# Simple Machines. Figure 2: Basic design for a mousetrap vehicle

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Mousetrap Vehicles Figure 1: This sample mousetrap-powered vehicle has a large drive wheel and a small axle. The vehicle will move slowly and travel a long distance for each turn of the wheel. 1 People are always trying to make work easier. Whether it is moving a heavy crate, traveling to another location, or solving a complex mathematical problem, people have developed complex machines to do most of their work. Nevertheless, people always try to make improvements on their machines in order to make work even easier and faster. Your challenge will be to design and build a vehicle that is powered by a mousetrap and travels the farthest possible distance. In order to be successful, you must apply your knowledge of how machines work. Why build a mousetrap-powered car? Well, building a mousetrap vehicle is a very interesting design problem, which is more difficult than it first appears. As you build your car, you will encounter unanticipated problems, and each builder will face different problems. Each person will have to solve his or her problems in different ways. There is never one right answer, but there are many different approaches that need to be tested and verified. Throughout the design and construction of your vehicle, you will have to make trade-offs. Tradeoffs occur because optimizing one variable may prevent optimizing another variable. For example, a car designed to accelerate quickly uses more energy per distance than a slower-accelerating vehicle. When applying the ideas in this book to the design and construction of your vehicle, remember that an extreme exaggeration of an idea will likely have a negative effect on performance. You will have to find a good combination of ideas by repeated experimentation. Pick the idea you think will work best. Work carefully and you will succeed. One of the most basic designs of a mousetrap vehicle is to attach a string to the mousetrap s lever arm. At the other end of the string, a loop is tied and is placed over a hook mounted on the drive axle. This string is wound around a drive axle with the mousetrap lever arm set. When the mousetrap is triggered, the string is pulled off the drive axle. This causes the drive axle and wheels to rotate and to move the vehicle forward.

2 Simple Machines Six Simple Machines Inclined plane Wedge Screw Lever Wheel and axle Pulley Your mousetrap vehicle will have a number of moving parts making it a type of machine. A machine is a device that helps people do work more easily. Every machine works in accordance with scientific laws. Mechanical machines have parts that move. All machines, no matter how complex, are composed of some combination of six simple machines. The six simple machines are: the inclined plane, the wedge, the screw, the lever, the wheel and axle, and the pulley. Understanding the principles of these simple machines will help you design your mousetrap vehicle. Modern engineers use the laws of physics and mathematics in the design and construction of the many things you see every day. Machines are designed to ensure that the right amount of force produces the right amount of movement at the right time. The physical concepts of force, inertia, friction, and mass are explored in this activity. A force is a push or a pull on an object. Inertia is the tendency of an object at rest to stay at rest or a moving object to keep moving. Friction is a force that resists movement between two surfaces. When designing a vehicle for speed and distance, engineers look for ways to decrease friction. Mass is anything that has size and occupies space. The principles on which the six simple machines work will be discussed in the next few pages. These simple machines have been used since ancient times. You may be able to use one or more simple machines in your mousetrap vehicle. Figure 2: Basic design for a mousetrap vehicle 2

3 Mechanical Advantage in Gear and Pulley Systems You can use gears or pulleys to control a mousetrap car s speed and distance traveled. Gears are wheels with teeth, and pulleys are wheels with a groove that holds a connecting belt. Gears and pulleys may be arranged to gain or lose mechanical advantage. An increase in mechanical advantage will increase torque but will decrease speed and distance. A decrease in mechanical advantage will decrease torque but will increase speed and distance. You need enough torque to get the vehicle moving, but you need enough speed and distance to make the vehicle travel far. By applying the force from the mousetrap to a large pulley on the drive axle, a large amount of torque (or turning force) will be applied, but the axle will rotate at a slow speed. If the force from the mousetrap is applied to a smaller pulley on the drive axle, then the torque will be less, but the speed will be greater than with the large pulley. Figure 24: The big pulley has four times the circumference of the small pulley. It rotates with four times the force and one quarter the speed, but in the same direction. Figure 25: The big gear has four times the number of teeth and four times the circumference of the small gear. It rotates with four times the force and one quarter the speed, but in the opposite direction. 9

