Physics 1022: Chapter 14 Waves

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Physics 1022: Chapter 14 Waves"

Transcription

1 Phys 10: Introduction, Pg 1 Physics 10: Chapter 14 Waves Anatomy of a wave Simple harmonic motion Energy and simple harmonic motion Phys 10: Introduction, Pg Page 1 1

2 Waves New Topic Phys 10: Introduction, Pg 3 Simple Harmonic Motion: The restoring force is proportional to the negative of the displacement (like F=-kx) ma = F d x m = kx dt d x dt k + x m = 0 d x + ω x = 0, with ω = dt k m general solution: x = Acos( ω t + φ) A is amplitude, φ is phase angle. They are determined by initial conditions (the value of x and v at t=0.) Phys 10: Introduction, Pg 4 Page

3 Phase angle x = Acos( ω t + φ) dx v = = Aω sin( ωt + φ) dt A measure of different starting positions (and velocities) Both A and φ can be determined by initial conditions: At t = 0 : x v 0 0 = Acosφ, = ωasinφ A = x 0 + v0 tanφ = x ω ( v / ω) Phys 10: Introduction, Pg 5 0 0, The graph shows a particle in SHM. (a) What is the phase constant φ 0? (b) What is the phase of the particle at the numbered points on the graph? (c) Place dots (with labels) on the circle to indicate the particle s position corresponding to the numbered points. Phys 10: Introduction, Pg 6 Page 3 3

4 What does the v vs. t graph look like? A particle moves CCW around a circle at constant speed. From the phase constants, show the particle s initial position and sketch two cycles of the x vs. t graph. Phys 10: Introduction, Pg 7 Simple Harmonic Circular Motion If we look at uniform circular motion from the side, the object appears to move in simple harmonic motion Top View: v = v 0 v x = v 0 v = v 0 v x = 0 y A x θ x Consider the x-position of the object: x = Acos θ now θ = ω t x = Acos (ωt) Side View: y Click here for demo x = +A Phys 10: Introduction, Pg 8 Page 4 4

5 ConcepTest 4(Post)Energy in SHM This is the potential energy diagram of a particle oscillating on a spring. What is the equilibrium length of the spring? 1. 1 cm. 16 cm 3. 0 cm 4. 4 cm 5. 8 cm 6. cannot be determined from the graph Phys 10: Introduction, Pg 9 ConcepTest 5(Post)Energy in SHM If the particle s turning points are 14 cm and 6 cm, draw a line that indicates the total energy and then determine the particle s maximum kinetic energy J. 5 J J J J J 7. other E tot ~ 6.5 J Phys 10: Introduction, Pg 10 Page 5 5

6 Energy in Simple Harmonic Motion Energy of the oscillating system at any time is constant: E total = PE spring + KE mass ENERGY IS CONSERVED k k x max = A x m F restore m F restore at end, x = A and v = 0 (KE = 0) E total = PE spring = 1 / ka at any point in between E total = 1 / kx + 1 / mv m equilibrium position at x = 0, PE = 0 and v = v 0 E total = KE mass = 1 / mv 0 Phys 10: Introduction, Pg ka = mvmax What will be the turning points if the particle s total energy is doubled? Draw a graph of the particle s kinetic energy as a function of position. Phys 10: Introduction, Pg 1 Page 6 6

7 ConcepTest 6(Post)Simple Harmonic Motion A block oscillating on a spring has a period of T = 4 s. If the mass of the block is halved, what is the new period? 1. 1 s. s 3..8 s 4. 4 s s 6. 8 s s Phys 10: Introduction, Pg 13 ConcepTest 7(Post)Simple Harmonic Motion A block oscillating on a spring has a period of T = 4 s. If the spring constant is quadrupled, what is the new period? 1. 1 s. s 3..8 s 4. 4 s s 6. 8 s s Phys 10: Introduction, Pg 14 Page 7 7

