Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1

Size: px
Start display at page:

Download "Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1"

Transcription

1 Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UW-Madison 1

2 relaxed position F X = -kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X = - kx < 0 x 12/9/09 Physics 201, UW-Madison 2

3 We know that if we stretch a spring with a mass on the end and let it go, the mass will oscillate back and forth (if there is no friction). k m This oscillation is called Simple Harmonic Motion, and is actually easy to understand... k k m m 12/9/09 Physics 201, UW-Madison 3

4 k m m d 2 x dt 2 x d 2 x dt 2 = k m x a differential equation 12/9/09 Physics 201, UW-Madison 4

5 d 2 x define dt = k 2 m x ω = k m d 2 x dt 2 = ω 2 x Where ω is the angular frequency of motion Try the solution x = A cos(ωt) dx dt d 2 x dt 2 = ω Asin ( ωt ) = ω 2 Acos( ωt) = ω 2 x This works, so it must be a solution! 12/9/09 Physics 201, UW-Madison 5

6 d 2 x We just showed that (from F = ma) dt 2 = ω 2 x has the solution x = A cos(ωt) but x = A sin(ωt) is also a solution. The most general solution is a linear combination (sum) of these two solutions! x = Bsin( ωt) + C cos( ωt) = Acos( ωt + φ) dx dt d 2 x dt 2 = ω Bcos ωt ( ) ωc sin ( ωt ) = ω 2 Bsin( ωt) ω 2 C cos( ωt) = ω 2 x ok 12/9/09 Physics 201, UW-Madison 6

7 x = Acos( ωt + ϕ) 3 But wait a minute...what does angular frequency ω have to do with moving back & forth in a straight line?? 4 2 y x The spring s motion with amplitude A is identical to the x-component of a particle in uniform circular motion with radius A. 2 3 π 2 4 π 5 6 θ 12/9/09 Physics 201, UW-Madison 7

8 A mass m = 2 kg on a spring oscillates with amplitude A = 10 cm. At t = 0 its speed is maximum, and is v = +2 m/s. What is the angular frequency of oscillation ω? What is the spring constant k? v MAX = ωa ω = v MAX A = 2 m s 10cm = 20 s 1 ω = k Also: k = mω 2 m So k = (2 kg) x (20 s -1 ) 2 = 800 kg/s 2 = 800 N/m k m 12/9/09 Physics 201, UW-Madison 8 x

9 Use initial conditions to determine phase φ! Suppose we are told x(0) = 0, and x is initially increasing (i.e. v(0) = positive): x(t) = A cos(ωt + φ) v(t) = -ωa sin(ωt + φ) a(t) = -ω 2 A cos(ωt + φ) x(0) = 0 = A cos(φ) v(0) > 0 = -ωa sin(φ) φ < 0 φ = π/2 or -π/2 So φ = -π/2 π θ 2π k m cosθ sinθ 0 x 12/9/09 Physics 201, UW-Madison 9

10 So we find φ= -π/2 x(t) = A cos(ωt - π/2 ) v(t) = -ωa sin(ωt - π/2 ) a(t) = -ω 2 A cos(ωt - π/2 ) x(t) = A sin(ωt) v(t) = ωa cos(ωt) a(t) = -ω 2 A sin(ωt) A x(t) k m -A π 2π ωt 0 x 12/9/09 Physics 201, UW-Madison 10

11 We already know that for a vertical spring if y is measured from the equilibrium position The force of the spring is the negative derivative of this function: U = 1 2 ky2 So this will be just like the horizontal case: k ky = ma = m d 2 y dt 2 y = 0 Which has solution y = A cos(ωt + φ) where ω = F = -ky m 12/9/09 Physics 201, UW-Madison 11 k m

12 Recall that the torque due to gravity about the rotation (z) axis is τ = -mgd d = Lsin θ Lθ for small θ so τ = -mg Lθ τ = I d 2 θ dt 2 z But τ = Iα, where I = ml 2 d 2 θ where dt 2 = ω 2 θ ω = g L Differential equation for simple harmonic motion! θ = θ 0 cos( ωt + ϕ) θ d L m mg 12/9/09 Physics 201, UW-Madison 12

13 You are sitting on a swing. A friend gives you a small push and you start swinging back & forth with period T 1. Suppose you were standing on the swing rather than sitting. When given a small push you start swinging back & forth with period T 2. Which of the following is true: (a) T 1 = T 2 (b) T 1 > T 2 (c) T 1 < T 2 12/9/09 Physics 201, UW-Madison 13

14 We have shown that for a simple pendulum ω = g L Recall the pendulum depended on the torque from gravity. Now the moment arm is from the center of mass and the oscillation point so L is shorter Since T = 2π ω T = 2π L g If we make a pendulum shorter, it oscillates faster (shorter period) 12/9/09 Physics 201, UW-Madison 14