4 Design Considerations Before you can successfully build a mousetrap car, you must give some time and thought to its design. Consider the following factors. Inertia Rotational inertia Chassis construction Lever, pulley, or gear drive system Position of the mousetrap Type of axle and bearing Wheel diameter and width Friction between moving parts Aerodynamics Reduce Inertia by Reducing Weight It is harder to get a heavy object moving compared to a light object. Build your vehicle using lightweight materials so that the mass of the vehicle will be as low as possible. The weight of your vehicle is a very important design consideration. Also, weight is a direct multiplier on rolling resistance. Twice the weight means twice the rolling resistance for the same wheels and bearings. However, there must be enough weight on the drive wheels so that they do not spin. Reduce Rotational Inertia Rotational inertia is the resistance that a rotating object has to changes in its state of rotation. Rotational inertia depends on the amount of mass and where the mass is located. A light wheel will not always accelerate faster than a heavy wheel. It is more important to note where the mass is located from the center of the wheel. To achieve fast acceleration from the start line, use the lightest wheels possible. Keep the center of mass close to the center of the wheel, and remove mass from the outside of the wheel. Figure 28: Which wheel has less rotational inertia if they are the same diameter? Build a Strong and Stiff Chassis The vehicle chassis must be strong and stiff. Strong means it will not break easily; stiff means it will not bend easily. Making the chassis strong yet light is a problem you will have to solve. 11

5 Select a Drive System Levers, gears, and/or pulleys can be used to convert the linear motion of the mousetrap to rotary motion. Figure 29: Should the lever arm be long or short? Figure 30: How can a mousetrap be used to turn a set of gears? What size of gears will provide the best performance? Should the large or small gear be placed on the drive axle? Figure 31: Should the axle pulley be large or small? Position the Mousetrap for Maximum Performance In a lever drive system, the position of the mousetrap and length of the lever arm will determine the amount of pulling force applied to the axle. Moving the mousetrap away from the drive axle and making the lever arm longer will decrease the pulling force over a longer distance. Moving the mousetrap closer to the drive axle with a shorter arm will increase the pulling force, but will decrease the distance of pull. drive axle or Figure 32: The wheels spin when the mousetrap is triggered. Should the trap be moved toward or away from the drive axle to solve this problem? 12

6 Steps 1, 2, 3, and 4 Designing Your Vehicle 1. Complete the Technical Report The purpose of the technical report is to summarize the nature of the problem, the specifications and materials, and the method of testing. Complete the technical report after you have read this book. The specifications marked with an asterisk (*) will vary with each student. Number of mousetraps used Length of balsa wood for rails Length of balsa wood for platform Number of wheels Front wheel diameter Rear wheel diameter Drill size for ball bearing Drill size for axle hole 2. Brainstorm Solutions Study the sketches and diagrams in this book. Brainstorm ideas for building your mousetrap vehicle. What vehicle shape and what type of construction will provide the best performance? Make notes and sketches of what you think will work best. Figure 44: Brainstorm solutions Figure 45: Basic vehicle with a long lever arm 18

### Simple Machines. What are simple machines?

Definitions to know: Simple Machines Work done when an applied force causes an object to move in the direction of the force Energy ability to cause change; can change the speed, direction, shape, or temperature

### Fulcrum Effort or Applied Force. Fulcrum Load or Resistance. Effort or Applied Force. Load or Resistance. Other First Class Lever Examples.

