52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D

Size: px
Start display at page:

Download "52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D"

Transcription

1 Computer Graphics 1. Derive the equation for the intercept form of the line. 2. Explain the frame buffer, point and pixels. 3. Describe the Digital Differential Analyzer (DDA) for line drawing. 4. Explain Bresenham s line drawing algorithm. 5. Explain the Aliasing and Antialiasing. 6. What is a difference between Raster scan CRT and Vector Scan CRT. 7. Consider three different Raster systems with resolutions of 640x480 and 1280x1024. What size of frame buffer is needed for the system to store 12 bits per pixel? How much storage is required if 24 bits per pixel are to be stored. 8. Compare the advantage and disadvantage of CRT and LCD. 9. Write a routine using LINE and MOVE command for any image. 10. Explain construction and working of the Direct View Storage Tube with suitable diagram. 11. Implement the DDA algorithm to draw a line form (0, 0) to (8, 8). 12. Write integer Bresenham s algorithm and show how it draws a line whose starting point is (4, 4) and end point is (-3, 0). 13. What is the difference between generation of character by stroke and Bitmap method? Explain with suitable example. 14. Explain super sampling process and why is it used? 15. What are the basic disadvantages of the Shadow -mask CRT. 16. How 4-Connected area filling approach is differs from 8-Connected approach? 17. How inside tests are performed using Odd-parity Rule? Explain with example. 18. Explain positive and negative orientation in brief. 19. What are basic advantages and disadvantages of segment? 20. How renaming is useful? Explain popular application of renaming. 21. What are segments? State the need for having a segmented display file. 22. Give general form for rotation about any given point P (h, k). 23. What is the difference between geometric and co-ordinate transformations? 24. Prove that two 2-D transformation are commute i.e., T1 T2 = T2 T1 25. Explain instance transformation with suitable example. Prove that simultaneous shearing is not same as a shearing is one direction followed by in another direction. 26. What is composite transformation? 27. Derive the transformation matrix for the rotation by angle θ counter clock- wise about origin.

2 28. Find the form of matrix of reflection about any given line with slope m and passing through (0, b). 29. Prove that two 2- D rotations above the origin, commute i.e., R1 R2 = R2 R1 30. Explain the transformation used in magnification and reduction with respect to origin. Find the new coordinates of the triangle A(0, 0) B(1, 1) C(5, 2) after it has been reduced to half its size. 31. Write a 2 x 2 transformation matrix for each of the following rotation about the origin. (a) counterclockwise by Π (b) clockwise by Π / What are the new co-ordinates of the point (2, -4) after a 60 degree rotation of the object. 33. Prove that one scaling transformation and one rotation in two dimensional transformation are commute i.e., S. R = R. S 34. Differentiate between Window and a Viewport. 35. Draw the flow chart illustrating the logic of the Sutherland Hodgeman algorithm. 36. Explain the Cohen Sutherland line clipping algorithm. Use this algorithm to find the visible portion of the line P(40, 80) Q(120, 30) inside the window, the window is defined as ABCD : A(20, 20) B(60, 20) C (60, 40) and D (20, 40). 37. What is Windowing? Explain its importance. 38. What difference is between object and image space? 39. Describe generalized clipping in your own words. 40. Describe the method by which any point can be determined that it is left or right to the any line segment. 41. How Cohen- Sutherland Hodgeman polygon differs from each other. 42. Explain Morphing with an example. 43. Show that reflection about the line Y = X is attained by reversing co-ordinates. That is, M L (x, y) = (y, x) 44. Explain instance transformation with suitable example. 45. Explain three dimensional transformations. 46. Derive the matrix for the rotation about Z- axis by an angle θ. 47. Explain the difference between parallel and perspective projection. 48. Explain Three- Dimensional Clipping. 49. Explain structure and functioning of the thumbwheel. 50. What is difference mouse and trackball? 51. What is event handling? Explain in details with examples.