15 Force: d 2 s dt 2 = ω 2 s ω = k k m k m m s 0 0 s Solution: s = A cos(ωt + φ) ω = g L s L 12/10/09 Physics 201, UW-Madison 15

16 U t x = Acos( ωt) U = 1 2 kx2 = 1 2 ka2 cos 2 ( ωt) K t v = dx dt = ω Asin ( ωt ) K = 1 2 mv2 = 1 2 mω 2 A 2 sin 2 ( ωt) t E = K +U = K Max = 1 2 mω2 A 2 = U Max = 1 2 k 2 A 2 12/10/09 16

17 U = 1 2 kx2 U = 1 2 kx2 K = 1 2 mv2 E = U + K = 1 2 ka2 = 1 2 mv2 max 12/10/09 Physics 201, UW-Madison 17

18 For both the spring and the pendulum, we can derive the SHM solution by using energy conservation. The total energy (K + U) of a system undergoing SHM will always be constant! This is not surprising since there are only conservative forces present, hence K+U energy is conserved. U E K U -A 0 A s 12/10/09 Physics 201, UW-Madison 18

19 m x=0 x E total = 1/2 Mv 2 + 1/2 kx 2 = constant KE PE KE max = Mv 2 max /2 = Mω2 A 2 /2 =ka 2 /2 PE max = ka 2 /2 E total = ka 2 /2 12/10/09 Physics 201, UW-Madison 19

20 U 1 2 kx2 for small x 12/10/09 Physics 201, UW-Madison 20

21 Suppose we have some arbitrarily shaped solid of mass M hung on a fixed axis, and that we know where the CM is located and what the moment of inertia I about the axis is. The torque about the rotation (z) axis for small θ is (using sin θ θ) τ = -Mgd -MgRθ MgRθ = I d 2 θ dt 2 d 2 θ dt = ω 2 θ 2 where ω = MgR I ( ) θ = θ 0 cos ωt + ϕ τ α z-axis R θ x CM d Mg 12/10/09 Physics 201, UW-Madison 21

22 Consider an object suspended by a wire attached at its CM. The wire defines the rotation axis, and the moment of inertia I about this axis is known. The wire acts like a rotational spring. When the object is rotated, the wire is twisted. This produces a torque that opposes the rotation. In analogy with a spring, the torque produced is proportional to the displacement: τ = -kθ τ wire θ I 12/10/09 Physics 201, UW-Madison 22

23 Since τ = -kθ, τ = Iα becomes kθ = I d 2 θ dt 2 d 2 θ dt = ω 2 θ where ω = k 2 I τ I wire θ This is similar to the mass on spring except I has taken the place of m (no surprise). 12/10/09 Physics 201, UW-Madison 23

24 In many real systems, nonconservative forces are present The system is no longer ideal Friction is a common nonconservative force In this case, the mechanical energy of the system diminishes in time, the motion is said to be damped The amplitude decreases with time The blue dashed lines on the graph represent the envelope of the motion 12/10/09 Physics 201, UW-Madison 24

25 One example of damped motion occurs when an object is attached to a spring and submerged in a viscous liquid The retarding force can be expressed as R = - b v where b is a constant b is called the damping coefficient The restoring force is kx From Newton s Second Law ΣF x = -k x bv x = ma x or, m d 2 x dt 2 + b dx dt + kx = 0 12/10/09 Physics 201, UW-Madison 25

26 m d 2 x dt 2 + b dx dt + kx = 0 When b is small enough, the solution to this equation is: with x = A 0 e (b/2m)t cos( ω t + δ ) ω = ω 0 (This solution applies when b<2mω 0.) b 1 2mω 0 2, ω 0 = k m 12/10/09 Physics 201, UW-Madison 26

27 The position can be described by x = A e (b/2m)t cos( ω t + δ ) 0 The angular frequency is ω = k m b 2m 2 When the retarding force is small, the oscillatory character of the motion is preserved, but the amplitude decreases exponentially with time The motion ultimately ceases 12/10/09 Physics 201, UW-Madison 27

28 The energy of a weakly damped harmonic oscillator decays exponentially in time. The potential energy is ½kx 2 : x 2 = ( A e (b/2m)t cos( ω t + δ )) 2 0 = A 2 e (b/m)t cos 2 ( ω t + δ ) 0 Average over a period when (b/m)<<ω : Average of cos 2 = ½, so averaged over a period, x 2 A 0 2 e (b/m)t. 12/10/09 Physics 201, UW-Madison 28

