52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D

Size: px
Start display at page:

Download "52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D"

Transcription

1 Computer Graphics 1. Derive the equation for the intercept form of the line. 2. Explain the frame buffer, point and pixels. 3. Describe the Digital Differential Analyzer (DDA) for line drawing. 4. Explain Bresenham s line drawing algorithm. 5. Explain the Aliasing and Antialiasing. 6. What is a difference between Raster scan CRT and Vector Scan CRT. 7. Consider three different Raster systems with resolutions of 640x480 and 1280x1024. What size of frame buffer is needed for the system to store 12 bits per pixel? How much storage is required if 24 bits per pixel are to be stored. 8. Compare the advantage and disadvantage of CRT and LCD. 9. Write a routine using LINE and MOVE command for any image. 10. Explain construction and working of the Direct View Storage Tube with suitable diagram. 11. Implement the DDA algorithm to draw a line form (0, 0) to (8, 8). 12. Write integer Bresenham s algorithm and show how it draws a line whose starting point is (4, 4) and end point is (-3, 0). 13. What is the difference between generation of character by stroke and Bitmap method? Explain with suitable example. 14. Explain super sampling process and why is it used? 15. What are the basic disadvantages of the Shadow -mask CRT. 16. How 4-Connected area filling approach is differs from 8-Connected approach? 17. How inside tests are performed using Odd-parity Rule? Explain with example. 18. Explain positive and negative orientation in brief. 19. What are basic advantages and disadvantages of segment? 20. How renaming is useful? Explain popular application of renaming. 21. What are segments? State the need for having a segmented display file. 22. Give general form for rotation about any given point P (h, k). 23. What is the difference between geometric and co-ordinate transformations? 24. Prove that two 2-D transformation are commute i.e., T1 T2 = T2 T1 25. Explain instance transformation with suitable example. Prove that simultaneous shearing is not same as a shearing is one direction followed by in another direction. 26. What is composite transformation? 27. Derive the transformation matrix for the rotation by angle θ counter clock- wise about origin.

2 28. Find the form of matrix of reflection about any given line with slope m and passing through (0, b). 29. Prove that two 2- D rotations above the origin, commute i.e., R1 R2 = R2 R1 30. Explain the transformation used in magnification and reduction with respect to origin. Find the new coordinates of the triangle A(0, 0) B(1, 1) C(5, 2) after it has been reduced to half its size. 31. Write a 2 x 2 transformation matrix for each of the following rotation about the origin. (a) counterclockwise by Π (b) clockwise by Π / What are the new co-ordinates of the point (2, -4) after a 60 degree rotation of the object. 33. Prove that one scaling transformation and one rotation in two dimensional transformation are commute i.e., S. R = R. S 34. Differentiate between Window and a Viewport. 35. Draw the flow chart illustrating the logic of the Sutherland Hodgeman algorithm. 36. Explain the Cohen Sutherland line clipping algorithm. Use this algorithm to find the visible portion of the line P(40, 80) Q(120, 30) inside the window, the window is defined as ABCD : A(20, 20) B(60, 20) C (60, 40) and D (20, 40). 37. What is Windowing? Explain its importance. 38. What difference is between object and image space? 39. Describe generalized clipping in your own words. 40. Describe the method by which any point can be determined that it is left or right to the any line segment. 41. How Cohen- Sutherland Hodgeman polygon differs from each other. 42. Explain Morphing with an example. 43. Show that reflection about the line Y = X is attained by reversing co-ordinates. That is, M L (x, y) = (y, x) 44. Explain instance transformation with suitable example. 45. Explain three dimensional transformations. 46. Derive the matrix for the rotation about Z- axis by an angle θ. 47. Explain the difference between parallel and perspective projection. 48. Explain Three- Dimensional Clipping. 49. Explain structure and functioning of the thumbwheel. 50. What is difference mouse and trackball? 51. What is event handling? Explain in details with examples.

