TOP VIEW. FBD s TOP VIEW. Examination No. 2 PROBLEM NO. 1. Given:


 Baldric Cook
 3 years ago
 Views:
Transcription
1 RLEM N. 1 Given: Find: vehicle having a mass of 500 kg is traveling on a banked track on a path with a constant radius of R = 1000 meters. t the instant showing, the vehicle is traveling with a speed of v = 50 m/sec with this speed decreasing at a rate of 4 m/sec (due to braking). For this instant, determine the magnitude of the TTL friction force acting on the vehicle by the roadway. (Here the total friction force is that due to both braking and turning.) Use the figures provided below for two views of the FD for your analysis. e t R k R v e n θ = e n T VIEW FD s e t k mg e n N e n f turn f brake T VIEW
2 Examination No. 1 FD: previous page Newton: (1)! F t = " f brake = ma t ()! F n = " f turn cos# + N sin# = ma n (3)! F z = f turn sin# + N cos# " mg = ma z $ ( ) f turn sin# + N cos# = m g + a z Multiply () by cosθ, (3) by sinθ and subtract: f turn ( cos! + sin!) = "ma n cos! + m( g + a z )sin! # (4) f turn = m $ %"a n cos! + ( g + a z )sin! & ' Kinematics: (5) a t = dv =!4 m / sec dt (6) a n = v R (7) a z = 0 Solve: Combining (1), (4)(7): f brake =!ma t =! 500 ( )!4 ( ) = 000 N # f turn = m! v & % cos" + gsin" ( $ % R '( = 500 # % $ % Therefore, f total = f brake + f turn ( )! = = 787 N ( ) ( 0.6 ) & ( '( = 1941 N
3 RLEM N. Given: Find: articles and (having masses of m = m = 10 kg) are interconnected by the cablepulley system shown in the figure. oth particles are constrained to vertical motion with particle able to slide on a smooth vertical rod. The system is released at s = 0 with traveling downward with a speed of 5 m/sec. ssume the pulleys to be small, massless and frictionless. You are asked here to find the speed of particle when has reached the position of s = m. In your solution clearly indicate the following of the fourstep solution method: 1. FD: Complete the free body diagram of the system of, and the cable shown below right. Identify any nonconservative forces that do work on the system.. Workenergy equation: Clearly indicate the gravitational datum line(s) used. 3. Kinematics: Here you need to relate s to s as well as v to v for the two positions. 4. Solve 1.5 m y datum for s s x g smooth rod datum for N m g m g LESE STRT YUR WRK N THE NEXT GE.
4 FD: shown on previous page. ll forces doing work are conservative and will be included in the potential energy. Workenergy: T 1 = 1 mv mv 1 V 1 = 0 T 1 = 1 mv + 1 mv V =!mgs + mgh ( ) = 0 nc U 1" Therefore, ( nc) T 1 + V 1 + U 1! = T + V " v 1 + v 1 = v Kinematics s + s = const.! + v + g (#s + h )!s + s!s s = 0! v = 1 s s v lso,!s = 1 # s " 1.5& $% '( = h t position 1: v 1 = v 1 = 0 t position : v = 1 Solve: v = v 1 + g( s! h ) =.5 v = 0.4 v and h = 1 ( 5) + ( ) ( 9.806) (! 0.5) (.5! 1.5 ) = 0.5 m = 6.85 m / sec
5 RLEM N. 3 art (a) 6 points article is attached to rigid bar with bar pinned to ground at. article strikes the stationary particle with a speed of v 1 in the direction shown. The coefficient of restitution for this impact is e < 1. Consider all surfaces to be smooth and all motion to be in a HRIZNTL plane. Consider the following 1 statements about momentum and energy during impact and indicate if each statement is TRUE or FLSE RIGID bar v 1 = 0 HINT: Complete the FD of each of the three systems shown below prior to responding. v 1 For System + linear momentum in the ndirection is conserved: TRUE or FLSE linear momentum in the tdirection is conserved: TRUE or FLSE angular momentum about point is conserved: TRUE or FLSE mechanical energy is conserved: TRUE or FLSE t n System + For System linear momentum in the ndirection is conserved: TRUE or FLSE linear momentum in the tdirection is conserved: TRUE or FLSE angular momentum about point is conserved: TRUE or FLSE mechanical energy is conserved: TRUE or FLSE t n System For System linear momentum in the ndirection is conserved: TRUE or FLSE linear momentum in the tdirection is conserved: TRUE or FLSE angular momentum about point is conserved: TRUE or FLSE mechanical energy is conserved: TRUE or FLSE n t System
6 RLEM N. 3 art (b) 6 points n arm rotates about the fixed Zaxis with a rate of Ω. circular disk rotates about its own axis with a constant rate of p = 4 rad/sec relative to the arm. Let XYZ represent a set of fixed coordinate axes, and xyz be a set of coordinate axis attached to the disk. t the instant shown, the xyz and XYZ axes are aligned. lso at this position, Ω = 3 rad/sec with Ω increasing at a rate of!! = rad / sec. For this position, determine the angular velocity and angular acceleration of the disk. Express your answer as vectors in terms of either their xyz or XYZ components.! = " K + p j = ( 3k + 4 j) rad / sec! =!" K + "!K +!p j + p d j dt =!" K + "0 + ( 0) j + p # $ j = k + 4 = %1i + k ( ) (( ) $ j) ( ) 3k + 4 j ( ) rad / sec
