# Buoyant Force and Archimedes' Principle

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If it is less dense, it will float. Archimedes' Principle states: A body wholly or partially immersed in a fluid will be buoyed up by a force equal to the weight of the fluid that the body displaces. As an equation: F B =W liquid =m liquid g. Given m liquid = liquid V object, the buoyant force acting on a submerged object is F Buoyant = liquid g V object. F B can be found by measuring the difference between the weight of the object measured in air and the apparent weight of the submerged object. Study I: Buoyant Force on fully submerged objects. You will measure F B =W inair W inwater using an equal arm balance for several objects and plot F B vs Volume to calculate water. As you take your measurements consider the following question: Why does F B depend on water rather than object? Procedure: 1. Measure and record the diameter and thickness (neglect uncertainties) of the cylinders using the Vernier caliper. Measure the masses. cylinder ID d, diameter (cm) t, thickness (cm) M, mass (g) Aluminum Iron Copper 2. Check that your equal arm balance is high enough to easily suspend the masses, but low enough to immerse the hanging masses in the container provided. See the diagram on the following page. 3. Test whether your equal arm balance is well balanced: with no additional weights, its center of mass should be close to the middle of the meter stick. Your equal arm balance needs to be perfectly balanced, otherwise you will have systematic errors. The accuracy of the measurements may not be as good as the precision. If you are careful, the systematic errors should be fairly small and they will tend to cancel when you take the difference between masses. 4. Check for systematic errors: Determine how much mass How to read a Vernier Caliper is required to balance a cylinder (DON'T forget the 50g mass hanger). If the cylinder/balancing mass values are very different, adjust the balance. 1

2 5. Using your balance, hang the cylinder from one hanger clamp, and the mass hanger with standard masses from the other hanger clamp as shown. Measure the mass required to balance the hanging cylinder in air and water. Stand Conditions for static equilibrium: if the equal arm balance is symmetric about the knife edge, the meter stick should remain balanced when equal weights are suspended from the two hanger clamps. Data Table 2: The three cylinders can be used alone or combined. Make sure that the cylinders do not rest on the bottom or rub against the side of the container when making the measurements. Your water level will affect your results if you are not careful. Make sure it is high enough. The sensitivity of this balance should, with some care, be better than 1 gram. Since the smallest standard mass provided is 1 gram you may be able to determine mass to a precision of perhaps half of a gram by estimation. cylinder used Aluminum (A) Balancing mass in air (g) Balancing mass in water (g) m± m Iron (I) Copper (C) A + I A + C I + C A + C + I 6. By hand or with Graphical Analysis, calculate the values of m (in grams) for each combination of cylinders in Table 2. Given an error in each mass measurement of.5 g, what is the error in m=m inair m inwater? 2

3 Analysis for Study I: 1. By hand or with GA, calculate the cylinder (and combinations*) volumes (in cm 3 ) V cylinder = r 2 t. Remember to use radius = d/2. *GA won't allow you to combine different equations into a single Calculated column, so you will have to make a separate columns for (1) individual cylinders and (2) combinations. 2. Relate mass to F B using force diagrams: draw force diagrams for the cylinder. Write down the corresponding force equations. HINT: assume the tension on each string is the same when the meterstick is balanced. (1) Cylinder in Air (2) Cylinder in Water 3. Using the force equations above, relate F B to m=m air m water : you should see that the difference is equal to F B /g. 4. According to Archimedes principle, F B / g= liquid V object. Using Graphical Analysis, plot m versus V: it should be a straight line with a slope equal to water. 5. Fit the graph with a straight line, and be sure to add the uncertainty in the fit. Compare your value to the accepted value for the density of water at room temperature (around 20 C). water = water = 6. You don't need to print this graph, just make sure the slope matches (reasonably) the density of water. 3