First Class Lever Second Class Lever Load or Resistance Fulcrum Effort or Applied Force Fulcrum Load or Resistance Effort or Applied Force Other First Class Lever Examples Action Spring Force Load Applied

### What is a Mouse-Trap

What is a Mouse-Trap Car and How does it Work? A mouse-trap car is a vehicle that is powered by the energy that can be stored in a wound up mouse-trap spring. The most basic design is as follows: a string

### Name: Partners: Period: Coaster Option: 1. In the space below, make a sketch of your roller coaster.

1. In the space below, make a sketch of your roller coaster. 2. On your sketch, label different areas of acceleration. Put a next to an area of negative acceleration, a + next to an area of positive acceleration,

### Mechanical Reasoning Review

Mechanical Reasoning Review Work can be made easier or faster through practical applications of simple and/or compound machines. This is called mechanical advantage - in other words, using the principal

### Overall Indicator: The student: recognizes the effects of forces acting on structures and mechanisms

Grade 5 Performance Task: Disaster Recovery Content Connections Assessment Criterion Understanding of basic concepts Overall Indicator: The student: recognizes the effects of forces acting on structures

### GEARS AND GEAR SYSTEMS

This file aims to introducing basic concepts of gears and pulleys. Areas covered include spur gears, compound gears, chain drive, rack/pinion systems and pulley systems. GEARS AND GEAR SYSTEMS Gears can

### Team Name / (Students): Solar Racing (Student Handout) (The Design, Construction, and Evaluation of a Solar-Powered Car)

Team Name / (Students): Solar Racing (Student Handout) (The Design, Construction, and Evaluation of a Solar-Powered Car) PART 1 (DESIGN YOUR OWN SOLAR-POWERED VEHICLE) 1) It is time for you to become an

### 3rd/4th Grade Science Unit: Forces and Motion. Melissa Gucker TE 804 Spring 2007

3rd/4th Grade Science Unit: Forces and Motion Melissa Gucker TE 804 Spring 2007 Part I: Learning Goals Documentation Unit Title: Forces and Motion Grade Level: 3 rd Designer: Melissa Gucker The Main Idea(s)/Importance

### The Lever. The law of conservation of energy applies to all machines!

Simple Machines A machine is a device for multiplying forces or simply changing the direction of forces. Many machines can increase the speed with which work is done. The Lever The law of conservation

### Compound Machine: Two or more simple machines working together to make work easier. Examples: Wheelbarrow, Can Opener, Bicycle

Name SOL 4.2 Simple and Compound Machines NOTE - Simple machines are NOT included in the 5 th REVISED Science Standards Simple Machine: A machine with few or no moving parts. Simple machines make work

### 30 minutes in class, 2 hours to make the first time

Asking questions and defining problems Developing and using models Planning and carrying out investigations 30 minutes in class, 2 hours to make the first time 3 12 x 24 x ¾ inch plywood boards 1 x 12

### Inclined Plane: Distance vs. Force

1a Inclined Plane: Distance vs. Force Look at the inclined plane model you built for Card 2. It s a ramp, so it s easy to slide or roll things up and down it. As you noticed, it is a little more difficult

### ANSWER KEY. Work and Machines

Chapter Project Worksheet 1 1. inclined plane, wedge, screw, lever, wheel and axle, pulley 2. pulley 3. lever 4. inclined plane 5. Answers will vary: top, side, or bottom 6. Answers will vary; only one

### SpaceActivities. Age 8+ Teacher s Notes. In collaboration with NASA

SpaceActivities Age 8+ Teacher s Notes In collaboration with NASA The Hammer Teaching Objectives: Technology/Engineering Using mechanisms Assembling components Combining materials Science Inclined planes

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### 7 TH GRADE SCIENCE REVIEW

7 TH GRADE SCIENCE REVIEW The motion of an object is always judged with respect to some other object or point. When an object changes position over time relative to a reference point, the object is in

### The origin of the wedge is unknown, because it has been in use as early as the stone age.

Simple Machines Compiled and edited from Wikipedia Inclined Plane An inclined plane is a plane surface set at an angle, other than a right angle, against a horizontal surface. The inclined plane permits