3 52. Explain interrupt scheme for retrieving input data. Also explain any one algorithm for input device handling. 53. Explain the process of 3-D clipping. 54. Explain the working structure of light pen. 55. Explain the functioning of Joystick with diagram. 56. What is positioning techniques? 57. Discuss the Inking and pointing procedure. 58. Explain the difference between locator device and the selector device. 59. Explain the concept of multiple windowing. 60. What is Ray Tracing Algorithm for hidden surface removal?explain mathematically how do we find which planes are visible using ray tracing algorithms. 61. Explain Bezier Curves in detail. Given control point (10,100),(50,100),(70,120) and (100,150). Calculate coordinates of any four point lying on the corresponding Bezier Curve. 62. Derive simple illumination model.include the contribution of Diffuse, ambient and specular reflection. 63. Explain Depth buffer method for hidden surface detection. 64. How Z-buffer method and scan line methods differ? 65. Explain Painter s Algorithm. 66. What are basic disadvantages of Z-buffer method? 67. Explain the B-Spline curve with suitable example. 68. Explain Bezier curve with suitable example. 69. Explain the Hermite curve in detail. 70. What are periodic curves? Explain in brief. 71. What is basic difference between B-Spline and Bezier curves? 72. How B-Spline curve differ from Hermite curve? 73. Describe the properties of Bezier curve. 74. Describe the properties of B-Spline curves. 75. Construct enough points on the Bezier curve whose control points are P0(4, 2), P1(8, 8), P2 (16, 4) to draw an accurate sketch. a. What is degree of freedom b. What are the co-ordinates at u = 0.5? 76. Explain the idea about Convex Hull. 77. Calculate the blending functions for the periodic B-Spline curves for P = Explain the frame buffer, point and pixels. Explain working of Raster scan CRT. 79. Describe the Digital Differential Analyzer (DDA) for line drawing. 80. Explain Bresenham s line drawing algorithm.

4 81. Consider three different Raster systems with resolutions of 640x480 and 1280x1024. What size of frame buffer is needed for the system to store 12 bits per pixel? How much storage is required if 24 bits per pixel are to be stored. 82. Draws a line whose starting point is (4, 4) and end point is (-3, 0) using Bresenham s line drawing algorithm. 83. What is the difference between geometric and co-ordinate transformations? Prove that two 2-D transformation are commute i.e., T1 T2 = T2 T1 84. What is composite transformation? Derive the transformation matrix for the rotation by angle θ counter clock- wise about origin. 85. Differentiate between Window and a Viewport. Explain the Cohen Sutherland line clipping algorithm. Use this algorithm to find the visible portion of the line P(40, 80) Q(120, 30) inside the window, the window is defined as ABCD : A(20, 20) B(60, 20) C (60, 40) and D (20, 40). 86. Explain the following: a. Aliasing and Antialiasing. b. Difference between Raster scan CRT and Vector Scan CRT. c. Advantage and disadvantage of CRT and LCD. d. Disadvantages of the Shadow -mask CRT. 87. Give general form for rotation about any given point P (h, k). What is the difference between geometric and co-ordinate transformations?prove that two 2-D transformation are commute i.e., T1 T2 = T2 T Explain instance transformation with suitable example. Prove that simultaneous shearing is not same as a shearing is one direction followed by in another direction. 89. What is composite transformation? Derive the transformation matrix for the rotation by angle θ counter clock- wise about origin. 90. Find the form of matrix of reflection about any given line with slope m and passing through (0, b). a. Explain the transformation used in magnification and reduction with respect to origin. Find the new coordinates of the triangle A(0, 0) B(1, 1) C(5, 2) after it has been reduced to half its size. b. Write a 2 x 2 transformation matrix for each of the following rotation about the origin. (c) counterclockwise by Π (d) clockwise by Π / 2 (e) What are the new co-ordinates of the point (2, -4) after a 60 degree rotation of the object.

