Projectile Motion. y - y o = v oy t - (1/2)gt 2 [2]

Save this PDF as:

Size: px
Start display at page:

Download "Projectile Motion. y - y o = v oy t - (1/2)gt 2 [2]"

Transcription

1 Projectile Motion In this experiment we will study motion in two-dimensions. An object which has motion in both the X and Y direction has a two dimensional motion. We will first determine at what velocity the ball is being fired from the firing mechanism, and then with this knowledge and some calculations. Determine how far the ball will travel when it is fired at an angle other than the horizontal. Theory: In introductory physics courses, a projectile is an object which is given some initial velocity, v 0, and thereafter, subjected only to gravity. This definition of a projectile assumes that no force due to air resistance is acting on the projectile. This assumption is approximately valid if the velocity of the projectile is relatively small (less than 10 meters/sec) and the cross-sectional area of the object is small, which will be the case in this experiment. Since gravity is the only force assumed to act on the object after it is given its initial velocity, the object will be in free-fall in the vertical direction, and will move with a constant velocity in the horizontal direction. Consider an object projected horizontally with a velocity, v ox, from some initial height, H, above the floor, as sketched below. The object will travel a horizontal distance, R, during the time it falls a vertical distance, H. Since the velocity in the horizontal direction is constant, R = v 0X t [1] v ox Where t is the time that the object is in flight (which is also the time it takes the object to fall a distance H). H In free fall, the vertical distance moved during a time interval, t, is given by the equation, R y - y o = v oy t - (1/2)gt 2 [2] where y o is the initial position of the object, g is the acceleration due to gravity (about 9.8 m/sec 2 ), and v oy is the initial velocity of the object in the vertical (y) direction. In equation [2], up is taken as the positive direction, and down is

2 the negative direction. For the case of an object propelled horizontally, v oy is zero (no component of initial velocity up or down). If the object is initially propelled from a height H above the floor, (y o = H) then at a later time it hits the floor, and y = 0. Thus, from equation [2], and the time of flight is H 1 2 t 2 / gt [3] 2 H/ g [4] The initial velocity of the projectile can then be calculated from equation [1]. Projectile Fired at Angle above the Horizontal: Consider a projectile projected with an initial velocity, v o, at angle above the horizontal at height, H, above the floor, as sketched. v o v ox Figure 5-3 H The range, R, the projectile travels can be found using kinematics equations. R First, the initial velocity v o is broken down to its initial horizontal and vertical velocities, v ox = v o cos, v oy = v o sin. By rewriting equation [2] for the figure aboveit yields equation [5]. The term y o is replaced by the term H, which is the height from the floor to the bottom of the projectile, and is shown in figure 5-3. The term v oy is the initial vertical velocity of the projectile. Using the floor as the reference point the term y can be given a value of zero. -1/2 gt 2 + v oy t + H = 0 [5]

3 Equation [5] is a second order polynomial and time, t, can be found using the quadratic equation. 0 = at 2 + bt + c t b b 2a 2 4ac Once a time is found the range, R, is the initial horizontal velocity, v ox, multiplied by the time. See equation [1]. : Initial Velocity from the Range of Projectile Fired Horizontally. Setting up the apparatus 1. Using the two thumb screws mount the ME-6800 projectile launcher near the bottom of the ME-6831 ballistic pendulum so that it seats within the two parallel horizontal grooves. Tighten the screws enough that it doesn t wobble within the grooves. Please do not over tighten these screws. Initial measurements. 2. Move the launcher to the end of the table so that the side of the launcher is parallel to the edge of the table. Examine the launcher and notice that at the end of the launcher is a circle which is used to represent the projectile. This is the point at which the projectile leaves the launcher and where all the following length measurements will be made. Use the meter stick and measure the height, H, from the floor to the bottom of the circle shown on the launcher. Think about it, does the center of the ball hit the floor or the bottom of the ball. Finding landing location 3 Assign a lab partner as a spotter his/her duties is to mark where the ball lands. Assign another lab partner as a chaser he/she will track down the ball once it strikes the floor. Rotate the launcher so that it faces into the room, and the front edge of the base plate is at the edge of the table. Use the plunge to load the ball into the mechanism to the desired range. Ensure that the ball remains seated in the mechanism and does not roll into the barrel and if necessary reseat the ball. When all is ready release the projectile by pulling up on the tie wrap attached to the trigger. The spotter should mark the location with a coin or tape. The chaser should retrieve the ball.