### Slide 10.1. Basic system Models

Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

### Christa s Lost Lessons Simple Machines

Christa s Lost Lessons Simple Machines Introduction: Among the six lost lessons, the simple machines demonstration was most rudimentary. Perhaps, it is because most earth-based simple machines are crafted

### What are simple machines? primary

What are simple machines? primary Here you will discover all sorts of interesting things about simple machines and how they work. There are some great diagrams as well! A machine is something that makes

### When you have completed this lesson you will be able to: identify some common simple machines explain how simple machines make work easier

Simple machines OBJECTIVES When you have completed this lesson you will be able to: identify some common simple machines explain how simple machines make work easier A machine is an invention that makes

### Wheeled Vehicle Design For Science Olympiad By Carey I. Fisher

Wheeled Vehicle Design For Science Olympiad By Carey I. Fisher The Wheeled Vehicle competition requires that the vehicle travel a specific distance set by the judge at the time of the contest. So the problem

### Simple Machines Quiz

Simple Machines Quiz Part 1. Write the name of the simple machine that is described questions 1-4 below. Word Bank: Wheel & Axle Screw Pulley Inclined Plane Lever 1. These two parts act as one simple machine.

### Mechanical & Electrical Reasoning Study Guide

Mechanical & Electrical Reasoning Study Guide About Mechanical Aptitude Tests Who is likely to take a mechanical reasoning test? Mechanical aptitude tests are commonly administered during pre-employment

### Rubber Band Race Car

Rubber Band Race Car Physical Science Unit Using LEGO Mindstorms NXT Copyright 2009 by Technically Learning 1 of 17 Overview: Through a series of hands-on activities, students will design a rubber band

### The Effects of Wheelbase and Track on Vehicle Dynamics. Automotive vehicles move by delivering rotational forces from the engine to

The Effects of Wheelbase and Track on Vehicle Dynamics Automotive vehicles move by delivering rotational forces from the engine to wheels. The wheels push in the opposite direction of the motion of the

### Name Class Date. Pulley. Wedge

CHAPTER 13 2 Simple Machines SECTION Work and Energy KEY IDEAS As you read this section, keep these questions in mind: What are simple machines? What simple machines are in the lever family? What simple

### Roanoke Pinball Museum Key Concepts

Roanoke Pinball Museum Key Concepts What are Pinball Machines Made of? SOL 3.3 Many different materials are used to make a pinball machine: 1. Steel: The pinball is made of steel, so it has a lot of mass.

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### Quest for Speed. Discover Engineering. Youth Handouts

Discover Engineering Youth Handouts Activity 1: Spooling Around Name: Date: Materials List Wooden spool Nail Flat washer Rubber bands Craft stick Nut Tape measure Calculator Masking tape Procedure 1. To

### Motion. Table of Contents: Introduction to the Motion Subsystem 3.2. Concepts to Understand 3.8. Subsystem Interactions 3.26. Motion.

Motion Table of Contents: Introduction to the Motion Subsystem 3.2 Concepts to Understand 3.8 Subsystem Interactions 3.26 3 1 Introduction to the Motion Subsystem The Motion Subsystem comprises all the

### Chapter 8: Rotational Motion of Solid Objects

Chapter 8: Rotational Motion of Solid Objects 1. An isolated object is initially spinning at a constant speed. Then, although no external forces act upon it, its rotational speed increases. This must be

### Mechanical Systems. Grade 8 Unit 4 Test. 1. A wheelbarrow is an example of what simple machine? Class 1 lever. Class 2 lever.

Mechanical Systems Grade 8 Unit 4 Test Student Class 1. A wheelbarrow is an example of what simple machine? D Wheel and Axle 2. A hockey stick is an example of what simple machine? D Inclined plane 3.