3 52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D clipping. 54. Explain the working structure of light pen. 55. Explain the functioning of Joystick with diagram. 56. What is positioning techniques? 57. Discuss the Inking and pointing procedure. 58. Explain the difference between locator device and the selector device. 59. Explain the concept of multiple windowing. 60. What is Ray Tracing Algorithm for hidden surface removal?explain mathematically how do we find which planes are visible using ray tracing algorithms. 61. Explain Bezier Curves in detail. Given control point (10,100),(50,100),(70,120) and (100,150). Calculate coordinates of any four point lying on the corresponding Bezier Curve. 62. Derive simple illumination model.include the contribution of Diffuse, ambient and specular reflection. 63. Explain Depth buffer method for hidden surface detection. 64. How Z-buffer method and scan line methods differ? 65. Explain Painter s Algorithm. 66. What are basic disadvantages of Z-buffer method? 67. Explain the B-Spline curve with suitable example. 68. Explain Bezier curve with suitable example. 69. Explain the Hermite curve in detail. 70. What are periodic curves? Explain in brief. 71. What is basic difference between B-Spline and Bezier curves? 72. How B-Spline curve differ from Hermite curve? 73. Describe the properties of Bezier curve. 74. Describe the properties of B-Spline curves. 75. Construct enough points on the Bezier curve whose control points are P0(4, 2), P1(8, 8), P2 (16, 4) to draw an accurate sketch. a. What is degree of freedom b. What are the co-ordinates at u = 0.5? 76. Explain the idea about Convex Hull. 77. Calculate the blending functions for the periodic B-Spline curves for P = Explain the frame buffer, point and pixels. Explain working of Raster scan CRT. 79. Describe the Digital Differential Analyzer (DDA) for line drawing. 80. Explain Bresenham s line drawing algorithm.

4 81. Consider three different Raster systems with resolutions of 640x480 and 1280x1024. What size of frame buffer is needed for the system to store 12 bits per pixel? How much storage is required if 24 bits per pixel are to be stored. 82. Draws a line whose starting point is (4, 4) and end point is (-3, 0) using Bresenham s line drawing algorithm. 83. What is the difference between geometric and co-ordinate transformations? Prove that two 2-D transformation are commute i.e., T1 T2 = T2 T1 84. What is composite transformation? Derive the transformation matrix for the rotation by angle θ counter clock- wise about origin. 85. Differentiate between Window and a Viewport. Explain the Cohen Sutherland line clipping algorithm. Use this algorithm to find the visible portion of the line P(40, 80) Q(120, 30) inside the window, the window is defined as ABCD : A(20, 20) B(60, 20) C (60, 40) and D (20, 40). 86. Explain the following: a. Aliasing and Antialiasing. b. Difference between Raster scan CRT and Vector Scan CRT. c. Advantage and disadvantage of CRT and LCD. d. Disadvantages of the Shadow -mask CRT. 87. Give general form for rotation about any given point P (h, k). What is the difference between geometric and co-ordinate transformations?prove that two 2-D transformation are commute i.e., T1 T2 = T2 T Explain instance transformation with suitable example. Prove that simultaneous shearing is not same as a shearing is one direction followed by in another direction. 89. What is composite transformation? Derive the transformation matrix for the rotation by angle θ counter clock- wise about origin. 90. Find the form of matrix of reflection about any given line with slope m and passing through (0, b). a. Explain the transformation used in magnification and reduction with respect to origin. Find the new coordinates of the triangle A(0, 0) B(1, 1) C(5, 2) after it has been reduced to half its size. b. Write a 2 x 2 transformation matrix for each of the following rotation about the origin. (c) counterclockwise by Π (d) clockwise by Π / 2 (e) What are the new co-ordinates of the point (2, -4) after a 60 degree rotation of the object.