4 Preparing the target area. 4 From the center table obtain a sheet of the computer paper, only one sheet is needed. Tape this sheet at the corners to the floor at the location where the ball landed. This will be your target. Assure that the center of the target is where the ball landed. Repeat step 3. When the ball strikes this sheet, it will leave an imprint. Verify that the ball strikes the target. If it doesn t reposition the target. For this method the Range is vital. The better the measurement of the range the more the calculated velocity can be trusted. Our method outlined in the following steps divides the range into 3 parts that 2 can be easily measured and 1 part will be given. You are free to ignore them and follow whatever method you prefer to determine the range, however be for warned while you are not graded on what method you use your grade is determined by how you score on the grading target. More measurements 5. Measure the distance from the edge of the paper to the edge of the target Record this value as d 2. Mark on the target which edge you made the measurement to. More launches 6. Repeat step 3 to obtain 5 data positions, imprints, on the paper. There is no need to make any measurements at this time. One more set of measurements 7. Carefully remove the paper from the floor. Please also remove any remaining tape scraps. Take the paper to the table and measure from the marked edge to each imprint. Record each distance into the Data Table 2. Find the average value for d 3. Finding the Range, time and velocity 8. Assuming that the launcher was position as directed in step 3. Add the values d 1, d 2 and d 3 this is the range of the projectile, R. Use equation [11] and find time t. Velocity is range divided by time.

5 Data Distance, d 1, distance from where the ball leaves the launcher to the edge of the base plate = m Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Ave = d 2. d 2 = d 3 = 4) The range the ball travel horizontally R = d 1 + d 2 + d 3. and the height the ball fell vertically is H = R = 5) Use the equation the air. t 2H where g = 9.8 m/s g 2. to find the total time the ball was in Use t, to find the velocity from the equation R = v * t. t = v =

6 Finding a Range for an angle other than zero degrees. Setting up the Apparatus 1. Ask you instructor for an angle. Remove the projectile launcher from the ballistic pendulum. Examine the picture to the right. The launcher will be mounted on the opposite side of the apparatus as shown in the picture. Secure the projectile launcher near the top of the ballistic pendulum; the front will be secured using the single hole near the top of the apparatus. The rear of the projectile launcher will be secured using the curved slot. Set the angle you were given by loosening the rear screw of projectile launcher and lower it until the string with the plumb indicates the desired angle. From the previously determined velocity find the x and y components v x and v y. = v x = v cos = m/s v y = v sin = m/s 2. Measure in meters the height, H, from the floor to the bottom of the depiction of the ball launching position. (Remember the bottom of the ball hits the ground first). H = m 3. To determine the time of flight for the projectile use the equation y = H + v y sin t (g/2)t 2 0 = c + b(t) + (-a)(t) 2 If we set the point of impact (the floor) as zero then y = 0 in the equation above. The quadratic equation can be used to determined t. b b 2 4ac t = t 2a v y sin (v y sin ) 2( g / 2) 2 4( g / 2)H a = b = c = t = s

7 4. Once the time of flight is determine, calculate the range, R, of the projectile. R = v x * t = m 5. Measure off your predicted range. Mark this point with tape or a coin. Notify your instructor that you are ready to take your shot. Once given the scoring target place the 100 at where you have marked your range. Load the projectile. Do not forget to use the same setting. SCORE! 6. Fire the projectile as the instructor looks on. Where the projectile strikes is your grade for the lab.

Projectile Motion. Pre-lab Assignment. Pre-lab Questions and Exercises. Introduction. Projectile Motion

Projectile Motion Pre-lab Assignment Derive algebraic expressions for the range and total time-of-flight of a projectile launched with initial speed v o from a height h at an angle above horizontal. Hint:

More information

PROJECTILE MOTION. Objective: To calculate the initial velocity of a projectile and verify the equations of projectile motion.

PROJECTILE MOTION Objective: To calculate the initial velocity of a projectile and verify the equations of projectile motion. Apparatus: Spring gun with ball, plumb bob, level, meter stick, target paper,

More information

The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:

Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of

More information

Projectile Motion & Conservation of Energy

Projectile Motion & Conservation of Energy Equipment Qty Item Part Number 1 Mini Launcher ME-6800 1 Metal Sphere Projectile 1 and 2 Meter Sticks 1 Large Metal Rod ME-8741 1 Small Metal Rod ME-8736 1 Support

More information

BE VERY CAREFUL WHENEVER THE LAUNCHER IS IN THE COMPRESSED POSITION. ALWAYS NOTIFY THE CLASS BEFORE FIRING THE LAUNCHER.