4 Study II: Buoyant Force on partially submerged objects. Using your data from Study I, you are ready to predict the buoyant force acting on a partially submerged object. Archimedes' Principal applies to partially submerged objects, but buoyant force depends on submerged (not total) volume. 1. Predict: the mass difference m =F B /g needed to balance a cylinder that is HALF submerged in water. Show your calculation clearly. HINT 1: Buoyant force is equal to the weight of displaced water. How much water is displaced if the cylinder is submerged half way? HINT 2: Should the balancing mass be more or less than that for the fully submerged object?. HINT 3: Should the balancing mass be more or less than that for the object in air? 2. Test your prediction using the equal arm balance. Make sure the water level isn't too high, this will affect your results. Were you correct? 4

5 Study III: Testing Archimedes Principal 1. Record the force meter reading. 2. Make sure the inner container is completely filled with water. Check that both buckets are empty. 3. Slowly lift the container filled with water so that the mass displaces water. Watch the force meter change reading as you do so. Meter Bucket 1 4. Stop when the mass is completely submerged and record the meter reading. 5. Prediction: What will the meter read if you pour the water from the catch bucket to the upper bucket and keep the cylinder under water? WHY? Bucket 2 (catch bucket) Jack Mass Container (filled with water) 6. Pour the water from the catch bucket into the upper bucket and re-submerge your cylinder. Record the meter a third time. Was your prediction correct? Discussion Questions (can be answered outside the lab) 1. Explain the concept of buoyant force (use force diagrams/pictures). 2. Study I: Do you get agreement with the accepted density of water? The density of water depends on its temperature and that was not controlled carefully in this experiment. Is this a problem? 3. Study I: Why does F B depend on water rather than object? Use diagrams/pictures. HINT: it has to do with the pressure on the object at different heights. 4. Study II: Did you accurately predict the amount of mass required to balance a cylinder that has been half-way submerged? Explain. Describe the physics of Study II. 5. Study III: Was your prediction correct? Explain. Describe the physics of Study III. 5

### Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

### Activity P13: Buoyant Force (Force Sensor)

Activity P13: Buoyant Force (Force Sensor) Equipment Needed Qty Equipment Needed Qty Economy Force Sensor (CI-6746) 1 Mass and Hanger Set (ME-9348) 1 Base and Support Rod (ME-9355) 1 Ruler, metric 1 Beaker,

### Archimedes' Principle

Archimedes' Principle Introduction Archimedes' Principle states that the upward buoyant force exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the

### Activity P13: Buoyant Force (Force Sensor)

Name Class Date Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS Equipment

### Activity P13: Buoyant Force (Force Sensor)

July 21 Buoyant Force 1 Activity P13: Buoyant Force (Force Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Archimedes Principle P13 Buoyant Force.DS P18 Buoyant Force P18_BUOY.SWS

### PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density?

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy Investigation: How can we identify a substance by figuring out its density? What to measure: Volume, mass. Measuring devices: Calipers,

### Buoyancy. Please Circle Your Lab day: M T W T F

Please Circle Your Lab day: M T W T F Name: Project #1: Show that the buoyant force (F B ) equals fluid gv object by first calculating fluid gv object, and then by measuring F B (indirectly) using the

### "Physics Floats My Boat

"Physics Floats My Boat A Modeling Approach to Teaching Archimedes Principle & Buoyant Force Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid

### LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

### Measurement of Length, Mass, Volume and Density

Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will

### Clicker Questions Chapter 10

Clicker Questions Chapter 10 2010 Pearson Education, Inc. Essential College Physics Rex/Wolfson Question 10.1 Density If one material has a higher density than another, does this mean that the molecules

### The Density of Liquids and Solids

The Density of Liquids and Solids Objectives The objectives of this laboratory are: a) To determine the density of pure water; b) To determine the density of aluminum (applying the technique of water displacement)

### Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

### Layers of Liquids. OBJECTIVE: Students will observe how some liquids float on top of each other while others sink into one another.