5 91. Differentiate between Window and a Viewport. Draw the flow chart illustrating the logic of the Sutherland Hodgeman algorithm. Explain the Cohen Sutherland line clipping algorithm. Use this algorithm to find the visible portion of the line P(40, 80) Q(120, 30) inside the window, the window is defined as ABCD : A(20, 20) B(60, 20) C (60, 40) and D (20, 40). 92. What difference is between object and image space? Describe generalized clipping in your own words. Describe the method by which any point can be determined that it is left or right to the any line segment. 93. Explain how Cohen- Sutherland Hodgeman polygon differs from each other. 94. Explain three dimensional transformations. Derive the matrix for the rotation about Z- axis by an angle θ. 95. Explain the difference between parallel and perspective projection in detail. 96. Explain Three- Dimensional Clipping. 97. Define Vanishing points. Is the location of the vanishing point directly related to the viewing point. Explain how? 98. What are the various logical graphics input primitives. What are the various input modes in which they work? Give some examples. 99. What is ray tracing algorithm for hidden surface removal? Explain mathematically how do we find which planes are visible using ray tracing algorithm What are the two spaces in which hidden surface algorithms works? How does sorting and coherence speed up calculation in such algorithms

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

LABORATORY MANUAL. CS-4508 Computer Graphics & Multimedia. July 2012 Onwards. Devi Ahilya Vishwavidyalaya. School of Computer Science & IT

LABORATORY MANUAL. CS-4508 Computer Graphics & Multimedia. July 2012 Onwards. Devi Ahilya Vishwavidyalaya. School of Computer Science & IT LABORATORY MANUAL CS-4508 Computer Graphics & Multimedia July 2012 Onwards Devi Ahilya Vishwavidyalaya School of Computer Science & IT We make things happen... Producing world class IT Professionals Since

More information

Books. CS155b Computer Graphics. Homework. Additional References. Syllabus. Goals

Books. CS155b Computer Graphics. Homework. Additional References. Syllabus. Goals CS155b Computer Graphics Instructor: Giovanni Motta (gim@ieee.org) Volen, Room #255. Phone: x62718 Class: Mon. and Wed. from 5 to 6:30pm Abelson #131 Teaching Assistants: Anthony Bucci (abucci@cs) John

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

Polygon Scan Conversion & Shading

Polygon Scan Conversion & Shading 3D Rendering Pipeline (for direct illumination) Polygon Scan Conversion & Shading Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2004 3D Primitives 3D Modeling Coordinates Modeling Transformation

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics: Drawing Lines. Emmanuel Agu

CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics: Drawing Lines. Emmanuel Agu CS 543: Computer Graphics Lecture 9 (Part I): Raster Graphics: Drawing Lines Emmanuel Agu 2D Graphics Pipeline Clipping Object World Coordinates Applying world window Object subset window to viewport mapping

More information

COMPUTER GRAPHICS IMPORTANT QUESTION AND ANSWERS. Computer graphics

COMPUTER GRAPHICS IMPORTANT QUESTION AND ANSWERS. Computer graphics Computer graphics 1. Define Computer graphics. Computer graphics remains one of the most existing and rapidly growing computer fields. Computer graphics may be defined as a pictorial representation or

More information

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Rendering Pipeline Matthias Teschner Computer Science Department University of Freiburg Outline introduction rendering pipeline vertex processing primitive processing

More information

Department of M.Sc SOFTWARE ENGINEERING

Department of M.Sc SOFTWARE ENGINEERING Maria College of Engineering and Technology, Attoor Department of M.Sc SOFTWARE ENGINEERING Academic Year: 2013-2014 (Even) COMPUTER GRAPHICS (XCS 354) Two Mark Questions UNIT I 1. Define Computer graphics?

