PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion

Save this PDF as:

Size: px
Start display at page:

Download "PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion"

Transcription

1 PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion NAME: DATE: SECTION: PARTNERS: OBJECTIVES 1. Verify Hooke s Law and use it to measure the force constant of a spring. 2. Investigate the relationship between mass and period for a mass oscillating on a spring and use it to measure the force constant of the spring. EQUIPMENT Spring support on vertical rod Spring Mass hanger Set of masses Timer Meter sick and meter stick clamp on stand Mass balance PRE-LAB EXERCISE (Complete 1-10 BEFORE Lab) HOOKE S LAW 1. Write the equation for Hooke s Law. Eqn In this experiment the applied force is produced by the weight, mg, of the mass, m, hung on the spring. If you plot a graph of the amount of stretch versus the weight, how is the slope of the resulting straight line related to the spring constant? Write an equation using the word slope to represent the slope in the equation. Eqn If the amount of stretch is measured in meters and the weight is measured in Newtons, what are the units for the slope in step 2? 4. Solve the equation in step 2 for the spring constant, k (i.e. write k in terms of the slope). Eqn What do you expect the units of k to be based on the equation in step 4 and the units for the slope in step 3?

2 SIMPLE HARMONIC MOTION 6. Write the equation that relates the period, mass, and spring constant for simple harmonic motion. Eqn In this experiment you will measure the period of oscillation for different masses suspended from a spring. If you plot a graph of the period versus the square root of the mass, how is the slope of the resulting straight line related to the spring constant? Write an equation; you may use the word slope to represent the slope in the equation. Eqn If the period is measured in seconds and the mass is measured in kilograms, what are the units for the slope found in step 7? 9. Solve the equation in step 7 for the spring constant, k. Eqn What do you expect the units of k to be based on the equation in step 9 and the units for the slope in step 8? Notice that these units may not be the same as in your answer to step 5, but they should be equivalent. Show that they are equivalent. PROCEDURE HOOKE S LAW 1. Measure the position (in meters) of the bottom of the spring with no weight attached. Position of bottom of spring with no weight: = 2. Add mass to the spring in increments of 100 grams from 150 to 550 grams of mass (including the mass hanger). Record, in Table 1, the position (in meters) of the bottom of the spring for each mass. Table 1 Mass (kg) Weight (in N) Position (m) Stretch (m) SIMPLE HARMONIC MOTION

3 3. For each of the masses used in step 2, gently set the spring into vertical oscillation with a small amplitude of oscillation. Measure and record the time (in seconds) required for 10 complete oscillations ( round trip ) in Table 2 Mass (kg) Square Root of Corrected Mass (kg 1/2 ) Table 2 Time of 10 Oscillations (s) Average Period (s) 4. Measure and record the mass of your spring. Mass of spring ANALYSIS OF DATA HOOKE S LAW 1. Calculate the weight in Newtons for each mass in Table 1. Record the results in the second column of Table Subtract the zero reading from Step 1 of the Procedure form each of the positions in Table 1 to obtain the amount of stretch. Record the results in Table Plot a graph of the amount of stretch versus the weight (applied force) from the data in Table 1. The origin (0, 0) may not be a good data point. Draw the best straight line that comes closest the five data points. 4. Determine the slope of the line of the graph in step 3. Include the correct units. Slope of straight line: 5. Calculate the spring constant with the help of Eqn from the Pre-Lab section. Spring constant, k = SIMPLE HARMONIC MOTION 6. The equation that you were expected to write for Eqn.11.4 of the Pre-Lab was for an ideal spring with zero mass. For real spring with a finite mass, a portion of the spring mass (one-third) must be included along with the mass hanging from the spring. To find the corrected mass add one-third of the spring mass to each of the hanging masses. Record the square root of this corrected mass in the second column of Table 2. (NOTE: You must convert to kg before taking the square root). 7. Using the data in Table 2, calculate the average period of oscillation for each mass and record the values in the last column of Table 2.