### Georgia Performance Standards Framework for Physical Science 8 th GRADE. Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines

Subject Area: Physical Science Grade: 8 Unit: Fast and Furious Forces General Task Life is Easy with Simple Machines S8P3. Students will investigate relationship between force, mass, and the motion of

### STATIC AND KINETIC FRICTION

STATIC AND KINETIC FRICTION LAB MECH 3.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### Robotics & Automation

Robotics & Automation Levels: Grades 10-12 Units of Credit: 1.0 CIP Code: 21.0117 Core Code: 38-01-00-00-130 Prerequisite: None Skill Test: 612 COURSE DESCRIPTION Robotics & Automation is a lab-based,

### Simple machines provide a mechanical advantage that makes our work faster and easier, and they are all around us every day.

LEARNING MODULE: SIMPLE MACHINES Pre-Visit Activities We suggest that you use these pre-visit classroom acitivites to prepare your students for a rewarding Museum visit. Before your visit, introduce your

### Section 4: The Basics of Satellite Orbits

Section 4: The Basics of Satellite Orbits MOTION IN SPACE VS. MOTION IN THE ATMOSPHERE The motion of objects in the atmosphere differs in three important ways from the motion of objects in space. First,

### Simple Kitchen Machines

Provided by TryEngineering - Lesson Focus Lesson focuses on simple machines and how they can be found in many everyday items. Students explore the different types of simple machines, how they work, and

### Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55)

Unit 8A: Systems in Action (Pg. 2 85) Chapter 2: Getting to Work (pg. 28 55) Name: Date: 2.1: Physical Systems: Simple Machines (Pg. 30 35): Read Pages 30-35. Answer the following questions on pg. 35:

### Directed Reading A. Section: Types of Machines LEVERS

Skills Worksheet Directed Reading A Section: Types of Machines 1. A knife is actually a very sharp. 2. What are the six simple machines that all other machines are made from? LEVERS 3. A simple machine

### MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES

MECHANICAL PRINCIPLES OUTCOME 4 MECHANICAL POWER TRANSMISSION TUTORIAL 1 SIMPLE MACHINES Simple machines: lifting devices e.g. lever systems, inclined plane, screw jack, pulley blocks, Weston differential

### Dynamics of Rotational Motion

Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

### 2.) In general, what do most simple machines do? Simple machines make work easier by reducing the force needed.

Name: Simple Machines Study Guide Force and Work- 1.) To be considered work, you have to have a force and a distance through which the force acts. 2.) What is the formula for work? work = force x distance_

### Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

### Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

### Pre and Post-Visit Activities

Pre and Post-Visit Activities Simple Machines Table of Contents: Important Information: 2 Vocabulary: 3 Pre-Visit Activities: 4 Post-Visit Activities: 5 Vocabulary Word Search: 6 2 Important Information

### Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

### F output. F input. F = Force in Newtons ( N ) d output. d = distance ( m )

Mechanical Advantage, Speed Ratio, Work and Efficiency Machines Make Work Easier Machines help people do things that they normally couldn t do on their own. Mechanical Advantage A machine makes work easier

### Using mechanical energy for daily

unit 3 Using mechanical energy for daily activities Physics Chapter 3 Using mechanical energy for daily activities Competency Uses mechanical energy for day-to-day activities Competency level 3.1 Investigates

### To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.

The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events

### Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

### Building a Better Robot

http://tinyurl.com/betterro Building a Better Robot Tips and Techniques for a great robot design Weight and Balance Too much weight on non-drive wheel(s) Hard to make turns Need more force to overcome

### Educational Objectives To investigate equilibrium using a lever in two activities.

Lever: Equilibrium and Torque Main Topic Subtopic Learning Level Technology Level Activity Type Forces Simple Machines High Low Student Teacher s Notes Description: Investigate torque and equilibrium in

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Simple Machines: 4.G.1 Introduction to Simple Machines

### Experiment: Static and Kinetic Friction

PHY 201: General Physics I Lab page 1 of 6 OBJECTIVES Experiment: Static and Kinetic Friction Use a Force Sensor to measure the force of static friction. Determine the relationship between force of static