Pre-Visit Activity Layers of Liquids OBJECTIVE: Students will observe how some liquids float on top of each other while others sink into one another. MATERIALS: Honey Corn syrup Dawn dish soap Water Vegetable

### Lab 11 Density and Buoyancy

b Lab 11 Density and uoyancy What You Need To Know: Density A concept that you will be using frequently in today s lab is called density. Density is a measurement of an object s mass per unit volume of

### Density. Density is how concentrated or compact matter is.

Density Density is how concentrated or compact matter is. Packing snow into snowballs increases its density. You are squeezing large amounts of matter into small volumes of space. Equation for Density

### Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

### Buoyancy and Archimedes Principle. Buoyancy and Archimedes Principle Assume block is in equilibrium.

Assume block is in equilibrium. Then upward forces must equal downward forces. Upward force: pressure from fluid Downward force: atmospheric pressure plus weight Therefore In this case, the object is less

### Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

### Buoyancy Problem Set

Buoyancy Problem Set 1) A stone weighs 105 lb in air. When submerged in water, it weighs 67.0 lb. Find the volume and specific gravity of the stone. (Specific gravity of an object: ratio object density

### Buoyant Force. Goals and Introduction

Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also

### Chapter 9: The Behavior of Fluids

Chapter 9: The Behavior of Fluids 1. Archimedes Principle states that A. the pressure in a fluid is directly related to the depth below the surface of the fluid. B. an object immersed in a fluid is buoyed

### Archimedes Principle. Biological Systems

Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

### Torque and Rotary Motion

Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

### Physics Lab 2 PROJECTILE MOTION

PROJECTILE MOTION Introduction: By rolling a steel marble down a ramp and measuring its horizontal range, you can calculate the marble's launch velocity. To confirm this velocity with an independent measurement,

### Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

### Density and Archimedes Principle

Density and Archimedes Principle Objectives: To understand the concept of density and its relationship to various materials. To understand and use Archimedes Principle. Equipment: Dial calipers, Graduated

### Archimedes. F b (Buoyant Force) DEMO. Identical Size Boxes Which has larger F B. Which is heavier. styrofoam (1 cm 3 ) steel ( 1 cm 3 )

Fluids Density 1 F b (Buoyant Force) DEMO Archimedes Identical Size Boxes Which has larger F B Which is heavier styrofoam (1 cm 3 ) steel ( 1 cm 3 ) steel ( 1 cm 3 ) styrofoam (1 cm 3 ) 2 Finding the Weight

### Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids 13-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can

### PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion

PHYS 130 Laboratory Experiment 11 Hooke s Law & Simple Harmonic Motion NAME: DATE: SECTION: PARTNERS: OBJECTIVES 1. Verify Hooke s Law and use it to measure the force constant of a spring. 2. Investigate

### Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

### 25ml graduated. dish soap 100ml graduated cylinders. cylinders. Metric ruler with mm divisions. digital scale

You are challenged to get your film canister to float while filled with the most weight you can. The film canisters will not be capped, so if they go under water at all, they will sink. You want to get

### Matter and the Universe. Ancient Views. Modern Views. Periodic Table of Elements. Ernest Rutherford

Matter and the Universe Ancient Views Early atomists believed that matter had a smallest indivisible bit, an atom. Aristotle, the most famous of the early Greek philosophers, didn't agree with the idea

### S3 Physics Elective Density and Kinetic Theory

Name: Class: Duncanrig Secondary School East Kilbride S3 Physics Elective Density and Kinetic Theory Pupil Booklet Learning Outcomes Homework Summary SCN 4-08b Through experimentation, I can explain floating

### ERRORS IN SIMPLE MEASUREMENTS

ERRORS IN SIMPLE MEASUREMENTS EA1-1 Objective: To learn how to estimate the uncertainties in direct and indirect measurements. In this lab you will determine the volume, mass and density of homogenous

### Mass and Volume Relationships

Mass and Volume Relationships Objective: The purpose of this laboratory exercise is to become familiar with some of the basic relationships and units used by scientists. In this experiment you will perform

### Analysis of Experimental Uncertainties: Density Measurement Physics Lab II

Analysis of Experimental Uncertainties: Density Measurement Physics Lab II Objective This laboratory exercise allows students to estimate and analyze experimental uncertainties. Students will calculate

### Experiment 1 The Metric System and Measurement Tools

Experiment 1 The Metric System and Measurement Tools Preparation Prepare for this week's quiz by reading about the metric system in your textbook. Read the introduction to the manual and the first experiment