5 91. Differentiate between Window and a Viewport. Draw the flow chart illustrating the logic of the Sutherland Hodgeman algorithm. Explain the Cohen Sutherland line clipping algorithm. Use this algorithm to find the visible portion of the line P(40, 80) Q(120, 30) inside the window, the window is defined as ABCD : A(20, 20) B(60, 20) C (60, 40) and D (20, 40). 92. What difference is between object and image space? Describe generalized clipping in your own words. Describe the method by which any point can be determined that it is left or right to the any line segment. 93. Explain how Cohen- Sutherland Hodgeman polygon differs from each other. 94. Explain three dimensional transformations. Derive the matrix for the rotation about Z- axis by an angle θ. 95. Explain the difference between parallel and perspective projection in detail. 96. Explain Three- Dimensional Clipping. 97. Define Vanishing points. Is the location of the vanishing point directly related to the viewing point. Explain how? 98. What are the various logical graphics input primitives. What are the various input modes in which they work? Give some examples. 99. What is ray tracing algorithm for hidden surface removal? Explain mathematically how do we find which planes are visible using ray tracing algorithm What are the two spaces in which hidden surface algorithms works? How does sorting and coherence speed up calculation in such algorithms

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions.

B2.53-R3: COMPUTER GRAPHICS. NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. B2.53-R3: COMPUTER GRAPHICS NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007

Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007 Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203.

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6504 Subject

More information

INTRODUCTION TO RENDERING TECHNIQUES

INTRODUCTION TO RENDERING TECHNIQUES INTRODUCTION TO RENDERING TECHNIQUES 22 Mar. 212 Yanir Kleiman What is 3D Graphics? Why 3D? Draw one frame at a time Model only once X 24 frames per second Color / texture only once 15, frames for a feature

More information

A Short Introduction to Computer Graphics

A Short Introduction to Computer Graphics A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical

More information

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg

Image Processing and Computer Graphics. Rendering Pipeline. Matthias Teschner. Computer Science Department University of Freiburg Image Processing and Computer Graphics Rendering Pipeline Matthias Teschner Computer Science Department University of Freiburg Outline introduction rendering pipeline vertex processing primitive processing

More information

COMPUTER GRAPHICS IMPORTANT QUESTION AND ANSWERS. Computer graphics

COMPUTER GRAPHICS IMPORTANT QUESTION AND ANSWERS. Computer graphics Computer graphics 1. Define Computer graphics. Computer graphics remains one of the most existing and rapidly growing computer fields. Computer graphics may be defined as a pictorial representation or

More information

Introduction Week 1, Lecture 1

Introduction Week 1, Lecture 1 CS 430/536 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Lecture Notes, CEng 477

Lecture Notes, CEng 477 Computer Graphics Hardware and Software Lecture Notes, CEng 477 What is Computer Graphics? Different things in different contexts: pictures, scenes that are generated by a computer. tools used to make

More information

Essential Mathematics for Computer Graphics fast

Essential Mathematics for Computer Graphics fast John Vince Essential Mathematics for Computer Graphics fast Springer Contents 1. MATHEMATICS 1 Is mathematics difficult? 3 Who should read this book? 4 Aims and objectives of this book 4 Assumptions made

More information

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list

Scan-Line Fill. Scan-Line Algorithm. Sort by scan line Fill each span vertex order generated by vertex list Scan-Line Fill Can also fill by maintaining a data structure of all intersections of polygons with scan lines Sort by scan line Fill each span vertex order generated by vertex list desired order Scan-Line

More information

Important Question with Answer

Important Question with Answer Important Question with Answer Q1. What do you mean by computer graphics? Ans. The branch of science and technology concerned with methods and techniques for converting data to or from visual presentation

More information

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies

COMP175: Computer Graphics. Lecture 1 Introduction and Display Technologies COMP175: Computer Graphics Lecture 1 Introduction and Display Technologies Course mechanics Number: COMP 175-01, Fall 2009 Meetings: TR 1:30-2:45pm Instructor: Sara Su ([email protected]) TA: Matt Menke

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to Computer Graphics Torsten Möller TASC 8021 778-782-2215 [email protected] www.cs.sfu.ca/~torsten Today What is computer graphics? Contents of this course Syllabus Overview of course topics

More information

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.

Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example. An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points

More information

Cabri Geometry Application User Guide

Cabri Geometry Application User Guide Cabri Geometry Application User Guide Preview of Geometry... 2 Learning the Basics... 3 Managing File Operations... 12 Setting Application Preferences... 14 Selecting and Moving Objects... 17 Deleting

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Computer Graphics About the Tutorial To display a picture of any size on a computer screen is a difficult process. Computer graphics are used to simplify this process. Various algorithms and techniques are used to generate

More information

Introduction Week 1, Lecture 1

Introduction Week 1, Lecture 1 CS 430/585 Computer Graphics I Introduction Week 1, Lecture 1 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics A Top-Down Approach Using OpenGL FIFTH EDITION EDWARD ANGEL UNIVERSITY OF NEW MEXICO PEARSON Addison Wesley Boston San Francisco New York London Toronto Sydney Tokyo Singapore

More information

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation

SkillsUSA 2014 Contest Projects 3-D Visualization and Animation SkillsUSA Contest Projects 3-D Visualization and Animation Click the Print this Section button above to automatically print the specifications for this contest. Make sure your printer is turned on before

More information

Adobe Illustrator CS5 Part 1: Introduction to Illustrator

Adobe Illustrator CS5 Part 1: Introduction to Illustrator CALIFORNIA STATE UNIVERSITY, LOS ANGELES INFORMATION TECHNOLOGY SERVICES Adobe Illustrator CS5 Part 1: Introduction to Illustrator Summer 2011, Version 1.0 Table of Contents Introduction...2 Downloading

More information

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering

Computer Applications in Textile Engineering. Computer Applications in Textile Engineering 3. Computer Graphics Sungmin Kim http://latam.jnu.ac.kr Computer Graphics Definition Introduction Research field related to the activities that includes graphics as input and output Importance Interactive

More information

COMPUTER GRAPHICS Computer Graphics

COMPUTER GRAPHICS Computer Graphics COMPUTER GRAPHICS Computer Graphics involves display, manipulation and storage of pictures and experimental data for proper visualization using a computer. Typical graphics system comprises of a host computer

More information

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems

Comp 410/510. Computer Graphics Spring 2016. Introduction to Graphics Systems Comp 410/510 Computer Graphics Spring 2016 Introduction to Graphics Systems Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware (PC with graphics card)

More information

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Graphical displays are generally of two types: vector displays and raster displays. Vector displays Display technology Graphical displays are generally of two types: vector displays and raster displays. Vector displays Vector displays generally display lines, specified by their endpoints. Vector display

More information

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang

Computer Graphics. Introduction. Computer graphics. What is computer graphics? Yung-Yu Chuang Introduction Computer Graphics Instructor: Yung-Yu Chuang ( 莊 永 裕 ) E-mail: [email protected] Office: CSIE 527 Grading: a MatchMove project Computer Science ce & Information o Technolog og Yung-Yu Chuang

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis [email protected] 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model

We can display an object on a monitor screen in three different computer-model forms: Wireframe model Surface Model Solid model CHAPTER 4 CURVES 4.1 Introduction In order to understand the significance of curves, we should look into the types of model representations that are used in geometric modeling. Curves play a very significant

More information

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations

MMGD0203 Multimedia Design MMGD0203 MULTIMEDIA DESIGN. Chapter 3 Graphics and Animations MMGD0203 MULTIMEDIA DESIGN Chapter 3 Graphics and Animations 1 Topics: Definition of Graphics Why use Graphics? Graphics Categories Graphics Qualities File Formats Types of Graphics Graphic File Size Introduction

More information

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11

Content. Chapter 4 Functions 61 4.1 Basic concepts on real functions 62. Credits 11 Content Credits 11 Chapter 1 Arithmetic Refresher 13 1.1 Algebra 14 Real Numbers 14 Real Polynomials 19 1.2 Equations in one variable 21 Linear Equations 21 Quadratic Equations 22 1.3 Exercises 28 Chapter

More information

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch.

Course Overview. CSCI 480 Computer Graphics Lecture 1. Administrative Issues Modeling Animation Rendering OpenGL Programming [Angel Ch. CSCI 480 Computer Graphics Lecture 1 Course Overview January 14, 2013 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s13/ Administrative Issues Modeling Animation

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: *Define object in local coordinates *Place object in world coordinates (modeling transformation)

More information

Computer Graphics. Anders Hast

Computer Graphics. Anders Hast Computer Graphics Anders Hast Who am I?! 5 years in Industry after graduation, 2 years as high school teacher.! 1996 Teacher, University of Gävle! 2004 PhD, Computerised Image Processing " Computer Graphics!