### MLGW 2016 A-BLAZING MODEL SOLAR CAR RACE RULES AND VEHICLE SPECIFICATIONS

MLGW 2016 A-BLAZING MODEL SOLAR CAR RACE RULES AND VEHICLE SPECIFICATIONS The object of the MLGW A-BLAZING MODEL SOLAR CAR RACE is to design and build a vehicle that will complete a race in the shortest

### Suspension and Steering Systems Operation. The Steering/Suspension System (Overview)

Suspension and Steering Systems Operation Below is an overview of the suspension and steering systems The Steering/Suspension System (Overview) "Suspension," when discussing cars, refers to the use of

### Lecture Presentation Chapter 7 Rotational Motion

Lecture Presentation Chapter 7 Rotational Motion Suggested Videos for Chapter 7 Prelecture Videos Describing Rotational Motion Moment of Inertia and Center of Gravity Newton s Second Law for Rotation Class

### Rebuild Instructions for 70001 and 70010 Transmission

Rebuild Instructions for 70001 and 70010 Transmission Brinn, Incorporated 1615 Tech Drive Bay City, MI 48706 Telephone 989.686.8920 Fax 989.686.6520 www.brinninc.com Notice Read all instructions before

### PuLLeys. SaraH TieCK. Simple Machines

PuLLeys i p e m h e SaraH TieCK s m l a c i n s Simple Machines s i m p e m l a c h i n e s PuLLeyS A Buddy Book by SaraH TieCK VISIT US AT www.abdopublishing.com Published by ABDO Publishing Company,

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### COEFFICIENT OF KINETIC FRICTION

COEFFICIENT OF KINETIC FRICTION LAB MECH 5.COMP From Physics with Computers, Vernier Software & Technology, 2000. INTRODUCTION If you try to slide a heavy box resting on the floor, you may find it difficult

### What is Energy? 1 45 minutes Energy and You: Energy Picnic Science, Physical Education Engage

Unit Grades K-3 Awareness Teacher Overview What is energy? Energy makes change; it does things for us. It moves cars along the road and boats over the water. It bakes a cake in the oven and keeps ice frozen

### FTC 2015-2016 DIY Mountain Build Guide

FTC 2015-2016 DIY Mountain Build Guide Assembly Instructions Check out the DIY2015-2016 Prints and BoM for individual part details. Release 1.0 9/10/15 Page 1 This guide and Bill of Materials are for constructing

### Simple Machines. Preparation. Objectives. Standards. Grade Level: 3-5 Group Size: 25-30 Time: 60 Minutes Presenters: 3-4

Simple Machines Preparation Grade Level: 3-5 Group Size: 25-30 Time: 60 Minutes Presenters: 3-4 Objectives This lesson will enable students to: Describe and define simple machines. Identify simple machines

### Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN ACTIVITY ASSESSMENT OPPORTUNITIES. Grade 3 Quarter 3 Activity 23

activity Levers for Lifting BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade Quarter Activity SC.C... The student understands that the motion of an object can be described and measured. SC.H... The

### Electric Motors and Drives

EML 2322L MAE Design and Manufacturing Laboratory Electric Motors and Drives To calculate the peak power and torque produced by an electric motor, you will need to know the following: Motor supply voltage,

### WindWise Education. 2 nd. T ransforming the Energy of Wind into Powerful Minds. editi. A Curriculum for Grades 6 12

WindWise Education T ransforming the Energy of Wind into Powerful Minds A Curriculum for Grades 6 12 Notice Except for educational use by an individual teacher in a classroom setting this work may not

### Mouse Trap Racing in the Computer Age!

Mouse Trap Racer in the Computer Age! Subject Area(s) Associated Unit Associated Lesson Activity Title Header Algebra, data analysis and probability, measurement, physics, number and operations, science