4 8. Plot a graph of the average period versus the square root of the corrected mass from the data in Table 2. Draw the best straight line that comes closest to the five data points. 9. Determine the slope of the line from the graph in step 8. Include the proper units. Slope of straight line 10. Calculate the spring constant with the help of Eqn from the Pre-Lab section. COMPARISON OF TWO VALUES OF THE SPRING CONSTATN 11. Compare the two values of the spring constant obtained above by calculating the percent difference between them. Use the smaller value in the denominator. Value from Step 5 Value from Step 10 Percent Difference 12. When you read the slopes of the lines on your graphs, how many significant digits were in the rise and the run? Slope of graph of stretch versus applied force: No. of significant digits in rise No. of significant digits in run Slope of graph of average period versus square root of the corrected mass: No. of significant digits in rise No. of significant digits in run 13. The precision of the slopes of the graphs will determine the precision of your values for the spring constant. If you have not done so already, round off your values for k to the number of significant indicated in Step 12. If the number of digits in the rise and the number of digits in the run are not the same, use the smaller number. Value from Step 5 Value from Step 10 We will say that these two values agree if they differ by no more than two in the last significant digit. Do your two values for k agree? Way No way 14. If No way is checked above, attempt to give some possible explanations for this. BE SPECIFICexperimental error is not an acceptable answer.

5

6

HOOKE S LAW AND OSCILLATIONS

9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a spring-mass oscillator. INTRODUCTION The force which restores a spring to its equilibrium

Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor)

PASCO scientific Physics Lab Manual: P19-1 Science Workshop S. H. M. Mass on a Spring Experiment P19: Simple Harmonic Motion - Mass on a Spring (Force Sensor, Motion Sensor) Concept Time SW Interface Macintosh

HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT

5 M19 M19.1 HOOKE'S LAW AND SIMPLE HARMONIC MOTION OBJECT The object of this experiment is to determine whether a vertical mass-spring system obeys Hooke's Law and to study simple harmonic motion. THEORY

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring Apparatus: Pendulum clamp, aluminum pole, large clamp, assorted masses,

Oscillations: Mass on a Spring and Pendulums

Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

Simple Harmonic Motion

Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

LABORATORY 9. Simple Harmonic Motion

LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

STANDING WAVES. Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave.

STANDING WAVES Objective: To verify the relationship between wave velocity, wavelength, and frequency of a transverse wave. Apparatus: Magnetic oscillator, string, mass hanger and assorted masses, pulley,

Simple Harmonic Motion

Simple Harmonic Motion Objective: In this exercise you will investigate the simple harmonic motion of mass suspended from a helical (coiled) spring. Apparatus: Spring 1 Table Post 1 Short Rod 1 Right-angled

Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

HOOKE'S LAW AND A SIMPLE SPRING DONALD C. PECKHAM PHYSICS 307 FALL 1983 ABSTRACT

HOOKE'S LAW AND A SIMPLE SPRING DONALD C. PECKHAM PHYSICS 307 FALL 983 (Digitized and Revised, Fall 005) ABSTRACT The spring constant of a screen-door spring was determined both statically, by measuring

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature - simple harmonic motion. The importance of this kind of motion

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems

SHM Lab 1 Introduction PHYS 202 Laboratory #4 Oscillations and Simple Harmonic Motion In this laboratory, we examine three simple oscillatory systems: a mass on a spring, a pendulum, and a mass on a rubber

Simple Harmonic Motion

Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

PHY 157 Standing Waves on a String (Experiment 5)

PHY 157 Standing Waves on a String (Experiment 5) Name: 1 Introduction In this lab you will observe standing waves on a string. You will also investigate the relationship between wave speed and tension

The Pendulum. Experiment #1 NOTE:

The Pendulum Experiment #1 NOTE: For submitting the report on this laboratory session you will need a report booklet of the type that can be purchased at the McGill Bookstore. The material of the course

ELASTIC FORCES and HOOKE S LAW

PHYS-101 LAB-03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described

THE SPRING CONSTANT. Apparatus: A spiral spring, a set of weights, a weight hanger, a balance, a stop watch, and a twometer

THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring by Hooe s law and by its period of oscillatory motion in response to a weight. Apparatus: A spiral spring, a set of weights,

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

Experiment 5: Newton s Second Law

Name Section Date Introduction Experiment : Newton s Second Law In this laboratory experiment you will consider Newton s second law of motion, which states that an object will accelerate if an unbalanced

11/27/2014 Partner: Diem Tran. Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant

Bungee Lab I: Exploring the Relationship Between Bungee Cord Length and Spring Force Constant Introduction: This lab relies on an understanding of the motion of a spring and spring constant to facilitate

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

Standing Waves Physics Lab I

Standing Waves Physics Lab I Objective In this series of experiments, the resonance conditions for standing waves on a string will be tested experimentally. Equipment List PASCO SF-9324 Variable Frequency

6. Block and Tackle* Block and tackle

6. Block and Tackle* A block and tackle is a combination of pulleys and ropes often used for lifting. Pulleys grouped together in a single frame make up what is called a pulley block. The tackle refers

Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

Contents 1 PENDULUM EXPERIMENT 3 2 SIMPLE HARMONIC MOTION 9 3 STANDING WAVES ON STRINGS 15 4 STANDING WAVES IN AIR COLUMNS 21

Contents 1 PENDULUM EXPERIMENT 3 2 SIMPLE HARMONIC MOTION 9 3 STANDING WAVES ON STRINGS 15 4 STANDING WAVES IN AIR COLUMNS 21 5 SOUND INTENSITY - THE DECIBEL SCALE 27 6 REVERBERATION TIME 31 1 2 CONTENTS

Force. Net Force Mass. Acceleration = Section 1: Weight. Equipment Needed Qty Equipment Needed Qty Force Sensor 1 Mass and Hanger Set 1 Balance 1

Department of Physics and Geology Background orce Physical Science 1421 A force is a vector quantity capable of producing motion or a change in motion. In the SI unit system, the unit of force is the Newton

THE NOT SO SIMPLE PENDULUM

INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

Advanced Higher Physics: MECHANICS. Simple Harmonic Motion

Advanced Higher Physics: MECHANICS Simple Harmonic Motion At the end of this section, you should be able to: Describe examples of simple harmonic motion (SHM). State that in SHM the unbalanced force is

THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

Simple Harmonic Motion

Simple Harmonic Motion -Theory Simple harmonic motion refers to the periodic sinusoidal oscillation of an object or quantity. Simple harmonic motion is eecuted by any quantity obeying the Differential

Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

Physics 2305 Lab 11: Torsion Pendulum

Name ID number Date Lab CRN Lab partner Lab instructor Physics 2305 Lab 11: Torsion Pendulum Objective 1. To demonstrate that the motion of the torsion pendulum satisfies the simple harmonic form in equation

Standing Waves on a String

1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

Torque and Rotary Motion

Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

Experiment 8. The Pendulum

Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

Galileo s Pendulum: An exercise in gravitation and simple harmonic motion

Galileo s Pendulum: An exercise in gravitation and simple harmonic motion Zosia A. C. Krusberg Yerkes Winter Institute December 2007 Abstract In this lab, you will investigate the mathematical relationships

Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum

Name: Lab Partner: Section:

Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

Vaporization of Liquid Nitrogen

Vaporization of Liquid Nitrogen Goals and Introduction As a system exchanges thermal energy with its surroundings, the temperature of the system will usually increase or decrease, depending on the direction

MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START

Laboratory Section: Last Revised on September 21, 2016 Partners Names: Grade: EXPERIMENT 11 Velocity of Waves 0. Pre-Laboratory Work [2 pts] 1.) What is the longest wavelength at which a sound wave will

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

Determination of g using a spring

INTRODUCTION UNIVERSITY OF SURREY DEPARTMENT OF PHYSICS Level 1 Laboratory: Introduction Experiment Determination of g using a spring This experiment is designed to get you confident in using the quantitative

Kinetic Friction. Experiment #13

Kinetic Friction Experiment #13 Joe Solution E00123456 Partner - Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test

Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

CME Conservation of Mechanical Energy revised May 5, 2015

CME Conservation of Mechanical Energy revised May 5, 2015 Learning Objectives: During this lab, you will 1. learn how to communicate scientific results in writing. 2. estimate the uncertainty in a quantity

Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended.

Name: Johanna Goergen Section: 05 Date: 10/28/14 Partner: Lydia Barit Introduction: Bungee Constant per Unit Length & Bungees in Parallel Skipping school to bungee jump will get you suspended. The purpose

Simple Pendulum 10/10

Physical Science 101 Simple Pendulum 10/10 Name Partner s Name Purpose In this lab you will study the motion of a simple pendulum. A simple pendulum is a pendulum that has a small amplitude of swing, i.e.,

Sample lab procedure and report. The Simple Pendulum

Sample lab procedure and report The Simple Pendulum In this laboratory, you will investigate the effects of a few different physical variables on the period of a simple pendulum. The variables we consider

Spring Force Constant Determination as a Learning Tool for Graphing and Modeling

NCSU PHYSICS 205 SECTION 11 LAB II 9 FEBRUARY 2002 Spring Force Constant Determination as a Learning Tool for Graphing and Modeling Newton, I. 1*, Galilei, G. 1, & Einstein, A. 1 (1. PY205_011 Group 4C;

Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

ACCELERATION DUE TO GRAVITY

EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

Physics 6A Lab Experiment 6

Physics 6A Lab Experiment 6 Biceps Muscle Model APPARATUS Biceps model Large mass hanger with four 1-kg masses Small mass hanger for hand end of forearm bar with five 100-g masses Meter stick Centimeter