More information

INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages

INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages INTERACTIVE COMPUTER GRAPHICS Data Structures, Algorithms, Languages Wolfgang K. Glloi Technical University of Berlin and University of Minnesota Tochnisths BodischBle Dnrmstadt FACHEEKE1CH 1NFORMATIK

More information

1. Application of Computer Graphics

1. Application of Computer Graphics 1. Application of Computer Graphics Computer-Aided Design for engineering and architectural systems etc. Objects maybe displayed in a wireframe outline form. Multi-window environment is also favored for

More information

Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional.

Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional. Workspace tour Welcome to CorelDRAW, a comprehensive vector-based drawing and graphic-design program for the graphics professional. In this tutorial, you will become familiar with the terminology and workspace

More information

Touchstone -A Fresh Approach to Multimedia for the PC

Touchstone -A Fresh Approach to Multimedia for the PC Touchstone -A Fresh Approach to Multimedia for the PC Emmett Kilgariff Martin Randall Silicon Engineering, Inc Presentation Outline Touchstone Background Chipset Overview Sprite Chip Tiler Chip Compressed

More information

GRAPHICAL INPUT TECHNIQUES Graphical Input Techniques, Positioning Techniques, Positional Constraints, Rubber band Techniques

GRAPHICAL INPUT TECHNIQUES Graphical Input Techniques, Positioning Techniques, Positional Constraints, Rubber band Techniques SYLLABUS BASICS OF COMPUTER GRAPHICS: - Introduction, What is computer Graphics?, Area of Computer Graphics, Design and Drawing, Animation Multimedia applications, Simulation, How are pictures actually

More information

Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal

Everyday Mathematics. Grade 4 Grade-Level Goals CCSS EDITION. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goal Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

More information

Advanced Visual Effects with Direct3D

Advanced Visual Effects with Direct3D Advanced Visual Effects with Direct3D Presenters: Mike Burrows, Sim Dietrich, David Gosselin, Kev Gee, Jeff Grills, Shawn Hargreaves, Richard Huddy, Gary McTaggart, Jason Mitchell, Ashutosh Rege and Matthias

More information

Image Synthesis. Transparency. computer graphics & visualization

Image Synthesis. Transparency. computer graphics & visualization Image Synthesis Transparency Inter-Object realism Covers different kinds of interactions between objects Increasing realism in the scene Relationships between objects easier to understand Shadows, Reflections,

More information

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC

Cork Education and Training Board. Programme Module for. 3 Dimensional Computer Graphics. Leading to. Level 5 FETAC Cork Education and Training Board Programme Module for 3 Dimensional Computer Graphics Leading to Level 5 FETAC 3 Dimensional Computer Graphics 5N5029 3 Dimensional Computer Graphics 5N5029 1 Version 3

More information

Dhiren Bhatia Carnegie Mellon University

Dhiren Bhatia Carnegie Mellon University Dhiren Bhatia Carnegie Mellon University University Course Evaluations available online Please Fill! December 4 : In-class final exam Held during class time All students expected to give final this date

More information

Computer Graphics Hardware An Overview

Computer Graphics Hardware An Overview Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and

More information

How To Use Design Mentor

How To Use Design Mentor DesignMentor: A Pedagogical Tool for Computer Graphics and Computer Aided Design John L. Lowther and Ching Kuang Shene Programmers: Yuan Zhao and Yan Zhou (ver 1) Budirijanto Purnomo (ver 2) Michigan Technological

More information

FOREWORD. Executive Secretary

FOREWORD. Executive Secretary FOREWORD The Botswana Examinations Council is pleased to authorise the publication of the revised assessment procedures for the Junior Certificate Examination programme. According to the Revised National

More information

Digital 3D Animation

Digital 3D Animation Elizabethtown Area School District Digital 3D Animation Course Number: 753 Length of Course: 1 semester 18 weeks Grade Level: 11-12 Elective Total Clock Hours: 120 hours Length of Period: 80 minutes Date

More information

521493S Computer Graphics. Exercise 2 & course schedule change

521493S Computer Graphics. Exercise 2 & course schedule change 521493S Computer Graphics Exercise 2 & course schedule change Course Schedule Change Lecture from Wednesday 31th of March is moved to Tuesday 30th of March at 16-18 in TS128 Question 2.1 Given two nonparallel,