### Educational Innovations

Educational Innovations AIR-444/446 Air Swimmers Next Generation Science Standards: 5-PS1-1 Develop a model to describe that matter is made of particles too small to be seen. 5-PS2-1 Support an argument

### CHAPTER 3: FORCES AND PRESSURE

CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or

### 13.3 Buoyancy. Buoyant Force

The forces from pressure acting on the bottom of this golf ball are greater than those on the top. This produces a net force called the buoyant force that acts upward on the ball. Buoyant Force What is

### Unit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment

Unit 1 Lab Safety, Measurement, Density, Buoyancy and Controlled Experiment NYS Standards: MST Standard #1 MST Standard #4 3.1h Density can be described as the amount of matter that is in a given amount

### Write True or False in the space provided.

CP Physics -- Exam #7 Practice Name: _ Class: Date: Write True or False in the space provided. 1) Pressure at the bottom of a lake depends on the weight density of the lake water and on the volume of the

### Name Partner Date Class

Name Partner Date Class FLUIDS Part 1: Archimedes' Principle Equipment: Dial-O-Gram balance, small beaker (150-250ml), metal specimen, string, calipers. Object: To find the density of an object using Archimedes'

### Stations Lab: Scientific Measurement

Stations Lab: Scientific Measurement Introduction Every measurement has an uncertainty, or built-in error. This error is due to limitations in the measurement scale, the manufacturing process, and the

### Pressure in Fluids. Introduction

Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

### Pascal s Principle. Any change in the pressure of a fluid is transmitted uniformly in all directions throughout the fluid.

Pascal s Principle What happens inside a fluid when pressure is exerted on it? Does pressure have a direction? Does it transmit a force to the walls or bottom of a container? Any change in the pressure

### Density Lab Materials: One 25, one 50, and one 100ml graduated cylinder Tray with samples of: aluminum, steel, lead, zinc, copper, brass and at least

Density Lab Materials: One 25, one 50, and one 100ml graduated cylinder Tray with samples of: aluminum, steel, lead, zinc, copper, brass and at least pennies Beaker of salt water Procedural information:

### THE CONSERVATION OF ENERGY - PENDULUM -

THE CONSERVATION OF ENERGY - PENDULUM - Introduction The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively compare the two

### Physics 113 Exam #4 Angular momentum, static equilibrium, universal gravitation, fluid mechanics, oscillatory motion (first part)

Physics 113 Exam #4 Angular momentum, static equilibrium, universal gravitation, fluid mechanics, oscillatory motion (first part) Answer all questions on this examination. You must show all equations,

### Fluids flow conform to shape of container. Mass: mass density, Forces: Pressure Statics: Human body 50-75% water, live in a fluid (air)

Chapter 11 - Fluids Fluids flow conform to shape of container liquids OR gas Mass: mass density, Forces: Pressure Statics: pressure, buoyant force Dynamics: motion speed, energy friction: viscosity Human

### Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

### SPECIFIC DENSITY SET 25MM, Set of 9 CAT NO. PH 0109A

SPECIFIC DENSITY SET 25MM, Set of 9 CAT NO. PH 0109A Experiment Guide GENERAL BACK GROUND OR THEORY ON THE EXPERIMENT: Density is the amount of mass an object takes up per unit volume. It is dependent

### Density. Part I: How Dense Is It?

Density Density Part I: How Dense Is It? Everything on Earth is made of matter. Matter is anything that has mass and takes up space. Matter is as simple as a single element or as complex as the entire

### Experiment 9. The Pendulum

Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

### AP Lab 1 - Measurement, Units, and Significant Figures

AP Lab 1 - Measurement, Units, and Significant Figures Purpose: To understand the principles of metric measurement. To become familiar with laboratory equipment used to measure length, mass, and volume.