8 ConcepTest 8(Post)Simple Harmonic Motion A block oscillating on a spring has a period of T = 4 s. If the oscillation amplitude is doubled, what is the new period? 1. 1 s. s 3..8 s 4. 4 s s 6. 8 s s Phys 10: Introduction, Pg 15 The graph shows x vs. t for a particle in SHM. (a) Draw the v vs. t and the a vs. t graphs. (b) When x is greater than zero, is a ever greater than zero? When? (c) When x is greater than zero, is v ever greater than zero? When? Can we describe the entire motion of this oscillating system? Phys 10: Introduction, Pg 16 Page 8 8

9 Based on this reference graph of x vs. t, draw the new graphs that represent the following conditions: (a) amplitude and frequency are doubled (b) amplitude is halved and mass is quadrupled (c) phase constant is increased by π/ rad (d) max. speed is doubled while amplitude stays constant Phys 10: Introduction, Pg 17 Simple Pendulum New Topic Phys 10: Introduction, Pg 18 Page 9 9

10 ConcepTest 9(Post)Simple Pendulum A pendulum on Planet X, where the value of g is unknown, oscillates with a period of T = 4 s. If the mass is quadrupled, what is the new period? 1. 1 s. s 3..8 s 4. 4 s s 6. 8 s s Phys 10: Introduction, Pg 19 The Simple Pendulum Consider only small oscillations sinθ θ (Try this on your calculator, but θ must be in radians!) Restoring force: F = mg sin θ = - mg θ = mg x/l = (mg/l) x Spring Oscillator F = kx T = π m / k Pendulum F = mg/l x T = π m / (mg/l) T = π L / g Period of a pendulum does NOT depend on ý mass ý amplitude Phys 10: Introduction, Pg 0 Page 10 10

11 ConcepTest 1(Post)Simple Pendulum If a pendulum with period T on Earth is taken to the Moon, how will the period change? 1. increases. decreases 3. stays the same 4. no way to tell Phys 10: Introduction, Pg 1 ConcepTest 13(Post)Simple Pendulum If a mass-spring system with period T on Earth is taken to the Moon, how will the period change? 1. increases. decreases 3. stays the same 4. no way to tell Phys 10: Introduction, Pg Page 11 11

12 ConcepTest 14(Post)Simple Pendulum A pendulum in an elevator has period T when the elevator is at rest. If the elevator is accelerating upward, how will the period change? 1. increases. decreases 3. stays the same 4. no way to tell What happens to the period of the pendulum if the elevator is in free fall? Phys 10: Introduction, Pg 3 ConcepTest 15(Post)To the Center of the Earth A hole is drilled through the center of the Earth and emerges on the other side. You jump into the hole. What happens to you? 1. you fall to the center and stop. you go all the way through and continue off into space 3. you fall to the other side of the Earth and stay there 4. you fall to the other side of the Earth and then return 5. you won t fall at all Phys 10: Introduction, Pg 4 Page 1 1

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Restating Hooke s law The equation of motion Phase, frequency, amplitude Simple Pendulum Damped and Forced oscillations Resonance Harmonic Motion A lot of motion in the real world

More information

Periodic Motion or Oscillations. Physics 232 Lecture 01 1

Periodic Motion or Oscillations. Physics 232 Lecture 01 1 Periodic Motion or Oscillations Physics 3 Lecture 01 1 Periodic Motion Periodic Motion is motion that repeats about a point of stable equilibrium Stable Equilibrium Unstable Equilibrium A necessary requirement

More information

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max

both double. A. T and v max B. T remains the same and v max doubles. both remain the same. C. T and v max Q13.1 An object on the end of a spring is oscillating in simple harmonic motion. If the amplitude of oscillation is doubled, how does this affect the oscillation period T and the object s maximum speed

More information

Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1

Hooke s Law. Spring. Simple Harmonic Motion. Energy. 12/9/09 Physics 201, UW-Madison 1 Hooke s Law Spring Simple Harmonic Motion Energy 12/9/09 Physics 201, UW-Madison 1 relaxed position F X = -kx > 0 F X = 0 x apple 0 x=0 x > 0 x=0 F X = - kx < 0 x 12/9/09 Physics 201, UW-Madison 2 We know

More information

Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: x (cm) 10.0 Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Simple Harmonic Motion Name: Lab Partner: Section: 10.1 Purpose Simple harmonic motion will be examined in this experiment. 10.2 Introduction A periodic motion is one that repeats itself in

More information

p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object:

p = F net t (2) But, what is the net force acting on the object? Here s a little help in identifying the net force on an object: Harmonic Oscillator Objective: Describe the position as a function of time of a harmonic oscillator. Apply the momentum principle to a harmonic oscillator. Sketch (and interpret) a graph of position as

More information

Physics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.