More information

BEZIER CURVES AND SURFACES

BEZIER CURVES AND SURFACES Department of Applied Mathematics and Computational Sciences University of Cantabria UC-CAGD Group COMPUTER-AIDED GEOMETRIC DESIGN AND COMPUTER GRAPHICS: BEZIER CURVES AND SURFACES Andrés Iglesias e-mail:

More information

GeoGebra. 10 lessons. Gerrit Stols

GeoGebra. 10 lessons. Gerrit Stols GeoGebra in 10 lessons Gerrit Stols Acknowledgements GeoGebra is dynamic mathematics open source (free) software for learning and teaching mathematics in schools. It was developed by Markus Hohenwarter

More information

Adobe Illustrator CS5

Adobe Illustrator CS5 What is Illustrator? Adobe Illustrator CS5 An Overview Illustrator is a vector drawing program. It is often used to draw illustrations, cartoons, diagrams, charts and logos. Unlike raster images that store

More information

3D Distance from a Point to a Triangle

3D Distance from a Point to a Triangle 3D Distance from a Point to a Triangle Mark W. Jones Technical Report CSR-5-95 Department of Computer Science, University of Wales Swansea February 1995 Abstract In this technical report, two different

More information

Degree Reduction of Interval SB Curves

Degree Reduction of Interval SB Curves International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:13 No:04 1 Degree Reduction of Interval SB Curves O. Ismail, Senior Member, IEEE Abstract Ball basis was introduced

More information

Computer Graphics Lecture Notes

Computer Graphics Lecture Notes Computer Graphics Lecture Notes DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN (Approved by AICTE, Accredited by NBA, Affiliated to JNTU Kakinada) BHIMAVARAM 534

More information

Lecture 9: Geometric map transformations. Cartographic Transformations

Lecture 9: Geometric map transformations. Cartographic Transformations Cartographic Transformations Analytical and Computer Cartography Lecture 9: Geometric Map Transformations Attribute Data (e.g. classification) Locational properties (e.g. projection) Graphics (e.g. symbolization)

More information

Computer Graphics. Computer graphics deals with all aspects of creating images with a computer

Computer Graphics. Computer graphics deals with all aspects of creating images with a computer Computer Graphics Computer graphics deals with all aspects of creating images with a computer Hardware Software Applications Computer graphics is using computers to generate and display images based on

More information

William Paterson University of New Jersey Department of Computer Science College of Science and Health Course Outline

William Paterson University of New Jersey Department of Computer Science College of Science and Health Course Outline William Paterson University of New Jersey Department of Computer Science College of Science and Health Course Outline 1. TITLE OF COURSE AND COURSE NUMBER: Computer Graphics, CS 461, Credits: 3, (Major

More information

What's the Spin? - Discover Properties of Geometric Rotations

What's the Spin? - Discover Properties of Geometric Rotations What's the Spin? - Discover Properties of Geometric Rotations Geometry Major Topics: Rotations and their relation to reflections NCTM Principles and Standards: Content Standards Geometry Apply transformations

More information

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A.

Vector Notation: AB represents the vector from point A to point B on a graph. The vector can be computed by B A. 1 Linear Transformations Prepared by: Robin Michelle King A transformation of an object is a change in position or dimension (or both) of the object. The resulting object after the transformation is called

More information

Chapter 23. The Reflection of Light: Mirrors

Chapter 23. The Reflection of Light: Mirrors Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted

More information

CPIT-285 Computer Graphics

CPIT-285 Computer Graphics Department of Information Technology B.S.Information Technology ABET Course Binder CPIT-85 Computer Graphics Prepared by Prof. Alhasanain Muhammad Albarhamtoushi Page of Sunday December 4 0 : PM Cover

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

Examples. Pac-Man, Frogger, Tempest, Joust,

Examples. Pac-Man, Frogger, Tempest, Joust, Examples Arcade Games Missile il Command, Space Invaders, Breakout, Centipede, Pac-Man, Frogger, Tempest, Joust, Important Traits: Easy-to-learn simple controls Move objects around the screen Single-screen