OBJECTIVES: LAB #5: THE BALLISTIC PENDULUM To study the dynamics of a ballistic pendulum using the laws of conservation of momentum and energy. EQUIPMENT: Equipment Needed Qty Equipment Needed Qty Ballistic

More information

Projectile Motion Vocabulary

Projectile Motion Vocabulary Term Displacement vector Definition Projectile trajectory range 1 Page What is a displacement vector? Displacement Vector of (10 m, 45 o ) 10 m θ = 45 o When you throw a ball

More information

Experiment 2 Free Fall and Projectile Motion

Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 3: PROJECTILE MOTION Objective: To understand the motion of a projectile in the earth s gravitational field and measure the muzzle velocity of the projectile

More information

The quest to find how x(t) and y(t) depend on t is greatly simplified by the following facts, first discovered by Galileo:

Team: Projectile Motion So far you have focused on motion in one dimension: x(t). In this lab, you will study motion in two dimensions: x(t), y(t). This 2D motion, called projectile motion, consists of

More information

Lab 5: Projectile Motion

Description Lab 5: Projectile Motion In this lab, you will examine the motion of a projectile as it free falls through the air. This will involve looking at motion under constant velocity, as well as motion

More information

PSI AP Physics B Kinematics Multiple-Choice Questions

PSI AP Physics B Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle.

More information

Visual Physics 218 Projectile Motion [Lab 2]

In this experiment, you will be using your video equipment to evaluate two-dimensional motion. It will be necessary to plot the data in an xy-coordinate system and separate the data into x and y components.

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Projectile Motion 1:Horizontally Launched Projectiles

A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Instruction Manual and Experiment Guide for the PASCO scientific Model ME-6825A A MINI LAUNCHER

90 60 50 30 of Ball Instruction Manual and Experiment Guide for the PASCO scientific Model ME-6825A 012-09562A MINI LAUNCHER 80 70 WEAR SAFETY GLASSES WHEN IN USE. 40 DO NOT PUSH PISTON WITH FINGER! 20

More information

The Ballistic Pendulum

1 The Ballistic Pendulum Introduction: By this time, you have probably become familiar with the concepts of work, energy, and potential energy, in the lecture part of the course. In this lab, we will be

More information

Ballistics Car P3-3527

WWW.ARBORSCI.COM Ballistics Car P3-3527 BACKGROUND: The Ballistic Car demonstrates that the horizontal motion of an object is unaffected by forces which act solely in the vertical direction. It consists

More information

Vectors; 2-D Motion. Part I. Multiple Choice. 1. v

This test covers vectors using both polar coordinates and i-j notation, radial and tangential acceleration, and two-dimensional motion including projectiles. Part I. Multiple Choice 1. v h x In a lab experiment,

More information

B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Section 10.4: Motion in Space: Velocity and Acceleration

1 Section 10.4: Motion in Space: Velocity and Acceleration Velocity and Acceleration Practice HW from Stewart Textbook (not to hand in) p. 75 # 3-17 odd, 1, 3 Given a vector function r(t ) = f (t) i +

More information

Instructions. To run the slideshow:

Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Monkey

More information

Physics 2A Chapter 3: Kinematics in Two Dimensions. Problem Solving

Physics 2A Chapter 3: Kinematics in Two Dimensions The only thing in life that is achieved without effort is failure. Source unknown "We are what we repeatedly do. Excellence, therefore, is not an act,

More information

Physics Lab 2 PROJECTILE MOTION

PROJECTILE MOTION Introduction: By rolling a steel marble down a ramp and measuring its horizontal range, you can calculate the marble's launch velocity. To confirm this velocity with an independent measurement,

More information

Motion in One-Dimension

This test covers one-dimensional kinematics, including speed, velocity, acceleration, motion graphs, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1. A rock is released

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

Ballistic Pendulum / Projectile Launcher

Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME-6830/ME-6831 Ballistic Pendulum / Projectile Launcher 012-05375B 2/99 WEAR

More information

Physics 1120: 2D Kinematics Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 Physics 1120: 2D Kinematics Solutions 1. In the diagrams below, a ball is on a flat horizontal surface. The inital velocity and the constant acceleration of the ball