More information

Important Question with Answer

Important Question with Answer Important Question with Answer Q1. What do you mean by computer graphics? Ans. The branch of science and technology concerned with methods and techniques for converting data to or from visual presentation

More information

Polygon Scan Conversion and Z-Buffering

Polygon Scan Conversion and Z-Buffering Polygon Scan Conversion and Z-Buffering Rasterization Rasterization takes shapes like triangles and determines which pixels to fill. 2 Filling Polygons First approach:. Polygon Scan-Conversion Rasterize

More information

Introduction Week 1, Lecture 1

Introduction Week 1, Lecture 1 CS 430/536 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Lecture Notes, CEng 477

Lecture Notes, CEng 477 Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make

More information

Syllabus S.Y.B.Sc. (IT) SEMESTER - III, PAPER - II COMPUTER GRAPHIC

Syllabus S.Y.B.Sc. (IT) SEMESTER - III, PAPER - II COMPUTER GRAPHIC 1 Syllabus S.Y.B.Sc. (IT) SEMESTER - III, PAPER - II COMPUTER GRAPHIC Unit I Introduction Computer Graphics and Primitive Algorithms: Introduction to Image and Objects, Image Representation, Basic Graphics

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list Scan-Line Fill Can also fill by maintaining a data structure of all intersections of polygons with scan lines Sort by scan line Fill each span vertex order generated by vertex list desired order Scan-Line

More information

(Refer Slide Time: 00:01:23 min)

(Refer Slide Time: 00:01:23 min) Computer Aided Design Prof. Anoop Chalwa Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 02 Input Output Devices, Raster Graphics Today we will be talking about

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

More information

Computer Graphics: Visualisation Lecture 3. Taku Komura Institute for Perception, Action & Behaviour

Computer Graphics: Visualisation Lecture 3. Taku Komura Institute for Perception, Action & Behaviour Computer Graphics: Visualisation Lecture 3 Taku Komura tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour Taku Komura Computer Graphics & VTK 1 Last lecture... Visualisation can be greatly

More information

2.1 COLOR AND GRAYSCALE LEVELS

2.1 COLOR AND GRAYSCALE LEVELS 2.1 COLOR AND GRAYSCALE LEVELS Various color and intensity-level options can be made available to a user, depending on the capabilities and design objectives of a particular system. General purpose raster-scan

More information

9. Illumination and Shading

9. Illumination and Shading -128-9. Illumination and Shading Approaches for visual realism: 1. Remove hidden surfaces 2. Shade the visible surfaces and reproduce shadows 3. Reproduce surface properties: texture degree of transparency,

More information

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su (sarasu@cs.tufts.edu) TA: Matt Menke

More information

Lecture 6: Polygon rendering and OpenGL

Lecture 6: Polygon rendering and OpenGL Lecture 6: Polygon rendering and OpenGL 3-Dimensional Objects Bounded by Planar Surfaces (Facets) Y 4 8 Z 5 6 1 2 3 7 X NUMERICAL TOPOLOGICAL DATA DATA Points Lines Faces 1. [0,0,0] 1. 1>>2 1,2,4,4 2.

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics About the Tutorial To display a picture of any size on a computer screen is a difficult process. Computer graphics are used to simplify this process. Various algorithms and techniques are used to generate

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 torsten@sfu.ca www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

3 Drawing 2D shapes. Launch form Z.

3 Drawing 2D shapes. Launch form Z. 3 Drawing 2D shapes Launch form Z. If you have followed our instructions to this point, five icons will be displayed in the upper left corner of your screen. You can tear the three shown below off, to

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry (meaning equal measure ). In this section, we will investigate two types of isometries: translations

More information

Graphics Systems. Dr. S.M. Malaek. Assistant: M. Younesi

Graphics Systems. Dr. S.M. Malaek. Assistant: M. Younesi Graphics Systems Dr. S.M. Malaek Assistant: M. Younesi Overview Display Hardware How are images displayed? Overview (Display Devices) Raster Scan Displays Random Scan Displays Color CRT Monirors Direct

More information

Adobe Illustrator CS5 Part 1: Introduction to Illustrator

Adobe Illustrator CS5 Part 1: Introduction to Illustrator CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Illustrator CS5 Part 1: Introduction to Illustrator Summer 2011, Version 1.0 Table of Contents Introduction...2 Downloading