More information

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

More information

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9

Glencoe. correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 3-3, 5-8 8-4, 8-7 1-6, 4-9 Glencoe correlated to SOUTH CAROLINA MATH CURRICULUM STANDARDS GRADE 6 STANDARDS 6-8 Number and Operations (NO) Standard I. Understand numbers, ways of representing numbers, relationships among numbers,

More information

1. INTRODUCTION Graphics 2

1. INTRODUCTION Graphics 2 1. INTRODUCTION Graphics 2 06-02408 Level 3 10 credits in Semester 2 Professor Aleš Leonardis Slides by Professor Ela Claridge What is computer graphics? The art of 3D graphics is the art of fooling the

More information

TWO-DIMENSIONAL TRANSFORMATION

TWO-DIMENSIONAL TRANSFORMATION CHAPTER 2 TWO-DIMENSIONAL TRANSFORMATION 2.1 Introduction As stated earlier, Computer Aided Design consists of three components, namely, Design (Geometric Modeling), Analysis (FEA, etc), and Visualization

More information

Abstract. These two vectors define a plane tangent to the surface at that point. Their cross product is Recent work in computer graphics has been

Abstract. These two vectors define a plane tangent to the surface at that point. Their cross product is Recent work in computer graphics has been Abstract SIMULATION OF WRINKLED SURFACES James F. Blinn Caltech/JPL Computer generated shaded images have reached an impressive degree of realism with the current state of the art. They are not so realistic,

More information

Big Ideas in Mathematics

Big Ideas in Mathematics Big Ideas in Mathematics which are important to all mathematics learning. (Adapted from the NCTM Curriculum Focal Points, 2006) The Mathematics Big Ideas are organized using the PA Mathematics Standards

More information

Enhanced LIC Pencil Filter

Enhanced LIC Pencil Filter Enhanced LIC Pencil Filter Shigefumi Yamamoto, Xiaoyang Mao, Kenji Tanii, Atsumi Imamiya University of Yamanashi {[email protected], [email protected], [email protected]}

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

MECHANICAL ENGINEERING DEPARTMENT

MECHANICAL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING SHREE SARASWATI EDUCATION SANSTHAN S GROUP OF INSTITUTIONS AT PO, RAJPUR TA. KADI, DIST. MEHSANA MECHANICAL ENGINEERING DEPARTMENT SYLLABUS FOR MID SEM EXAMINATON EVEN SEM 2015 SUBJECT

More information

GRAFICA - A COMPUTER GRAPHICS TEACHING ASSISTANT. Andreas Savva, George Ioannou, Vasso Stylianou, and George Portides, University of Nicosia Cyprus

GRAFICA - A COMPUTER GRAPHICS TEACHING ASSISTANT. Andreas Savva, George Ioannou, Vasso Stylianou, and George Portides, University of Nicosia Cyprus ICICTE 2014 Proceedings 1 GRAFICA - A COMPUTER GRAPHICS TEACHING ASSISTANT Andreas Savva, George Ioannou, Vasso Stylianou, and George Portides, University of Nicosia Cyprus Abstract This paper presents

More information

STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS. Now Obsolete

STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS. Now Obsolete STATE CONTROL SURVEY SPECIFICATIONS FOR PRIMARY CONTROL SURVEYS Now Obsolete Caution: This document has been prepared by scanning the original Specifications for Primary Control Surveys - 1984 and using

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University

Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Exploring Geometric Transformations in a Dynamic Environment Cheryll E. Crowe, Ph.D. Eastern Kentucky University Overview The GeoGebra documents allow exploration of four geometric transformations taught

More information

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Chapter 1 Objectives Introduction to Computer Graphics To understand the basic objectives and scope of computer graphics To identify computer graphics applications To understand the basic structures of

More information

3D Math Overview and 3D Graphics Foundations

3D Math Overview and 3D Graphics Foundations Freescale Semiconductor Application Note Document Number: AN4132 Rev. 0, 05/2010 3D Math Overview and 3D Graphics Foundations by Multimedia Applications Division Freescale Semiconductor, Inc. Austin, TX

More information

Data Storage 3.1. Foundations of Computer Science Cengage Learning

Data Storage 3.1. Foundations of Computer Science Cengage Learning 3 Data Storage 3.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List five different data types used in a computer. Describe how