### HOOKE S LAW AND OSCILLATIONS

9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a spring-mass oscillator. INTRODUCTION The force which restores a spring to its equilibrium

### Student Exploration: Archimedes Principle

Name: Date: Student Exploration: Archimedes Principle Vocabulary: Archimedes principle, buoyant force, density, displace, mass, volume, weight Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

### Physics 103 CQZ1 Solutions and Explanations. 1. All fluids are: A. gases. B. liquids. C. gases or liquids. D. non-metallic. E.

Physics 03 CQZ Solutions and Explanations. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent Matter is classified as solid, liquid, gas, and plasma. Gases adjust volume

### Chemistry and Measurement

Chapter 1 Chemistry and Measurement Concept Check 1.1 Matter can be represented as being composed of individual units. For example, the smallest individual unit of matter can be represented as a single

### GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring Apparatus: Pendulum clamp, aluminum pole, large clamp, assorted masses,

### Fluids I. Level : Conceptual Physics/Physics I. Q1) Order the following materials from lowest to greatest according to their densities.

Fluids I Level : Conceptual Physics/Physics I Teacher : Kim 1. Density One of the properties of any substances (solids, liquids and gases) is the measure of how tightly the material is packed together.

### Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

### Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

### HEAT OF FUSION MECHANICAL EQUIVALENT OF HEAT AND PART A. HEAT OF FUSION

HEAT OF FUSION AND MECHANICAL EQUIVALENT OF HEAT CAUTION: Please handle thermometers gently. Broken mercury-filled thermometers should be taken to Rm. B-31 for disposal as mercury is very toxic. If a red-liquid

### Pressure In A Fluid. GE Define fluid in your own words. 2. Is a liquid a fluid? Is a gas a fluid? Explain your reasoning.

HPP Activity 38v1 Pressure In A Fluid Note that this unit contains the word "fluid" in the title. Let us carry on by examining the relationship between pressure and fluids. Exploration GE 1. 1. Define

### SUGGESTED ACTIVITIES

SUGGESTED ACTIVITIES (Observing and Measuring Matter) From Invitations to Science Inquiry 2 nd Edition by Tik L. Liem: Activity Page Number Concept The funny water 122 Density The different clay sticks

### Prelab Exercises: Hooke's Law and the Behavior of Springs

59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

### Specific Heat (Temperature Sensor)

43 Specific Heat (Temperature Sensor) Thermodynamics: Calorimetry; specific heat Equipment List DataStudio file: 43 Specific Heat.ds Qty Items Part Numbers 1 PASCO Interface (for one sensor) 1 Temperature

### Chapter 8 Fluid Flow

Chapter 8 Fluid Flow GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use it in an operational

### EXPERIMENT 1. Precision of Measurements Density of a Metal Cylinder

EXPERIMENT 1 Precision of Measurements Density of a Metal Cylinder Physics is a quantitative science, relying on accurate measurements of fundamental properties such as time, length, mass and temperature.

Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

Significant Figures and Measurement of Density Objectives: To investigate the concepts of accuracy and precision, and to review the use of significant figures in measurements and calculations. These concepts

### PHY 171. Homework 9 solutions. (Due by beginning of class on Thursday, March 8, 2012)

PHY 171 Due by beginning of class on Thursday, March 8, 2012 Submit neat work, with answers or solutions clearly marked by the question number. Unstapled, untidy work will be charged a handling fee of

### Simulating Microgravity with Buoyancy A Space School Lesson Plan

ASTRONAUT TRAINING...UNDERWATER Simulating Microgravity with Buoyancy A Space School Lesson Plan by Bill Andrake, Swampscott Middle School Swampscott, Massachusetts Science Lesson: Buoyancy - Based on

### A Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com

A Novel Way to Measure the Density of a Solid By David Chandler, Porterville College David@DavidChandler.com I was recently explaining to a middle school teacher how to measure the density of a solid object

### DETERMINING THE DENSITY OF LIQUIDS & SOLIDS

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density

### LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003.

LAB MECH 16. CALC From Physics with Calculators, Vernier Software & Technology, 2003. INTRODUCTION A swinging pendulum keeps a very regular beat. It is so regular, in fact, that for many years the pendulum