More information

Image Formation. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Image Formation. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Image Formation CMPT 361 Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Today Input and displays of a graphics system Raster display basics: pixels, the frame buffer, raster scan,

More information

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems Comp 410/510 Computer Graphics Spring 2016 Introduction to Graphics Systems Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware (PC with graphics card)

More information

Introduction Week 1, Lecture 1

Introduction Week 1, Lecture 1 CS 430/585 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Cabri Geometry Application User Guide

Cabri Geometry Application User Guide Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting

More information

(Refer Slide Time: 5: 46)

(Refer Slide Time: 5: 46) Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 3 Section II CRT Display Devices Hello and welcome back to the lecture on

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics A Top-Down Approach Using OpenGL FIFTH EDITION EDWARD ANGEL UNIVERSITY OF NEW MEXICO PEARSON Addison Wesley Boston San Francisco New York London Toronto Sydney Tokyo Singapore

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

Architecture of a Graphics Pipeline. 6 February 2007 CMPT370 Dr. Sean Ho Trinity Western University

Architecture of a Graphics Pipeline. 6 February 2007 CMPT370 Dr. Sean Ho Trinity Western University Architecture of a Graphics Pipeline 6 February 2007 CMPT370 Dr. Sean Ho Trinity Western University Review last time Visual computing: Computer graphics and image analysis Objectives of visual computing

More information

3D Graphics Hardware Graphics II Spring 1999

3D Graphics Hardware Graphics II Spring 1999 3D Graphics Hardware 15-463 Graphics II Spring 1999 Topics Graphics Architecture Uniprocessor Acceleration Front-End Multiprocessing Pipelined Parallel Back-End Multiprocessing Pipelined Parallel Graphics

More information

Chapter 1. Chapter 1. Computer Graphics 2006/2007 Chapter 1. Introduction 1

Chapter 1. Chapter 1. Computer Graphics 2006/2007 Chapter 1. Introduction 1 Chapter 1 Chapter 1 Chapter 1. Introduction 1.1 Graphics and computer science 1.2 Advantages of interactive graphics 1.3 Computer graphics applications 1.4 Characteristic devices 1.5 Storage formats 1.6

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 7 Transformations in 2-D Welcome everybody. We continue the discussion on 2D

More information

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation SkillsUSA Contest Projects 3-D Visualization and Animation Click the Print this Section button above to automatically print the specifications for this contest. Make sure your printer is turned on before

More information

COMPUTER GRAPHICS Computer Graphics

COMPUTER GRAPHICS Computer Graphics COMPUTER GRAPHICS Computer Graphics involves display, manipulation and storage of pictures and experimental data for proper visualization using a computer. Typical graphics system comprises of a host computer

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

Object based manipulation with 3D scenes in mobile environments

Object based manipulation with 3D scenes in mobile environments Object based manipulation with 3D scenes in mobile environments Ladislav Cmolik 1, Zdenek Mikovec 1, Pavel Slavik 1 1 Czech Technical University in Prague Karlovo namesti 13, Prague 2, Czech Republic {cmolikl,

More information

CHAPTER 17 REFLECTION & MIRRORS

CHAPTER 17 REFLECTION & MIRRORS Physics Name Hour Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 17 REFLECTION & MIRRORS Day Plans for the day Assignments for the day 1 17.1 Reflection

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture-2 CRT Display Devices

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture-2 CRT Display Devices Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture-2 CRT Display Devices Welcome back everybody to the video lecture on Computer

More information

Perceptual Color Spaces

Perceptual Color Spaces Perceptual Color Spaces Background Humans can perceive thousands of colors, and only about a couple of dozen gray shades (cones/rods) Divided into two major areas: full color and pseudo color processing

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

Image Synthesis. Ambient Occlusion. computer graphics & visualization

Image Synthesis. Ambient Occlusion. computer graphics & visualization Image Synthesis Ambient Occlusion Ambient Occlusion (AO) Ambient Occlusion approximates the diffuse illumination of a surface based on its directly visible occluders Idea: Trace rays through the normal-oriented