Graphical Presentation of Data

Graphical Presentation of Data Guidelines for Making Graphs Titles should tell the reader exactly what is graphed Remove stray lines, legends, points, and any other unintended additions by the computer

p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object:

Harmonic Oscillator Objective: Describe the position as a function of time of a harmonic oscillator. Apply the momentum principle to a harmonic oscillator. Sketch (and interpret) a graph of position as

1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date)

1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) Experiment 5 Harmonic motion In this Experiment you will learn that Hooke s Law F = kx can be used to model the interaction

Static and Kinetic Friction

Objectives Static and Kinetic Friction In this lab you will Equipment investigate how friction varies with the applied force. measure the coefficients of static and kinetic friction. learn how to use the

Newton s Second Law. Evaluation copy

Newton s Second Law Experiment 4 INTRODUCTION In your discussion of Newton s first law, you learned that when the sum of the forces acting on an object is zero, its velocity does not change. However, when

Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

= mg [down] =!mg [up]; F! x

Section 4.6: Elastic Potential Energy and Simple Harmonic Motion Mini Investigation: Spring Force, page 193 Answers may vary. Sample answers: A. The relationship between F g and x is linear. B. The slope

Physics Spring Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance

Physics 182 - Spring 2012 - Experiment #8 1 Experiment #8, Magnetic Forces Using the Current Balance 1 Purpose 1. To demonstrate and measure the magnetic forces between current carrying wires. 2. To verify

Measurement of the Acceleration Due to Gravity

Measurement of the Acceleration Due to Gravity Phys 303 Lab Experiment 0 Justin M. Sanders January 12, 2004 Abstract Near the surface of the earth, all objects freely fall downward with the same acceleration

Standing Waves in Strings

Standing Waves in Strings APPARATUS 1. Buzzer (vibrating at a given frequency) mounted on a board with a pulley 2. Electronic balance 3. 2 Strings, one light and one heavy 4. Set of known masses (slotted

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

Name PRE-TEST. Directions: Circle the letter indicating whether the following statements are either true ("T") or false ("F").

1 PRE-TEST Directions: Circle the letter indicating whether the following statements are either true ("T") or false ("F"). T F 1. An object's energy due to its motion is kinetic energy. T F 2. We can calculate

E X P E R I M E N T 8

E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Module 7 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. You are given information about a straight line. Use two points to graph the equation.

PC1221 Fundamentals of Physics I Inertia Wheel

PC1221 Fundamentals of Physics I Inertia Wheel 1 Purpose Determination of the angular acceleration of the inertial wheel as a function of the applied torque Determination of the moment of inertia I of

(Equation 1) to determine the cord s characteristics. Hooke s Law represents the

Using Hooke s Law to Solve for Length of Bungee Cord Needed for Egg Drop Introduction This experiment is the second part of a three- part experiment. The first two lead up to the final in which we aim

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

WEEK 6: FORCE, MASS, AND ACCELERATION

Name Date Partners WEEK 6: FORCE, MASS, AND ACCELERATION OBJECTIVES To develop a definition of mass in terms of an object s acceleration under the influence of a force. To find a mathematical relationship

Lab 2: Essentials of Physics: PHYS 101

NAME DATE Lab 2: Essentials of Physics: PHYS 101 There are two experiments and one demonstration listed below. You will be doing/seeing all three of them in the lab today. Experiment One Introduction:

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

Magnetic Force on a Current-Carrying Wire Warm Up

Magnet Force on Current-1 Magnetic Force on a Current-Carrying Wire Warm Up 1. Forces on magnets Assume that we have a magnet of mass m 1 sitting on a scale (force meter 1), situation A. For this configuration

Physics Exam 1 Review - Chapter 1,2

Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

The Acceleration Due to Gravity

1 The Acceleration Due to Gravity Introduction: Acceleration is defined as the rate at which the velocity of a moving object changes with time. Accelerations are always caused by forces. In this laboratory

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!

1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating

22.302 Experiment 5. Strain Gage Measurements

22.302 Experiment 5 Strain Gage Measurements Introduction The design of components for many engineering systems is based on the application of theoretical models. The accuracy of these models can be verified

Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

Instructor Now pick your pencils up and get this important equation in your notes.

Physics 605 Mechanical Energy (Read objectives on screen.) No, I haven t been playing with this toy the whole time you ve been gone, but it is kind of hypnotizing, isn t it? So where were we? Oh yes, we