29 The energy of a weakly damped harmonic oscillator decays exponentially in time. The kinetic energy is ½mv 2 : v 2 = d dt ( A 0 e (b/2m)t cos( ω t + δ )) 2 ( ) 2 = (b / 2m)A 0 e (b/2m)t cos( ω t + δ ) A 0 e (b/2m)t sin( ω t + δ ) Average energy over a period when (b/m)<<ω : Average of cos 2 = average of sin 2 = ½, and average of sinx cosx=0, so averaged over a period, v 2 e (b/m)t. 12/10/09 Physics 201, UW-Madison 29

30 The energy of a weakly damped harmonic oscillator decays exponentially in time. Both kinetic and potential energy (averaged over a period) decay as e -(b/m)t. So total energy is proportional to e -(b/m)t. 12/10/09 Physics 201, UW-Madison 30

31 ω 0 is also called the natural frequency of the system If R max = bv max < ka, the system is said to be underdamped When b reaches a critical value b c such that b c / 2 m = ω 0, the system will not oscillate The system is said to be critically damped If R max = bv max > ka and b/2m > ω 0, the system is said to be overdamped For critically damped and overdamped there is no angular frequency 12/10/09 Physics 201, UW-Madison 31

32 It is possible to compensate for the loss of energy in a damped system by applying an external sinusoidal force (with angular frequency ω) The amplitude of the motion remains constant if the energy input per cycle exactly equals the decrease in mechanical energy in each cycle that results from resistive forces After a driving force on an initially stationary object begins to act, the amplitude of the oscillation will increase After a sufficiently long period of time, E driving = E lost to internal Then a steady-state condition is reached The oscillations will proceed with constant amplitude The amplitude of a driven oscillation is ω 0 is the natural frequency of the undamped oscillator 12/10/09 Physics 201, UW-Madison 32

33 When ω ω 0 an increase in amplitude occurs This dramatic increase in the amplitude is called resonance The natural frequency 0 is also called the resonance frequency At resonance, the applied force is in phase with the velocity and the power transferred to the oscillator is a maximum The applied force and v are both proportional to sin (ωt + φ) The power delivered is F. v» This is a maximum when F and v are in phase Resonance (maximum peak) occurs when driving frequency equals the natural frequency The amplitude increases with decreased damping The curve broadens as the damping increases The shape of the resonance curve depends on b 12/10/09 Physics 201, UW-Madison 33

34 The amplitude of a system moving with simple harmonic motion is doubled. The total energy will then be 4 times larger 2 times larger the same as it was half as much quarter as much U = 1 2 kx mv2 at x = A,v = 0 U = 1 2 ka2 12/10/09 Physics 201, UW-Madison 34

35 A glider of mass m is attached to springs on both ends, which are attached to the ends of a frictionless track. The glider moved by 0.2 m to the right, and let go to oscillate. If m = 2 kg, and spring constants are k 1 = 800 N/m and k 2 = 500 N/m, the frequency of oscillation (in Hz) is approximately 6 Hz 2 Hz 4 Hz 8 Hz 10 Hz f = ω 2π = k / m 2π = π = 4 Hz 12/10/09 Physics 201, Fall 2006, UW-Madison 35

36 A 810-g block oscillates on the end of a spring whose force constant is 60 N/m. The mass moves in a fluid which offers a resistive force proportional to its speed the proportionality constant is N.s/m. Write the equation of motion and solution. F s + F R = ma m d 2 x dt 2 dx = kx b dt Solution: x(t) = Ae b 2m t cos(ωt + φ) What is the period of motion? s ω = k m b 2m 2 What is the fractional decrease in amplitude per cycle? Write the displacement as a function of time if at t = 0, x = 0 and at t = 1 s, x = m. Solution: x(t) = 0.182e 0.100t sin(8.61t + φ) 12/10/09 Physics 201, Fall 2006, UW-Madison 36

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Physics 231 Lecture 15

Physics 231 Lecture 15 Physics 31 ecture 15 Main points of today s lecture: Simple harmonic motion Mass and Spring Pendulum Circular motion T 1/f; f 1/ T; ω πf for mass and spring ω x Acos( ωt) v ωasin( ωt) x ax ω Acos( ωt)

More information

Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple

More information

Applications of Second-Order Differential Equations

Applications of Second-Order Differential Equations Applications of Second-Order Differential Equations Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

Oscillations. Vern Lindberg. June 10, 2010

Oscillations. Vern Lindberg. June 10, 2010 Oscillations Vern Lindberg June 10, 2010 You have discussed oscillations in Vibs and Waves: we will therefore touch lightly on Chapter 3, mainly trying to refresh your memory and extend the concepts. 1

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Exercises on Oscillations and Waves