Physics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there. Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Advanced Higher Physics: MECHANICS. Simple Harmonic Motion

Advanced Higher Physics: MECHANICS. Simple Harmonic Motion Advanced Higher Physics: MECHANICS Simple Harmonic Motion At the end of this section, you should be able to: Describe examples of simple harmonic motion (SHM). State that in SHM the unbalanced force is

More information

MECHANICS IV - SIMPLE HARMONIC MOTION

MECHANICS IV - SIMPLE HARMONIC MOTION M-IV-p.1 A. OSCILLATIONS B. SIMPLE PENDULUM C. KINEMATICS OF SIMPLE HARMONIC MOTION D. SPRING-AND-MASS SYSTEM E. ENERGY OF SHM F. DAMPED HARMONIC MOTION G. FORCED VIBRATION A. OSCILLATIONS A to-and-fro

More information

8 SIMPLE HARMONIC MOTION

8 SIMPLE HARMONIC MOTION 8 SIMPLE HARMONIC MOTION Chapter 8 Simple Harmonic Motion Objectives After studying this chapter you should be able to model oscillations; be able to derive laws to describe oscillations; be able to use

More information

PHYS-2020: General Physics II Course Lecture Notes Section VII

PHYS-2020: General Physics II Course Lecture Notes Section VII PHYS-2020: General Physics II Course Lecture Notes Section VII Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

More information

turn-table in terms of SHM and UCM: be plotted as a sine wave. n Think about spinning a ball on a string or a ball on a

turn-table in terms of SHM and UCM: be plotted as a sine wave. n Think about spinning a ball on a string or a ball on a RECALL: Angular Displacement & Angular Velocity Think about spinning a ball on a string or a ball on a turn-table in terms of SHM and UCM: If you look at the ball from the side, its motion could be plotted

More information

Type: Double Date: Simple Harmonic Motion III. Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10

Type: Double Date: Simple Harmonic Motion III. Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10 Type: Double Date: Objective: Simple Harmonic Motion II Simple Harmonic Motion III Homework: Read 10.3, Do CONCEPT QUEST #(7) Do PROBLEMS #(5, 19, 28) Ch. 10 AP Physics B Mr. Mirro Simple Harmonic Motion

More information

Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

More information

UNIT 14: HARMONIC MOTION

UNIT 14: HARMONIC MOTION Name St.No. - Date(YY/MM/DD) / / Section UNIT 14: HARMONIC MOTION Approximate Time three 100-minute sessions Back and Forth and Back and Forth... Cameo OBJECTIVES 1. To learn directly about some of the

More information

LABORATORY 9. Simple Harmonic Motion

LABORATORY 9. Simple Harmonic Motion LABORATORY 9 Simple Harmonic Motion Purpose In this experiment we will investigate two examples of simple harmonic motion: the mass-spring system and the simple pendulum. For the mass-spring system we

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HRMONIC MOION PREVIOUS EMCE QUESIONS ENGINEERING. he displacement of a particle executin SHM is iven by :y = 5 sin 4t +. If is the time period and 3 the mass of the particle is ms, the kinetic enery

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION PERIODIC MOTION SIMPLE HARMONIC MOTION If a particle moves such that it repeats its path regularly after equal intervals of time, its motion is said to be periodic. The interval of time required to complete

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Chapter 1. Oscillations. Oscillations

Chapter 1. Oscillations. Oscillations Oscillations 1. A mass m hanging on a spring with a spring constant k has simple harmonic motion with a period T. If the mass is doubled to 2m, the period of oscillation A) increases by a factor of 2.