### Lab for Deflection and Moment of Inertia

Deflection and Moment of Inertia Subject Area(s) Associated Unit Lesson Title Physics Wind Effects on Model Building Lab for Deflection and Moment of Inertia Grade Level (11-12) Part # 2 of 3 Lesson #

### Fric-3. force F k and the equation (4.2) may be used. The sense of F k is opposite

4. FRICTION 4.1 Laws of friction. We know from experience that when two bodies tend to slide on each other a resisting force appears at their surface of contact which opposes their relative motion. The

### Belt Drives and Chain Drives. Power Train. Power Train

Belt Drives and Chain Drives Material comes for Mott, 2002 and Kurtz, 1999 Power Train A power train transmits power from an engine or motor to the load. Some of the most common power trains include: Flexible

### Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Simple Machines: 4.G.2 _ Inclined Planes and Pulleys Grade

### Fig 1 Power Transmission system of Tractor

POWER TRANSMISSION SYSTEM Transmission is a speed reducing mechanism, equipped with several gears (Fig. 1). It may be called a sequence of gears and shafts, through which the engine power is transmitted

### Pushes and Pulls. TCAPS Created June 2010 by J. McCain

Pushes and Pulls K i n d e r g a r t e n S c i e n c e TCAPS Created June 2010 by J. McCain Table of Contents Science GLCEs incorporated in this Unit............... 2-3 Materials List.......................................

### LINEAR ACTUATORS. Linear Actuators. Linear Actuators. Linear Actuators are Actuators that creates motion in a straight line, as contrasted

LINEAR ACTUATORS Linear Actuators Linear Actuators Linear Actuators are Actuators that creates motion in a straight line, as contrasted with circular motion of a conventional electric motor. Linear actuators

### Gear Trains. Introduction:

Gear Trains Introduction: Sometimes, two or more gears are made to mesh with each other to transmit power from one shaft to another. Such a combination is called gear train or train of toothed wheels.

### Newton s Law of Motion

chapter 5 Newton s Law of Motion Static system 1. Hanging two identical masses Context in the textbook: Section 5.3, combination of forces, Example 4. Vertical motion without friction 2. Elevator: Decelerating

### Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

### Explore 3: Crash Test Dummies

Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

### Newton s Laws Quiz Review

Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

### Pulleys. Experiment 1 The Lone Pulley

Pulleys Well, I hope you used the lever lesson to get some leverage on this work, energy and simple machines concept. This lesson we re going to pulley ourselves up by our bootstraps and play with these

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### You ll have leverage as you guide

Teacher s Guide Simple Machines Dear Educator, You ll have leverage as you guide students in the exploration of simple machines. In KIDS DISCOVER Simple Machines, your young scientists will learn about

### Tips For Selecting DC Motors For Your Mobile Robot

Tips For Selecting DC Motors For Your Mobile Robot By AJ Neal When building a mobile robot, selecting the drive motors is one of the most important decisions you will make. It is a perfect example of an

### SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS

SOLID MECHANICS TUTORIAL MECHANISMS KINEMATICS - VELOCITY AND ACCELERATION DIAGRAMS This work covers elements of the syllabus for the Engineering Council exams C105 Mechanical and Structural Engineering

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### Shoulder Extension Exercise Using Theraband

Shoulder Extension Exercise Using Theraband Loop the theraband around the stable surface at chest height Lift your chest and pull your arm behind you Keep your neck long and relaxed Make sure you keep

### BUILDINGA 1/10 SCALE FLATBED TRAILER

VOLUME 1, ISSUE 1 BUILDINGA 1/10 SCALE FLATBED TRAILER BUILT, DESIGNED & WRITTEN BY NATHAN MYERS MATERIALS: FEATURES: While the design was kept simple to allow anyone to be able to build their own trailer,

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### Quick and Easy Simple Machine Experiments to Share with Your Kids

Quick and Easy Simple Machine Experiments to Share with Your Kids By Aurora Lipper Pulleys and levers are simple machines, and they make our lives easier. They make it easier to lift, move and build things.