Exercises on Oscillations and Waves Exercises on Oscillations and Waves Exercise 1.1 You find a spring in the laboratory. When you hang 100 grams at the end of the spring it stretches 10 cm. You pull the 100 gram mass 6 cm from its equilibrium

More information

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these. CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations CHAPTER 2 Second Order Linear Differential Equations 2.. Homogeneous Equations A differential equation is a relation involving variables x y y y. A solution is a function f x such that the substitution

More information

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Slide 10.1. Basic system Models

Slide 10.1. Basic system Models Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

More information

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

SOLUTIONS TO CONCEPTS CHAPTER 15

SOLUTIONS TO CONCEPTS CHAPTER 15 SOLUTIONS TO CONCEPTS CHAPTER 15 1. v = 40 cm/sec As velocity of a wave is constant location of maximum after 5 sec = 40 5 = 00 cm along negative x-axis. [(x / a) (t / T)]. Given y = Ae a) [A] = [M 0 L

More information

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15 Lesson 11 Physics 168 1 Oscillations and Waves 2 Simple harmonic motion If an object vibrates or oscillates back and forth over same path each cycle taking same amount of time motion is called periodic

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude. practice wave test.. Name Use the text to make use of any equations you might need (e.g., to determine the velocity of waves in a given material) MULTIPLE CHOICE. Choose the one alternative that best completes

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

More information

Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)

Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Oscillations: Mass on a Spring and Pendulums

Oscillations: Mass on a Spring and Pendulums Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

More information

Unit - 6 Vibrations of Two Degree of Freedom Systems

Unit - 6 Vibrations of Two Degree of Freedom Systems Unit - 6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two

More information

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER 1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION

PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION PHYS 2425 Engineering Physics I EXPERIMENT 9 SIMPLE HARMONIC MOTION I. INTRODUCTION The objective of this experiment is the study of oscillatory motion. In particular the springmass system and the simple

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

STUDY PACKAGE. Available Online : www.mathsbysuhag.com

STUDY PACKAGE. Available Online : www.mathsbysuhag.com fo/u fopkjr Hkh# tu] ugha vkjehks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';kea iq#"k flag ladyi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA jfpr% ekuo /kez iz.ksrk ln~xq# Jh j.knksm+nklth

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity. We touched on this briefly in chapter 7! x 2 Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

More information

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Manufacturing Equipment Modeling

Manufacturing Equipment Modeling QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Modeling Mechanical Systems

Modeling Mechanical Systems chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

More information

SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM

SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM SOLID MECHANICS DYNAMICS TUTORIAL NATURAL VIBRATIONS ONE DEGREE OF FREEDOM This work covers elements of the syllabus for the Engineering Council Exam D5 Dynamics of Mechanical Systems, C05 Mechanical and

More information

PHYSICS HIGHER SECONDARY FIRST YEAR VOLUME - II. Revised based on the recommendation of the Textbook Development Committee. Untouchability is a sin

PHYSICS HIGHER SECONDARY FIRST YEAR VOLUME - II. Revised based on the recommendation of the Textbook Development Committee. Untouchability is a sin PHYSICS HIGHER SECONDARY FIRST YEAR VOLUME - II Revised based on the recommendation of the Textbook Development Committee Untouchability is a sin Untouchability is a crime Untouchability is inhuman TAMILNADU

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed.

Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Aim : To study how the time period of a simple pendulum changes when its amplitude is changed. Teacher s Signature Name: Suvrat Raju Class: XIID Board Roll No.: Table of Contents Aim..................................................1

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

How To Solve A Linear Dierential Equation

How To Solve A Linear Dierential Equation Dierential Equations (part 2): Linear Dierential Equations (by Evan Dummit, 2012, v. 1.00) Contents 4 Linear Dierential Equations 1 4.1 Terminology.................................................. 1 4.2

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law. 1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

ELASTIC FORCES and HOOKE S LAW

ELASTIC FORCES and HOOKE S LAW PHYS-101 LAB-03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Equivalent Spring Stiffness

Equivalent Spring Stiffness Module 7 : Free Undamped Vibration of Single Degree of Freedom Systems; Determination of Natural Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane Representation. Lecture 13 : Equivalent

More information

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

More information

Chapter 15, example problems:

Chapter 15, example problems: Chapter, example problems: (.0) Ultrasound imaging. (Frequenc > 0,000 Hz) v = 00 m/s. λ 00 m/s /.0 mm =.0 0 6 Hz. (Smaller wave length implies larger frequenc, since their product,

More information

Copyright 2011 Casa Software Ltd. www.casaxps.com

Copyright 2011 Casa Software Ltd. www.casaxps.com Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:

TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given: RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information