More information

CHAPTER 4 Motion in 2D and 3D

General Physics 1 (Phys : Mechanics) CHAPTER 4 Motion in 2D and 3D Slide 1 Revision : 2. Displacement vector ( r): 1. Position vector (r): r t = x t i + y t j + z(t)k Particle s motion in 2D Position vector

More information

Projectile Motion THEORY. r s = s r. t + 1 r. a t 2 (1)

Projectile Motion The purpose of this lab is to study the properties of projectile motion. From the motion of a steel ball projected horizontally, the initial velocity of the ball can be determined from

More information

Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Lab 3 - Projectile Motion Scientific Data Collection and Analysis (with some experimental design)

Partner 1: Lab 3 - Scientific Data Collection and Analysis (with some experimental design) Purpose: This Minilab is designed help you apply the skills you learned in the homework; that is, to collect data

More information

The Acceleration Due to Gravity

1 The Acceleration Due to Gravity Introduction: Acceleration is defined as the rate at which the velocity of a moving object changes with time. Accelerations are always caused by forces. In this laboratory

More information

1. Ignoring friction with the air, at what angle relative to the horizontal would a projectile travel the greatest horizontal distance?

North arolina Testing Program EO Physics Sample Items Goal 1. Ignoring friction with the air, at what angle relative to the horizontal would a projectile travel the greatest horizontal distance? 15 30

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Instruction Manual and Experiment Guide A. Tension Protractor ME-6855

Instruction Manual and Experiment Guide 012-10381A Tension Protractor ME-6855 Table of Contents Introduction......................................................................... 1 About the Apparatus..................................................................

More information

Chapter 4 Two-Dimensional Kinematics

Chapter 4 Two-Dimensional Kinematics Units of Chapter 4 Motion in Two Dimensions Projectile Motion: Basic Equations Zero Launch Angle General Launch Angle Projectile Motion: Key Characteristics 1 4-1 Motion

More information

ACCELERATION DUE TO GRAVITY

EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

What assumptions are being made by modelling an object as a projectile? Time (t seconds)

Galileo s projectile model In this activity you will validate Galileo s model for the motion of a projectile, by comparing the results predicted by the model with results from your own experiment. Information

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

The Bullet-Block Mystery

LivePhoto IVV Physics Activity 1 Name: Date: 1. Introduction The Bullet-Block Mystery Suppose a vertically mounted 22 Gauge rifle fires a bullet upwards into a block of wood (shown in Fig. 1a). If the

More information

Projectile Motion. AP Physics B

Projectile Motion AP Physics B What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

Experiment P007: Acceleration due to Gravity (Free Fall Adapter)

Experiment P007: Acceleration due to Gravity (Free Fall Adapter) EQUIPMENT NEEDED Science Workshop Interface Clamp, right angle Base and support rod Free fall adapter Balls, 13 mm and 19 mm Meter stick

More information

Yimin Math Centre. 2/3 Unit Math Homework for Year Motion Part Simple Harmonic Motion The Differential Equation...

2/3 Unit Math Homework for Year 12 Student Name: Grade: Date: Score: Table of contents 9 Motion Part 3 1 9.1 Simple Harmonic Motion The Differential Equation................... 1 9.2 Projectile Motion

More information

5.1 Vector and Scalar Quantities. A vector quantity includes both magnitude and direction, but a scalar quantity includes only magnitude.

Projectile motion can be described by the horizontal ontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to

More information

2) When you look at the speedometer in a moving car, you can see the car's.

Practice Kinematics Questions Answers are at the end Choose the best answer to each question and write the appropriate letter in the space provided. 1) One possible unit of speed is. A) light years per

More information

FREE FALL AND PROJECTILE MOTION

FREE FALL AND PROJECTILE MOTION 1 Let s review equations and then split them into X (horizontal) and Y (vertical). GENERAL HORIZONTAL VERTICAL V f = V i + aδt V fx = V ix + a x t V fy = V iy + a y t x

More information

Physics Lab: Measuring the acceleration due to gravity.