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering 3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive

More information

CS 325 Introduction to Computer Graphics

CS 325 Introduction to Computer Graphics CS 325 Introduction to Computer Graphics 01 / 29 / 2014 Instructor: Michael Eckmann Today s Topics Comments/Questions? Bresenham-Line drawing algorithm Midpoint-circle drawing algorithm Ellipse drawing

More information

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: c@csie.ntu.edu.tw Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang

More information

Polygon Clipping and Filling Week 3, Lecture 5

Polygon Clipping and Filling Week 3, Lecture 5 CS 430/536 Computer Graphics I Polygon Clipping and Filling Week 3, Lecture 5 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science

More information

Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal

Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

More information

(Refer Slide Time: 1:21)

(Refer Slide Time: 1:21) Introduction to Computer Graphics Dr. Prem Kalra Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 5 Polygon Clipping and Polygon Scan Conversion We have been

More information

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Graphical displays are generally of two types: vector displays and raster displays. Vector displays Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

More information

Shadow Algorithms. Image Processing and Computer Graphics. Matthias Teschner. Computer Science Department University of Freiburg

Shadow Algorithms. Image Processing and Computer Graphics. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Shadow Algorithms Matthias Teschner Computer Science Department University of Freiburg University of Freiburg Computer Science Department Computer Graphics - 1 Outline

More information

STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2 STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

More information

Advanced Visual Effects with Direct3D

Advanced Visual Effects with Direct3D Advanced Visual Effects with Direct3D Presenters: Mike Burrows, Sim Dietrich, David Gosselin, Kev Gee, Jeff Grills, Shawn Hargreaves, Richard Huddy, Gary McTaggart, Jason Mitchell, Ashutosh Rege and Matthias

More information

Adobe Illustrator CS5

Adobe Illustrator CS5 What is Illustrator? Adobe Illustrator CS5 An Overview Illustrator is a vector drawing program. It is often used to draw illustrations, cartoons, diagrams, charts and logos. Unlike raster images that store

More information

CS 418: Interactive Computer Graphics. Compositing & Blending in WebGL. Eric Shaffer

CS 418: Interactive Computer Graphics. Compositing & Blending in WebGL. Eric Shaffer CS 418: Interactive Computer Graphics Compositing & Blending in WebGL Eric Shaffer Lynwood Dunn (1904-1998) Visual effects pioneer Acme-Dunn optical printer Run film through a projector and re-photograph

More information

GeoGebra. 10 lessons. Gerrit Stols

GeoGebra. 10 lessons. Gerrit Stols GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

More information

1. Application of Computer Graphics

1. Application of Computer Graphics 1. Application of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe outline form. Multi-window environment is also favored for

More information

Computer Graphics. Anders Hast

Computer Graphics. Anders Hast Computer Graphics Anders Hast Who am I?! 5 years in Industry after graduation, 2 years as high school teacher.! 1996 Teacher, University of Gävle! 2004 PhD, Computerised Image Processing " Computer Graphics!

More information

Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional.

Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional. Workspace tour Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional. In this tutorial, you will become familiar with the terminology and workspace

More information

Adobe Illustrator CS2 Tutorial University of Texas at Austin School of Information IT Lab Jin Wu Fall, 2006

Adobe Illustrator CS2 Tutorial University of Texas at Austin School of Information IT Lab Jin Wu Fall, 2006 Introduction: Adobe Illustrator CS2 Tutorial University of Texas at Austin School of Information IT Lab Jin Wu Fall, 2006 Illustrator is a vector-based imaging program. Unlike PhotoShop, which deals in

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)

More information

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch.