More information

SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE

SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE MISN-0-26 SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE SIMPLE HARMONIC MOTION: SHIFTED ORIGIN AND PHASE by Kirby Morgan 1. Dynamics of Harmonic Motion a. Force Varies in Magnitude and Direction................

More information

Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case.

Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. HW1 Possible Solutions Notice numbers may change randomly in your assignments and you may have to recalculate solutions for your specific case. Tipler 14.P.003 An object attached to a spring has simple

More information

y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement)

y = a sin ωt or y = a cos ωt then the object is said to be in simple harmonic motion. In this case, Amplitude = a (maximum displacement) 5.5 Modelling Harmonic Motion Periodic behaviour happens a lot in nature. Examples of things that oscillate periodically are daytime temperature, the position of a weight on a spring, and tide level. If

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion.

2. The graph shows how the displacement varies with time for an object undergoing simple harmonic motion. Practice Test: 29 marks (37 minutes) Additional Problem: 31 marks (45 minutes) 1. A transverse wave travels from left to right. The diagram on the right shows how, at a particular instant of time, the

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Objective: In this exercise you will investigate the simple harmonic motion of mass suspended from a helical (coiled) spring. Apparatus: Spring 1 Table Post 1 Short Rod 1 Right-angled

More information

Chapter 24 Physical Pendulum

Chapter 24 Physical Pendulum Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...

More information

Simple Harmonic Motion

Simple Harmonic Motion Periodic motion Earth around the sun Elastic ball bouncing up an down Quartz in your watch, computer clock, ipod clock, etc. Heart beat, and many more In taking your pulse, you count 70.0 heartbeats in

More information

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

Lecture Presentation Chapter 14 Oscillations

Lecture Presentation Chapter 14 Oscillations Lecture Presentation Chapter 14 Oscillations Suggested Videos for Chapter 14 Prelecture Videos Describing Simple Harmonic Motion Details of SHM Damping and Resonance Class Videos Oscillations Basic Oscillation

More information

Physics Exam 2 Formulas

Physics Exam 2 Formulas INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Simple harmonic motion is one of the most common motions found in nature and can be observed from the microscopic vibration of atoms in a solid to rocking of a supertanker on the

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 9M Object: Apparatus: To determine the force constant of a spring and then study the harmonic motion of that spring when it is loaded with a mass m. Force sensor, motion sensor,

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Simple Harmonic Motion

Simple Harmonic Motion SHM-1 Siple Haronic Motion A pendulu, a ass on a spring, and any other kinds of oscillators ehibit a special kind of oscillatory otion called Siple Haronic Motion (SHM). SHM occurs whenever : i. there

More information

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!

1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ) # x (t) = A! n. t + ) # v(0) = A! 1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating

More information

Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements)

Test - A2 Physics. Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Test - A2 Physics Primary focus Magnetic Fields - Secondary focus electric fields (including circular motion and SHM elements) Time allocation 40 minutes These questions were ALL taken from the June 2010

More information

Recitation 2 Chapters 12 and 13

Recitation 2 Chapters 12 and 13 Recitation 2 Chapters 12 and 13 Problem 12.20. 65.0 kg bungee jumper steps off a bridge with a light bungee cord tied to her and the bridge (Figure P12.20. The unstretched length of the cord is 11.0 m.

More information

Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

More information

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these.

A) F = k x B) F = k C) F = x k D) F = x + k E) None of these. CT16-1 Which of the following is necessary to make an object oscillate? i. a stable equilibrium ii. little or no friction iii. a disturbance A: i only B: ii only C: iii only D: i and iii E: All three Answer:

More information

Physics 2101 Section 3 Apr 14th Announcements: Quiz Friday Midterm #4, April Midterm #4,

Physics 2101 Section 3 Apr 14th Announcements: Quiz Friday Midterm #4, April Midterm #4, Physics 2101 Section 3 Apr 14 th Announcements: Quiz Friday Midterm #4, April 28 th Final: May 11 th-7:30am Class Website: 6 pm Make up Final: May 15 th -7:30am http://www.phys.lsu.edu/classes/spring2010/phys2101