Physics Lab: Measuring the acceleration due to gravity. Objective: to determine the acceleration due to gravity near the earth s surface by three different methods. Theory: We all know that gravity makes

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Operating Instructions: 75425 CENCO Ballistic Pendulum

Operating Instructions: Product Contents Quantity Description 1 rigid arm pendulum with support rod 1 Brass ball with drilled hole 1 spring with gun release mechanism 1 Metal Base 1 Curved rack Other Suggested

More information

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

More information

Motion in Two Dimensions

Motion in Two Dimensions 1. The position vector at t i is r i and the position vector at t f is r f. The average velocity of the particle during the time interval is a.!!! ri + rf v = 2 b.!!! ri rf v =

More information

Experiment 2: Conservation of Momentum

Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations

More information

Section 10.7 Parametric Equations

299 Section 10.7 Parametric Equations Objective 1: Defining and Graphing Parametric Equations. Recall when we defined the x- (rcos(θ), rsin(θ)) and y-coordinates on a circle of radius r as a function of

More information

with "a", "b" and "c" representing real numbers, and "a" is not equal to zero.

3.1 SOLVING QUADRATIC EQUATIONS: * A QUADRATIC is a polynomial whose highest exponent is. * The "standard form" of a quadratic equation is: ax + bx + c = 0 with "a", "b" and "c" representing real numbers,

More information

PHY151H1F Experiment 2: The Range of a Projectile Fall 2013 Jason Harlow and Brian Wilson

PHY151H1F Experiment 2: The Range of a Projectile Fall 2013 Jason Harlow and Brian Wilson Today s Textbook Reference to review before lab: University Physics with Modern Physics 1 st Edition by W. Bauer

More information

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE Straw Rockets Spring 2012

VANDERBILT STUDENT VOLUNTEERS FOR SCIENCE http://studentorgs.vanderbilt.edu/vsvs Straw Rockets Spring 2012 Goal: To explain the concepts of angle of trajectory vs. distance and the horizontal/vertical

More information

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I

WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal

More information

Activity 5a Potential and Kinetic Energy PHYS 010. To investigate the relationship between potential energy and kinetic energy.

Name: Date: Partners: Purpose: To investigate the relationship between potential energy and kinetic energy. Materials: 1. Super-balls, or hard bouncy rubber balls. Metre stick and tape 3. calculator 4.

More information

Kinetic and Potential Energy

Kinetic and Potential Energy Objective: Prove or Disprove Galileo Free Falling Body Experiment Determine the energies involved of a free falling body Combine Kinetic and Gravitational Potential energy

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

Rocket Activity Foam Rocket

Rocket Activity Foam Rocket Objective Students will learn about rocket stability and trajectory with rubber band-powered foam rockets. Description Students will construct rockets made from pipe insulating

More information

Physics 1020 Laboratory #6 Equilibrium of a Rigid Body. Equilibrium of a Rigid Body

Equilibrium of a Rigid Body Contents I. Introduction II. III. IV. Finding the center of gravity of the meter stick Calibrating the force probe Investigation of the angled meter stick V. Investigation of

More information

Physics 201. Fall 2009. Two Dimensional Motion Due Friday November 6, 2009

Physics 201 Fall 2009 Two Dimensional Motion Due Friday November 6, 2009 Points: 30 Name Partners This is a more detailed lab experiment than the exercises you have done in the class in the past. You will

More information

Unit 1: Vectors. a m/s b. 8.5 m/s c. 7.2 m/s d. 4.7 m/s

Multiple Choice Portion 1. A boat which can travel at a speed of 7.9 m/s in still water heads directly across a stream in the direction shown in the diagram above. The water is flowing at 3.2 m/s. What

More information

physics 111N motion in a plane

physics 111N motion in a plane position & displacement vectors ym! the position vector points from the origin to the object t2.83 s 15 10 5 0 5 10 15 xm we re plotting the plane (e.g. billiard table viewed

More information

Equations of Motion Introduction: Objectives: Methods:

Equations of Motion Introduction: The equations of motion are used to describe various components of a moving object. Displacement, velocity, time and acceleration are the kinematic variables that can

More information

Newton s Second Law. ΣF = m a. (1) In this equation, ΣF is the sum of the forces acting on an object, m is the mass of

Newton s Second Law Objective The Newton s Second Law experiment provides the student a hands on demonstration of forces in motion. A formulated analysis of forces acting on a dynamics cart will be developed

More information

Physics 160 Biomechanics. Projectiles

Physics 160 Biomechanics Projectiles What is a Projectile? A body in free fall that is subject only to the forces of gravity and air resistance. Air resistance can often be ignored in shot-put, long jump

More information

Determining the Acceleration Due to Gravity

Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

Physics Unit 2: Projectile Motion

Physics Unit 2: Projectile Motion Jan 31 10:07 AM What is a projectile? A projectile is an object that is launched, or projected, by some means and continues on its own inertia. The path of the projectile

More information

Q3.1. A. 100 m B. 200 m C. 600 m D m. 500 m. 400 m. 300 m Pearson Education, Inc.