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch. CSCI 480 Computer Graphics Lecture 1 Course Overview January 14, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ Administrative Issues Modeling Animation

More information

GRAPHICAL INPUT TECHNIQUES Graphical Input Techniques, Positioning Techniques, Positional Constraints, Rubber band Techniques

GRAPHICAL INPUT TECHNIQUES Graphical Input Techniques, Positioning Techniques, Positional Constraints, Rubber band Techniques SYLLABUS BASICS OF COMPUTER GRAPHICS: - Introduction, What is computer Graphics?, Area of Computer Graphics, Design and Drawing, Animation Multimedia applications, Simulation, How are pictures actually

More information

We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks

We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks Review: Last Week We have learnt that the order of how we draw objects in 3D can have an influence on how the final image looks Depth-sort Z-buffer Transparency Orientation of triangle (order of vertices)

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Math 497C Sep 17, 2004 1 Curves and Surfaces Fall 2004, PSU Lecture Notes 4 1.9 Curves of Constant Curvature Here we show that the only curves in the plane with constant curvature are lines and circles.

More information

Course Title: Math Grade Level: Fourth

Course Title: Math Grade Level: Fourth Course Title: Math Grade Level: Fourth Math - Fourth Page 1 2.1 Numbers, Number Systems and Number Relationships: A. Use expanded notation to represent whole numbers or decimals. B. Apply number theory

More information

For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola.

For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola. For each equation, identify the vertex, focus, axis of symmetry, and directrix. Then graph the parabola. 1. (x 3) 2 = 12(y 7) The equation is in standard form and the squared term is x, which means that

More information

Programmable graphics pipeline. Adapted from Suresh Venkatasubramanian UPenn

Programmable graphics pipeline. Adapted from Suresh Venkatasubramanian UPenn Programmable graphics pipeline Adapted from Suresh Venkatasubramanian UPenn Lecture Outline A historical perspective on the graphics pipeline Dimensions of innovation. Where we are today Fixed-function

More information

CS 248 Assignment 2 Polygon Scan Conversion. CS248 Presented by Josh Wiseman Stanford University October 19, 2005

CS 248 Assignment 2 Polygon Scan Conversion. CS248 Presented by Josh Wiseman Stanford University October 19, 2005 CS 248 Assignment 2 Polygon Scan Conversion CS248 Presented by Josh Wiseman Stanford University October 19, 2005 Announcements First thing: read README.animgui animgui.. It should tell you everything you

More information

Computer Graphics. Computer graphics deals with all aspects of creating images with a computer

Computer Graphics. Computer graphics deals with all aspects of creating images with a computer Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware Software Applications Computer graphics is using computers to generate and display images based on

More information

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) What is Computer Graphics (CG)? Computer

More information

Prerequisite: Completion of ENG 98, if required, and CGA 101 or written permission of instructor

Prerequisite: Completion of ENG 98, if required, and CGA 101 or written permission of instructor Salem Community College Course Syllabus Course Title: Digital Illustration Course Code: CGA 132 Lecture Hours: 2 Laboratory Hours: 2 Credits: 3 Course Description: Digital Illustration will increase student

More information

Computer Graphics Lecture Notes

Computer Graphics Lecture Notes Computer Graphics Lecture Notes DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN (Approved by AICTE, Accredited by NBA, Affiliated to JNTU Kakinada) BHIMAVARAM 534

More information

CS445 Exam 2 Solutions

CS445 Exam 2 Solutions November 20, 2014 Name CS445 Exam 2 Solutions Fall 2014 1. (max = 15) 5. (max = 21) 2. (max = 8) 6. (max = 16) 3. (max = 10) 7. (max = 16) 4. (max = 14) Final Score: (max=100) Please try to write legibly.