More information

7. Kinetic Energy and Work

7. Kinetic Energy and Work Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

More information

A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product 1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

More information

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

THE NOT SO SIMPLE PENDULUM

THE NOT SO SIMPLE PENDULUM INTRODUCTION: THE NOT SO SIMPLE PENDULUM This laboratory experiment is used to study a wide range of topics in mechanics like velocity, acceleration, forces and their components, the gravitational force,

More information

F mg (10.1 kg)(9.80 m/s ) m

F mg (10.1 kg)(9.80 m/s ) m Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

Lecture 11 Chapter 16 Waves I

Lecture 11 Chapter 16 Waves I Lecture 11 Chapter 16 Waves I Forced oscillator from last time Slinky example Coiled wire Rope Transverse Waves demonstrator Longitudinal Waves magnetic balls Standing Waves machine Damped simple harmonic

More information

Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

More information

Solutions 2.4-Page 140

Solutions 2.4-Page 140 Solutions.4-Page 4 Problem 3 A mass of 3 kg is attached to the end of a spring that is stretched cm by a force of 5N. It is set in motion with initial position = and initial velocity v = m/s. Find the

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

More information

Center of Mass/Momentum

Center of Mass/Momentum Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

More information

SAT Subject Physics Formula Reference

SAT Subject Physics Formula Reference This guide is a compilation of about fifty of the most important physics formulas to know for the SAT Subject test in physics. (Note that formulas are not given on the test.) Each formula row contains

More information

Experiment 4: Harmonic Motion Analysis

Experiment 4: Harmonic Motion Analysis Experiment 4: Harmonic Motion Analysis Background In this experiment you will investigate the influence of damping on a driven harmonic oscillator and study resonant conditions. The following theoretical

More information

Lecture L20 - Energy Methods: Lagrange s Equations

Lecture L20 - Energy Methods: Lagrange s Equations S. Widnall 6.07 Dynamics Fall 009 Version 3.0 Lecture L0 - Energy Methods: Lagrange s Equations The motion of particles and rigid bodies is governed by ewton s law. In this section, we will derive an alternate

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

Experiment Type: Open-Ended

Experiment Type: Open-Ended Simple Harmonic Oscillation Overview Experiment Type: Open-Ended In this experiment, students will look at three kinds of oscillators and determine whether or not they can be approximated as simple harmonic

More information

HW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian

HW 7 Q 14,20,20,23 P 3,4,8,6,8. Chapter 7. Rotational Motion of the Object. Dr. Armen Kocharian HW 7 Q 14,20,20,23 P 3,4,8,6,8 Chapter 7 Rotational Motion of the Object Dr. Armen Kocharian Axis of Rotation The radian is a unit of angular measure The radian can be defined as the arc length s along

More information

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability

Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free

More information

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy

Computer Experiment. Simple Harmonic Motion. Kinematics and Dynamics of Simple Harmonic Motion. Evaluation copy INTRODUCTION Simple Harmonic Motion Kinematics and Dynamics of Simple Harmonic Motion Computer Experiment 16 When you suspend an object from a spring, the spring will stretch. If you pull on the object,

More information

Homework #7 Solutions

Homework #7 Solutions MAT 0 Spring 201 Problems Homework #7 Solutions Section.: 4, 18, 22, 24, 4, 40 Section.4: 4, abc, 16, 18, 22. Omit the graphing part on problems 16 and 18...4. Find the general solution to the differential

More information

Chapter 14. Oscillations. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 14. Oscillations. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 14 Oscillations PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 14 Oscillations Reading Quiz 1. The type of function that describes simple harmonic motion is A.