### MEASUREMENTS AND ERROR ANALYSIS

MEASUREMENTS AND ERROR ANALYSIS Objective 1. To learn how to use the following measuring devices and understand the uncertainties associated with them. a) meter stick b) metric ruler c) triple-beam balance

### DENSITY OF LIQUIDS & SOLIDS Experiment 2

Physical Science 14 DENSITY OF LIQUIDS & SOLIDS Experiment 2 INTRODUCTION: Density is a measure of the quantity of mass of a substance that occupies one unit of volume. In other words, the density of a

### Experiment 8. The Pendulum

Experiment 8 The Pendulum 8.1 Objectives Investigate the functional dependence of the period ( ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle ( 0 ). Use a pendulum

### Static and Kinetic Friction. = k

Name Partner Names Static and Kinetic Friction New Concepts/Questions to ask yourself before lab: 1. What is friction? Explain the difference between static & kinetic friction using a real life example.

### Lesson 2 The Buoyant Force

Lesson 2 Student Labs and Activities Page Launch Lab 26 Content Vocabulary 27 Lesson Outline 28 MiniLab 30 Content Practice A 31 Content Practice B 32 School to Home 33 Key Concept Builders 34 Enrichment

### Chapter 3. Table of Contents. Chapter 3. Objectives. Chapter 3. Kinetic Theory. Section 1 Matter and Energy. Section 2 Fluids

States of Matter Table of Contents Objectives Summarize the main points of the kinetic theory of matter. Describe how temperature relates to kinetic energy. Describe four common states of matter. List

### Chapter 13 - Solutions

= Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod

### Accuracy of Measurement and Propagation of Uncertainty

Accuracy of Measurement and Propagation of Uncertainty Objectives: Experimental objective Students will identify materials by calculating their densities and the associated uncertainty. Learning objectives

### Unit 1 Matter: Study Guide

Unit 1 Matter: Study Guide Objectives 1. Define mass. Define volume. Give appropriate units for each. 2. Demonstrate that you can use a multiple beam balance to determine the mass of various objects. Record

### Newton s Third Law: A Verification with Buoyancy Forces

Newton s Third Law: A Verification with Buoyancy Forces Barry Feierman - April 2013 SEPS/AAPT Drexel University Newton s Third Law is the law of interaction. For every force that acts on one object, there

### Physics Internal Assessment: Experiment Report. An Increasing Flow of Knowledge: Investigating Torricelli s Law, or the Effect of Height on Flow Rate

000844-0029 Ding 1 Physics Internal Assessment: Experiment Report An Increasing Flow of Knowledge: Investigating Torricelli s Law, or the Effect of Height on Flow Rate Candidate Name: Chunyang Ding Candidate

### Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

### oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1

Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

### Density (r) Chapter 10 Fluids. Pressure 1/13/2015

1/13/015 Density (r) Chapter 10 Fluids r = mass/volume Rho ( r) Greek letter for density Units - kg/m 3 Specific Gravity = Density of substance Density of water (4 o C) Unitless ratio Ex: Lead has a sp.

### Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm.

Measurement Lab You will be graphing circumference (cm) vs. diameter (cm) for several different circular objects, and finding the slope of the line of best fit using the CapStone program. Write out or

### Density. Part 1: What is Density?

Density Part 1: What is Density? Starter Activity Which is heavier, steel or wood? Density We can use a number to describe how heavy something is for its size. Density is the mass per unit of volume. To

### 2 Floating and Sinking

Section 2 Floating and Sinking 2 Floating and Sinking Objectives After this lesson, students will be able to M.3.2.1 Describe the effect of the buoyant force. M.3.2.2 Explain how the density of an object

### DENSITY. reflect. look out! 6.6B

6.6B reflect Imagine that it is a very hot day. You decide to cool a glass of water by placing several ice cubes in the drink. What happens when you drop the ice into the water? Likely, when you place

### The Pendulum. Experiment #1 NOTE:

The Pendulum Experiment #1 NOTE: For submitting the report on this laboratory session you will need a report booklet of the type that can be purchased at the McGill Bookstore. The material of the course