More information

INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages

INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages Wolfgang K. Glloi Technical University of Berlin and University of Minnesota Tochnisths BodischBle Dnrmstadt FACHEEKE1CH 1NFORMATIK

More information

Touchstone -A Fresh Approach to Multimedia for the PC

Touchstone -A Fresh Approach to Multimedia for the PC Touchstone -A Fresh Approach to Multimedia for the PC Emmett Kilgariff Martin Randall Silicon Engineering, Inc Presentation Outline Touchstone Background Chipset Overview Sprite Chip Tiler Chip Compressed

More information

Assignment 2: Transformation and Viewing

Assignment 2: Transformation and Viewing Assignment : Transformation and Viewing 5-46 Graphics I Spring Frank Pfenning Sample Solution Based on the homework by Kevin Milans kgm@andrew.cmu.edu Three-Dimensional Homogeneous Coordinates (5 pts)

More information

Video Lectures on Computer Graphics. Section II: CRT DISPLAY DEVICES

Video Lectures on Computer Graphics. Section II: CRT DISPLAY DEVICES Video Lectures on Computer Graphics Section II: CRT DISPLAY DEVICES Examples of Computer Graphics Devices: CRT, EGA/CGA/VGA/SVGA monitors, plotters, data matrix, laser printers, Films, flat panel devices,

More information

QUADRATIC BÉZIER CURVES

QUADRATIC BÉZIER CURVES On-Line Geometric Modeling Notes QUADRATIC BÉZIER CURVES Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis Overview The Bézier curve

More information

Introduction to Computer Graphics 8. Buffers and Mapping techniques (A)

Introduction to Computer Graphics 8. Buffers and Mapping techniques (A) Introduction to Computer Graphics 8. Buffers and Mapping techniques (A) National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: Hearn and Baker, Computer Graphics, 3rd Ed., Prentice

More information

DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design

DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design John L. Lowther and Ching Kuang Shene Programmers: Yuan Zhao and Yan Zhou (ver 1) Budirijanto Purnomo (ver 2) Michigan Technological

More information

Radiosity Rendering. Chapter 5. References. 5.1 Radiosity

Radiosity Rendering. Chapter 5. References. 5.1 Radiosity Chapter 5 Radiosity Rendering References As you read the following, you may find the following summary helpful. In particular it contains some nice illustrations. http://www.siggraph.org/education/materials/hypergraph/radiosity/radiosity.htm

More information

3D Distance from a Point to a Triangle

3D Distance from a Point to a Triangle 3D Distance from a Point to a Triangle Mark W. Jones Technical Report CSR-5-95 Department of Computer Science, University of Wales Swansea February 1995 Abstract In this technical report, two different

More information

Image Synthesis. Transparency. computer graphics & visualization

Image Synthesis. Transparency. computer graphics & visualization Image Synthesis Transparency Inter-Object realism Covers different kinds of interactions between objects Increasing realism in the scene Relationships between objects easier to understand Shadows, Reflections,

More information

Advanced Graphics Programming Using C/C++

Advanced Graphics Programming Using C/C++ CORIOLIS GROUP BOOK Advanced Graphics Programming Using C/C++ Loren Heiny John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore Contents Preface Who This Book Is For A Glance Inside What

More information

Ray Casting. Simplest shading approach is to perform independent lighting calculation for every pixel

Ray Casting. Simplest shading approach is to perform independent lighting calculation for every pixel Ray Casting Simplest shading approach is to perform independent lighting calculation for every pixel ) ) ( ) ( ( + + + = i i n i S i i D AL A E I R V K I L N K I K I I Polygon Rendering Methods Given a

More information

Realtime 3D Computer Graphics Virtual Reality. Graphics

Realtime 3D Computer Graphics Virtual Reality. Graphics Realtime 3D Computer Graphics Virtual Reality Graphics Computer graphics 3D-Computer graphics (3D-CG) currently used for Simulators, VR, Games (real-time) Design (CAD) Entertainment (Movies), Art Education

More information

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC Cork Education and Training Board Programme Module for 3 Dimensional Computer Graphics Leading to Level 5 FETAC 3 Dimensional Computer Graphics 5N5029 3 Dimensional Computer Graphics 5N5029 1 Version 3

More information

Students will understand 1. use numerical bases and the laws of exponents

Students will understand 1. use numerical bases and the laws of exponents Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

More information