More information

Simple Harmonic Motion. Simple Harmonic Motion

Simple Harmonic Motion. Simple Harmonic Motion Siple Haronic Motion Basic oscillations are siple haronic otion (SHM) where the position as a function of tie is given by a sign or cosine Eaples of actual otion: asses on springs vibration of atos in

More information

Wave topics 1. Waves - multiple choice

Wave topics 1. Waves - multiple choice Wave topics 1 Waves - multiple choice When an object is oscillating in simple harmonic motion in the vertical direction, its maximum speed occurs when the object (a) is at its highest point. (b) is at

More information

People s Physics book 3e Ch 25-1

People s Physics book 3e Ch 25-1 The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

More information

PES 2130 Fall 2014, Spendier Lecture 10/Page 1

PES 2130 Fall 2014, Spendier Lecture 10/Page 1 PES 2130 Fall 2014, Spendier Lecture 10/Page 1 Lecture today: Chapter 16 Waves-1 1) Wave on String and Wave Equation 2) Speed of a transverse wave on a stretched string 3) Energy and power of a wave traveling

More information

Single and Double plane pendulum

Single and Double plane pendulum Single and Double plane pendulum Gabriela González 1 Introduction We will write down equations of motion for a single and a double plane pendulum, following Newton s equations, and using Lagrange s equations.

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

SIMPLE HARMONIC MOTION

SIMPLE HARMONIC MOTION SIMPLE HARMONIC MOTION PURPOSE The purpose of this experiment is to investigate one of the fundamental types of motion that exists in nature - simple harmonic motion. The importance of this kind of motion

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

SHM Simple Harmonic Motion revised June 16, 2012

SHM Simple Harmonic Motion revised June 16, 2012 SHM Simple Harmonic Motion revised June 16, 01 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

More information

Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, Chapter 3: Mo?on in Two and Three Dimensions

Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, Chapter 3: Mo?on in Two and Three Dimensions Phys 201 Fall 2009 Thursday, September 17, 2009 & Tuesday, September 19, 2009 Chapter 3: Mo?on in Two and Three Dimensions Displacement, Velocity and Acceleration Displacement describes the location of

More information

PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS

PHYSICS 212 INDUCED VOLTAGES AND INDUCTANCE WORKBOOK ANSWERS PHYSICS 212 CHAPTER 20 INDUCED VOLTAGES AND INDUCTANCE WORKOOK ANSWERS STUDENT S FULL NAME (y placing your name above and submitting this for credit you are affirming this to be predominantly your own

More information

Electromagnetic waves can propagate through a vacuum

Electromagnetic waves can propagate through a vacuum LECTURE 5 Ch 15 WAVES 1 What is a wave? A disturbance that propagates Examples Waves on the surface of water Sound waves in air Electromagnetic waves Seismic waves through the earth Electromagnetic waves

More information

Milky Way Galaxy. Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years

Milky Way Galaxy. Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Circular Motion Milky Way Galaxy Orbital Speed of Solar System: 220 km/s Orbital Period: 225 Million Years Mercury: 48 km/s Venus: 35 km/s Earth: 30 km/s Mars: 24 km/s Jupiter: 13 km/s Neptune: 5 km/s

More information

ICP/Physics 8 Oscillations lab p. 1 NAME PARTNER'S NAME. Date TA Lab Day/Time LAB 7: OSCILLATIONS

ICP/Physics 8 Oscillations lab p. 1 NAME PARTNER'S NAME. Date TA Lab Day/Time LAB 7: OSCILLATIONS ICP/Physics 8 Oscillations lab p. 1 NAME PARTNER'S NAME Date TA Lab Day/Time LAB 7: OSCILLATIONS Introduction We can use the tools we have been developing all semester to understand a great deal about

More information

Simple Harmonic Motion(SHM) Harmonic Motion and Waves. Period and Frequency. Period and Frequency

Simple Harmonic Motion(SHM) Harmonic Motion and Waves. Period and Frequency. Period and Frequency Simple Harmonic Motion(SHM) Harmonic Motion and Waves Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period

More information

16 OSCILLATORY MOTION AND WAVES

16 OSCILLATORY MOTION AND WAVES CHAPTER 16 OSCILLATORY MOTION AND WAVES 549 16 OSCILLATORY MOTION AND WAVES Figure 16.1 There are at least four types of waves in this picture only the water waves are evident. There are also sound waves,