More information

Everyday Mathematics. Grade 4 Grade-Level Goals. 3rd Edition. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goals

Everyday Mathematics. Grade 4 Grade-Level Goals. 3rd Edition. Content Strand: Number and Numeration. Program Goal Content Thread Grade-Level Goals Content Strand: Number and Numeration Understand the Meanings, Uses, and Representations of Numbers Understand Equivalent Names for Numbers Understand Common Numerical Relations Place value and notation

More information

GRADES 7, 8, AND 9 BIG IDEAS

GRADES 7, 8, AND 9 BIG IDEAS Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

More information

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007

KEANSBURG SCHOOL DISTRICT KEANSBURG HIGH SCHOOL Mathematics Department. HSPA 10 Curriculum. September 2007 KEANSBURG HIGH SCHOOL Mathematics Department HSPA 10 Curriculum September 2007 Written by: Karen Egan Mathematics Supervisor: Ann Gagliardi 7 days Sample and Display Data (Chapter 1 pp. 4-47) Surveys and

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Realit Viewing and projection Classical and General Viewing Transformation Pipeline CPU Pol. DL Pixel Per Vertex Texture Raster Frag FB object ee clip normalized device

More information

G.H. Raisoni College of Engineering, Nagpur. Department of Information Technology

G.H. Raisoni College of Engineering, Nagpur. Department of Information Technology Practical List 1) WAP to implement line generation using DDA algorithm 2) WAP to implement line using Bresenham s line generation algorithm. 3) WAP to generate circle using circle generation algorithm

More information

The Keyboard One of the first peripherals to be used with a computer and is still the primary input device for text and numbers.

The Keyboard One of the first peripherals to be used with a computer and is still the primary input device for text and numbers. Standard Methods of Input Input device enables you to input information and commands into the computer. The Keyboard One of the first peripherals to be used with a computer and is still the primary input

More information

GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith

GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series. By: Binesh Tuladhar Clay Smith GPU(Graphics Processing Unit) with a Focus on Nvidia GeForce 6 Series By: Binesh Tuladhar Clay Smith Overview History of GPU s GPU Definition Classical Graphics Pipeline Geforce 6 Series Architecture Vertex

More information

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to:

Data Storage. Chapter 3. Objectives. 3-1 Data Types. Data Inside the Computer. After studying this chapter, students should be able to: Chapter 3 Data Storage Objectives After studying this chapter, students should be able to: List five different data types used in a computer. Describe how integers are stored in a computer. Describe how

More information

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary

Current Standard: Mathematical Concepts and Applications Shape, Space, and Measurement- Primary Shape, Space, and Measurement- Primary A student shall apply concepts of shape, space, and measurement to solve problems involving two- and three-dimensional shapes by demonstrating an understanding of:

More information

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.

In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target

More information

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)

Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate) New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct

More information

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS?

Introduction to GIS (Basics, Data, Analysis) & Case Studies. 13 th May 2004. Content. What is GIS? Introduction to GIS (Basics, Data, Analysis) & Case Studies 13 th May 2004 Content Introduction to GIS Data concepts Data input Analysis Applications selected examples What is GIS? Geographic Information

More information

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION

2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION 2.3 WINDOW-TO-VIEWPORT COORDINATE TRANSFORMATION A world-coordinate area selected for display is called a window. An area on a display device to which a window is mapped is called a viewport. The window

More information

Introduction to GPGPU. Tiziano Diamanti [email protected]

Introduction to GPGPU. Tiziano Diamanti t.diamanti@cineca.it [email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate

More information

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B

Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced

More information

Lesson 26: Reflection & Mirror Diagrams

Lesson 26: Reflection & Mirror Diagrams Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect

More information

LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK vii LIST OF CONTENTS CHAPTER CONTENT PAGE DECLARATION DEDICATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK LIST OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF NOTATIONS LIST OF ABBREVIATIONS LIST OF APPENDICES

More information

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1

Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline 1 Silverlight for Windows Embedded Graphics and Rendering Pipeline Windows Embedded Compact 7 Technical Article Writers: David Franklin,

More information