Q3.1 P 400 m Q A bicyclist starts at point P and travels around a triangular path that takes her through points Q and R before returning to point P. What is the magnitude of her net displacement for the

More information

When we throw a ball :

PROJECTILE MOTION When we throw a ball : There is a constant velocity horizontal motion And there is an accelerated vertical motion These components act independently of each other PROJECTILE MOTION A

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

Maximum Range Explained range Figure 1 Figure 1: Trajectory Plot for Angled-Launched Projectiles Table 1

Maximum Range Explained A projectile is an airborne object that is under the sole influence of gravity. As it rises and falls, air resistance has a negligible effect. The distance traveled horizontally

More information

Review sheet 2 Kinematics

Review sheet 2 Kinematics Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the speed of an object at rest? a. 0.0 m/s c. 9.8 m/s b.

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

Kinematics. Demonstrated Through. Projectile Launcher

Kinematics Demonstrated Through Projectile Launcher E. El-Zammar Physics 420: Demonstration Physics Department of Physics University of British Columbia Vancouver,B.C. Canada V6T 1Z1 October 28 th, 2008

More information

Accelerometers: Theory and Operation

12-3776C Accelerometers: Theory and Operation The Vertical Accelerometer Accelerometers measure accelerations by measuring forces. The vertical accelerometer in this kit consists of a lead sinker hung

More information

Chapter Rules for significant digits are covered on page 7 of the text and pages 1-3 in the lab book.

Chapter 1 1. To express the answer in seconds, convert years to days (use 364 days in one year), days to hours and hours to seconds. Use the factor/label method. 2. Rules for significant digits are covered

More information

UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 125 / LeClair Spring Problem Set 2

UNIVERSITY OF ALABAMA Department of Physics and Astronomy PH 125 / LeClair Spring 2009 Instructions: Problem Set 2 1. Answer all questions below. Follow the problem-solving template provided. 2. Some problems

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

Projectile Motion - Worksheet

Projectile Motion - Worksheet From the given picture; you can see a skateboarder jumping off his board when he encounters a rod. He manages to land on his board after he passes over the rod. 1. What is

More information

Energy and Momentum Conservation The Ballistic Pendulum

Energy and Momentum Conservation The Ballistic Pendulum I. Introduction. In this experiment we will test the principles of conservation of energy and conservation of momentum. A ball is shot into a cup

More information

End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.20 shows four different cases involving a

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

Teaching Time: Projectiles

27206_U04L18_184-195.indd Page a184 8/14/07 7:52:28 PM user /Volumes/ju104/BIP00001/BIP00001indd%0/Unit 4 27206_U04L18_184-195.indd Page a185 8/14/07 7:52:28 PM user /Volumes/ju104/BIP00001/BIP00001indd%0/Unit

More information

Cartesian Coordinate System. Also called rectangular coordinate system x- and y- axes intersect at the origin Points are labeled (x,y)

Physics 1 Vectors Cartesian Coordinate System Also called rectangular coordinate system x- and y- axes intersect at the origin Points are labeled (x,y) Polar Coordinate System Origin and reference line

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Vectors and the Inclined Plane

Vectors and the Inclined Plane Introduction: This experiment is designed to familiarize you with the concept of force as a vector quantity. The inclined plane will be used to demonstrate how one force

More information

Exam #1 PHYSICS 211 Monday June 29 th, 2009 Please write down your name also on the back page of this exam

Exam #1 PHYSICS 211 Monday June 29 th, 2009 NME Please write down your name also on the back page of this exam 1. particle moves along a circular path in the counter-clockwise direction, as indicated in

More information

Web review - Ch 3 motion in two dimensions practice test

Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

More information

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions

Chapter 4 - Forces and Newton s Laws of Motion w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 8, 2015 Review

More information

MOTION (Chapter 2) Student Learning Objectives 2/11/2016. Compare and contrast terms used to describe motion Analyze circular and parabolic motion

MOTION (Chapter 2) https://www.youtube.com/watch?v=oxc-hhqldbe Student Learning Objectives Compare and contrast terms used to describe motion Analyze circular and parabolic motion PHYSICS:THE MOST FUNDAMENTAL

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information