7 RLEM N. 3 art (c) 4 points article (having a mass of m) is able to slide on a smooth HRIZNTL surface. n extensible cord (having a stiffness of 50 N/m and unstretched length of meters) is attached between and a fixed point in the plane of motion for. t position 1, is released with a velocity as shown below with R 1 = meters. ssuming that the cord remains taut for all time, find the angular speed ω of the cord about point when is at position where R = 4 meters. HINT: consider the angular momentum of as it moves about the fixed point. position v 1 = 0 m/sec R ω R 1 position 1 top view of HRIZNTL LNE of motion for! M = " H = H 1 " m r /! v = m r /! v 1 ( R e R )! (!R e R + R " e # ) = ( R 1 e R )! ( v 1 cos#e R + v 1 sin#e # ) R " k = R 1 v 1 sin#k $ e θ e R F! = R 1v 1 sin" R = ( )( 0) ( 0.6) ( 4) = 1.5 rad / sec
8 RLEM N. 3 art (d) 4 points Cart and block (having masses of M = 4 kg and m = kg, respectively) are connected by a spring of stiffness k = 300 N/m. The system is released from rest with the spring being compressed by 0. meters (position 1). Find the speed of cart at position when the spring is unstretched/uncompressed. Consider all surfaces to be smooth. HINT: Consider both the energy and the linear momentum of system + as it moves. M k m osition 1 (at rest) osition (both and moving)! F x = 0 " lin. momentum in x # dir. conserved " Mv 1 + mv 1 = 0 = Mv + mv! v = "v No external forces do work. Therefore, T 1 + V 1 = T + V! y k" 1 = 1 Mv + 1 mv = 1 ( M + 4m)v! x v = k M + 4m " 1 = 300 ( ) = 1 m / sec
Chapter 4. Forces and Newton s Laws of Motion. continued
Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting
More informationC B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N
Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a
More informationVELOCITY, ACCELERATION, FORCE
VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how
More informationPHY231 Section 1, Form B March 22, 2012
1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate
More informationPHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?
1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always
More informationAngular acceleration α
Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 70 Linear and Circular Motion Compared Slide 7 Linear and Circular Kinematics Compared Slide 7
More informationPhysics 41 HW Set 1 Chapter 15
Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,
More informationwww.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x
Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity
More informationMidterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m
Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of
More informationPHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013
PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be
More informationChapter 6 Work and Energy
Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system
More informationProblem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s
Problem Set 1 1.1 A bicyclist starts from rest and after traveling along a straight path a distance of 20 m reaches a speed of 30 km/h. Determine her constant acceleration. How long does it take her to
More information3 Work, Power and Energy
3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy
More informationNewton s Law of Motion
chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating
More informationPhysics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 Nm is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kgm 2. What is the
More informationF f v 1 = c100(10 3 ) m h da 1h 3600 s b =
14 11. The 2Mg car has a velocity of v 1 = 100km>h when the v 1 100 km/h driver sees an obstacle in front of the car. It takes 0.75 s for him to react and lock the brakes, causing the car to skid. If
More informationPractice Exam Three Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,
More informationAP Physics  Chapter 8 Practice Test
AP Physics  Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on
More informationPHY121 #8 Midterm I 3.06.2013
PHY11 #8 Midterm I 3.06.013 AP Physics Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension
More informationPhysics 1A Lecture 10C
Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. Oprah Winfrey Static Equilibrium
More informationPhysics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER
1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.
More informationFRICTION, WORK, AND THE INCLINED PLANE
FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle
More informationTwoBody System: Two Hanging Masses
Specific Outcome: i. I can apply Newton s laws of motion to solve, algebraically, linear motion problems in horizontal, vertical and inclined planes near the surface of Earth, ignoring air resistance.
