaszewski, Illinois Sae Universiy Youyu Zhang, Fudan Universiy ABSTRACT Liigaion, exper
More informationModeling Stock Price Dynamics with Fuzzy Opinion Networks
Modeling Sock Price Dynamics wih Fuzzy Opinion Neworks LiXin Wang Deparmen of Auomaion Science and Technology Xian Jiaoong Universiy, Xian, P.R. China Email: lxwang@mail.xju.edu.cn Key words: Sock price
More informationWorking Paper On the timing option in a futures contract. SSE/EFI Working Paper Series in Economics and Finance, No. 619
econsor www.econsor.eu Der OpenAccessPublikaionsserver der ZBW LeibnizInformaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Biagini, Francesca;
More informationThe option pricing framework
Chaper 2 The opion pricing framework The opion markes based on swap raes or he LIBOR have become he larges fixed income markes, and caps (floors) and swapions are he mos imporan derivaives wihin hese markes.
More informationChapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
More informationDOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR
Invesmen Managemen and Financial Innovaions, Volume 4, Issue 3, 7 33 DOES TRADING VOLUME INFLUENCE GARCH EFFECTS? SOME EVIDENCE FROM THE GREEK MARKET WITH SPECIAL REFERENCE TO BANKING SECTOR Ahanasios
More informationOPERATION MANUAL. Indoor unit for air to water heat pump system and options EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1
OPERAION MANUAL Indoor uni for air o waer hea pump sysem and opions EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1
More informationSection 5.1 The Unit Circle
Secion 5.1 The Uni Circle The Uni Circle EXAMPLE: Show ha he poin, ) is on he uni circle. Soluion: We need o show ha his poin saisfies he equaion of he uni circle, ha is, x +y 1. Since ) ) + 9 + 9 1 P
More informationHedging with Forwards and Futures
Hedging wih orwards and uures Hedging in mos cases is sraighforward. You plan o buy 10,000 barrels of oil in six monhs and you wish o eliminae he price risk. If you ake he buyside of a forward/fuures
More information4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
More informationMultiprocessor SystemsonChips
Par of: Muliprocessor SysemsonChips Edied by: Ahmed Amine Jerraya and Wayne Wolf Morgan Kaufmann Publishers, 2005 2 Modeling Shared Resources Conex swiching implies overhead. On a processing elemen,
More information