More information

Lecture 2: Interference

Lecture 2: Interference Lecture 2: Interference λ S 1 d S 2 Lecture 2, p.1 Today Interference of sound waves Two-slit interference Lecture 2, p.2 Review: Wave Summary ( ) ( ) The formula y x,t = Acos kx ωt describes a harmonic

More information

Waves I: Generalities, Superposition & Standing Waves

Waves I: Generalities, Superposition & Standing Waves Chapter 5 Waves I: Generalities, Superposition & Standing Waves 5.1 The Important Stuff 5.1.1 Wave Motion Wave motion occurs when the mass elements of a medium such as a taut string or the surface of a

More information

Chapter 14 Wave Motion

Chapter 14 Wave Motion Query 17. If a stone be thrown into stagnating water, the waves excited thereby continue some time to arise in the place where the stone fell into the water, and are propagated from thence in concentric

More information

LECTURE 3 TRAVELING WAVES. Instructor: Kazumi Tolich

LECTURE 3 TRAVELING WAVES. Instructor: Kazumi Tolich LECTURE 3 TRAVELING WAVES Instructor: Kazumi Tolich Lecture 3 2 Reading chapter 15-1 to 15-2 Transverse and longitudinal waves Moving displacement of a wave pulse Speed of waves Harmonic waves 3 Quiz:

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Lecture L13 - Conservative Internal Forces and Potential Energy

Lecture L13 - Conservative Internal Forces and Potential Energy S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L13 - Conservative Internal Forces and Potential Energy The forces internal to a system are of two types. Conservative forces, such as gravity;

More information

Standard Expression for a Traveling Wave

Standard Expression for a Traveling Wave Course PHYSICS260 Assignment 3 Due at 11:00pm on Wednesday, February 20, 2008 Standard Expression for a Traveling Wave Description: Identify independant variables and parameters in the standard travelling

More information

Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

More information

Yimin Math Centre. 2/3 Unit Math Homework for Year Motion Part Simple Harmonic Motion The Differential Equation...

Yimin Math Centre. 2/3 Unit Math Homework for Year Motion Part Simple Harmonic Motion The Differential Equation... 2/3 Unit Math Homework for Year 12 Student Name: Grade: Date: Score: Table of contents 9 Motion Part 3 1 9.1 Simple Harmonic Motion The Differential Equation................... 1 9.2 Projectile Motion

More information

Chapter 13. Mechanical Waves

Chapter 13. Mechanical Waves Chapter 13 Mechanical Waves A harmonic oscillator is a wiggle in time. The oscillating object will move back and forth between +A and A forever. If a harmonic oscillator now moves through space, we create

More information

Phys 2101 Gabriela González. A wave travels, but the particles producing the wave don t! Particles oscillate about a fixed mean position.

Phys 2101 Gabriela González. A wave travels, but the particles producing the wave don t! Particles oscillate about a fixed mean position. Phys 2101 Gabriela González A wave travels, but the particles producing the wave don t! Particles oscillate about a fixed mean position. 2 1 Assume a sinusoidal wave travels in the x-direction. At each

More information

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems

PHYS 202 Laboratory #4. Activity 1: Thinking about Oscillating Systems SHM Lab 1 Introduction PHYS 202 Laboratory #4 Oscillations and Simple Harmonic Motion In this laboratory, we examine three simple oscillatory systems: a mass on a spring, a pendulum, and a mass on a rubber

More information

How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation

How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy work-energy theorem How to calculate work done by a varying force along a curved path The meaning and calculation

More information

Waves and Sound. An Introduction to Waves and Wave Properties Wednesday, November 19, 2008

Waves and Sound. An Introduction to Waves and Wave Properties Wednesday, November 19, 2008 Waves and Sound An Introduction to Waves and Wave Properties Wednesday, November 19, 2008 Mechanical Wave A mechanical wave is a disturbance which propagates through a medium with little or no net displacement

More information

AP Physics B Free Response Solutions

AP Physics B Free Response Solutions AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible

More information