More informationCHAPTER 6 WORK AND ENERGY
CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From
More informationChapter 3.8 & 6 Solutions
Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled
More informationChapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.
Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed
More informationv v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )
Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution
More information11. Rotation Translational Motion: Rotational Motion:
11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational
More informationCenter of Gravity. We touched on this briefly in chapter 7! x 2
Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.
More informationExam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis
* By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams
More informationPhysics 125 Practice Exam #3 Chapters 67 Professor Siegel
Physics 125 Practice Exam #3 Chapters 67 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the
More informationLab 8: Ballistic Pendulum
Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally
More informationAPPLIED MATHEMATICS ADVANCED LEVEL
APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications
More informationLecture 6. Weight. Tension. Normal Force. Static Friction. Cutnell+Johnson: 4.84.12, second half of section 4.7
Lecture 6 Weight Tension Normal Force Static Friction Cutnell+Johnson: 4.84.12, second half of section 4.7 In this lecture, I m going to discuss four different kinds of forces: weight, tension, the normal
More informationMechanics 1: Conservation of Energy and Momentum
Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation
More information8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential
8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy
More informationChapter 6. Work and Energy
Chapter 6 Work and Energy The concept of forces acting on a mass (one object) is intimately related to the concept of ENERGY production or storage. A mass accelerated to a nonzero speed carries energy
More informationLecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is
Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.49.6, 10.110.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of
More informationSolution Derivations for Capa #11
Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform
More informationTorque Analyses of a Sliding Ladder
Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while
More informationPhysics 1120: Simple Harmonic Motion Solutions
Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured
More informationF N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26
Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250N force is directed horizontally as shown to push a 29kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,
More informationFundamental Mechanics: Supplementary Exercises
Phys 131 Fall 2015 Fundamental Mechanics: Supplementary Exercises 1 Motion diagrams: horizontal motion A car moves to the right. For an initial period it slows down and after that it speeds up. Which of
More informationRotational Inertia Demonstrator
WWW.ARBORSCI.COM Rotational Inertia Demonstrator P33545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended
More informationLecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014
Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,
More informationPhysics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam
Physics 2A, Sec B00: Mechanics  Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry
More informationPHYS 211 FINAL FALL 2004 Form A
1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each
More informationWeight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)
Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in
More informationLab 7: Rotational Motion
Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125
More informationLecture L222D Rigid Body Dynamics: Work and Energy
J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L  D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L3 for
More informationPHYS 101 Lecture 10  Work and kinetic energy 101
PHYS 101 Lecture 10  Work and kinetic energy 101 Lecture 10  Work and Kinetic Energy What s important: impulse, work, kinetic energy, potential energy Demonstrations: block on plane balloon with propellor
More informationPhysics 590 Homework, Week 6 Week 6, Homework 1
Physics 590 Homework, Week 6 Week 6, Homework 1 Prob. 6.1.1 A descent vehicle landing on the moon has a vertical velocity toward the surface of the moon of 35 m/s. At the same time it has a horizontal
More informationKINEMATICS OF PARTICLES RELATIVE MOTION WITH RESPECT TO TRANSLATING AXES
KINEMTICS OF PRTICLES RELTIVE MOTION WITH RESPECT TO TRNSLTING XES In the previous articles, we have described particle motion using coordinates with respect to fixed reference axes. The displacements,
More informationProblem Set #8 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection
More informationCHAPTER 15 FORCE, MASS AND ACCELERATION
CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car
More informationAcceleration due to Gravity
Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision
More informationLecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6
Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.
More informationWORK DONE BY A CONSTANT FORCE
WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newtonmeter (Nm) = Joule, J If you exert a force of
More informationSerway_ISM_V1 1 Chapter 4
Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As
More informationRotational Motion: Moment of Inertia
Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body
More informationEDUH 1017  SPORTS MECHANICS
4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017  SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use
More informationRotation: Moment of Inertia and Torque
Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn
More informationNewton s Laws of Motion
Chapter 1. Newton s Laws of Motion Notes: Most of the material in this chapter is taken from Young and Freedman, Chapters 4 and 5 1.1 Forces and Interactions It was Isaac Newton who first introduced the
More informationCh 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43
Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state
More informationAP Physics 1 Midterm Exam Review
AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement
More informationCentripetal force, rotary motion, angular velocity, apparent force.
Related Topics Centripetal force, rotary motion, angular velocity, apparent force. Principle and Task A body with variable mass moves on a circular path with adjustable radius and variable angular velocity.
More informationWork Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.
PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance
More informationUniform Circular Motion III. Homework: Assignment (135) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout)
Double Date: Objective: Uniform Circular Motion II Uniform Circular Motion III Homework: Assignment (135) Read 5.4, Do CONCEPT QUEST #(8), Do PROBS (20, 21) Ch. 5 + AP 1997 #2 (handout) AP Physics B
More informationChapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.
Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel
More informationANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME  TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
More informationHW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions
HW Set VI page 1 of 9 1030 A 10 g bullet moving directly upward at 1000 m/s strikes and passes through the center of mass of a 5.0 kg block initially at rest (Fig. 1033 ). The bullet emerges from the
More informationSample Questions for the AP Physics 1 Exam
Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiplechoice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each
More informationChapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1
More informationCurso20122013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.
1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.
More informationLecture L5  Other Coordinate Systems
S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L5  Other Coordinate Systems In this lecture, we will look at some other common systems of coordinates. We will present polar coordinates
More informationCentripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.
Centripetal Force 1 Introduction In classical mechanics, the dynamics of a point particle are described by Newton s 2nd law, F = m a, where F is the net force, m is the mass, and a is the acceleration.
More informationProblem Set 5 Work and Kinetic Energy Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on
More informationProblem Set V Solutions
Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3
More informationAP1 Oscillations. 1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false?
1. Which of the following statements about a springblock oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The
More informationAP Physics C. Oscillations/SHM Review Packet
AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete
More informationExperiment 5 ~ Friction
Purpose: Experiment 5 ~ Friction In this lab, you will make some basic measurements of friction. First you will measure the coefficients of static friction between several combinations of surfaces using
More informationModeling Mechanical Systems
chp3 1 Modeling Mechanical Systems Dr. Nhut Ho ME584 chp3 2 Agenda Idealized Modeling Elements Modeling Method and Examples Lagrange s Equation Case study: Feasibility Study of a Mobile Robot Design Matlab
More informationPhysics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5
Solutions to Homework Questions 5 Chapt19, Problem2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat
More informationChapter 18 Static Equilibrium
Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example
More informationSpring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
More informationE X P E R I M E N T 8
E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:
More informationChapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.
Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular
More informationKE =? v o. Page 1 of 12
Page 1 of 12 CTEnergy1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal
More informationPhysics B AP Review Packet: Mechanics (B Taylor version) Name:
(B Taylor version) Name: Position Location of a particle in space. (x) or (x,y) or (x,y,z) Distance The total length of the path traveled by an object. Does not depend upon direction. Displacement The
More informationIdeal Cable. Linear Spring  1. Cables, Springs and Pulleys
Cables, Springs and Pulleys ME 202 Ideal Cable Neglect weight (massless) Neglect bending stiffness Force parallel to cable Force only tensile (cable taut) Neglect stretching (inextensible) 1 2 Sketch a
More informationChapter 9. particle is increased.
Chapter 9 9. Figure 936 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass
More informationFaraday s Law of Induction
Chapter 10 Faraday s Law of Induction 10.1 Faraday s Law of Induction...1010.1.1 Magnetic Flux...103 10.1. Lenz s Law...105 10. Motional EMF...107 10.3 Induced Electric Field...1010 10.4 Generators...101
More informationPHYSICS 111 HOMEWORK SOLUTION #9. April 5, 2013
PHYSICS 111 HOMEWORK SOLUTION #9 April 5, 2013 0.1 A potter s wheel moves uniformly from rest to an angular speed of 0.16 rev/s in 33 s. Find its angular acceleration in radians per second per second.
More informationPhysics 1401  Exam 2 Chapter 5NNew
Physics 1401  Exam 2 Chapter 5NNew 2. The second hand on a watch has a length of 4.50 mm and makes one revolution in 60.00 s. What is the speed of the end of the second hand as it moves in uniform circular
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationGravitational Potential Energy
Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the
More informationWork and Energy. W =!KE = KE f
Activity 19 PS2826 Work and Energy Mechanics: workenergy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS2002 1 PASPORT Motion
More informationUnit  6 Vibrations of Two Degree of Freedom Systems
Unit  6 Vibrations of Two Degree of Freedom Systems Dr. T. Jagadish. Professor for Post Graduation, Department of Mechanical Engineering, Bangalore Institute of Technology, Bangalore Introduction A two
More informationExperiment 4 ~ Newton s Second Law: The Atwood Machine
xperiment 4 ~ Newton s Second Law: The twood Machine Purpose: To predict the acceleration of an twood Machine by applying Newton s 2 nd Law and use the predicted acceleration to verify the equations of
More informationLecture L2  Degrees of Freedom and Constraints, Rectilinear Motion
S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L  Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates
More information